Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Static Var Compensator (SVC) is a popular FACTS device for providing reactive power support in power systems and its placement representing the location and size has significant influence on network loss, while keeping the voltage magnitudes within the acceptable range. This paper presents a Firefly algorithm based optimization strategy for placement of SVC in power systems with a view of minimizing the transmission loss besides keeping the voltage magnitude within the acceptable range. The method uses a self-adaptive scheme for tuning the parameters in the Firefly algorithm. The strategy is tested on three IEEE test systems and their results are presented to demonstrate its effectiveness.

Go to article

Authors and Affiliations

R. Selvarasu
M. Surya Kalavathi
C. Christober Asir Rajan
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the application of Flexible Alternating Current Transmission System (FACTS) devices based on heuristic algorithms in power systems. The work proposes the Autonomous Groups Particle Swarm Optimization (AGPSO) approach for the optimal placement and sizing of the Static Var Compensator (SVC) to minimize the total active power losses in transmission lines. A comparative study is conducted with other heuristic optimization algorithms such as Particle Swarm Optimization (PSO), Timevarying Acceleration Coefficients PSO (TACPSO), Improved PSO (IPSO), Modified PSO (MPSO), and Moth-Flam Optimization (MFO) algorithms to confirm the efficacy of the proposed algorithm. Computer simulations have been carried out on MATLAB with the MATPOWER additional package to evaluate the performance of the AGPSO algorithm on the IEEE 14 and 30 bus systems. The simulation results show that the proposed algorithm offers the best performance among all algorithms with the lowest active power losses and the highest convergence rate.
Go to article

Bibliography

[1] Vera S.M., Nuez I., Hernandez-Tejera M., A FACTS devices allocation procedure attending to load share, Energies, vol. 13, no. 8 (2020), DOI: 10.3390/en13081976.
[2] Singh B., Kumar R., A comprehensive survey on enhancement of system performances by using different types of FACTS controllers in power systems with static and realistic load models, Energy Reports, vol. 6, pp. 55–79 (2020).
[3] Shehata A.A., Ahmed M.K., State estimation accuracy enhancement for optimal power system steady state modes, IOP Conference Series: Materials Science and Engineering, vol. 643 (2019), DOI: 10.1088/1757-899X/643/1/012049.
[4] Sreedharan S., Joseph T., Joseph S., Chandran C.V., Vishnu J., Das V., Power system loading margin enhancement by optimal STATCOM integration – A case study, Computers and Electrical Engineering, vol. 81, no. 106521 (2019).
[5] Al Ahmad A., Sirjani R., Optimal placement and sizing of multi-type FACTS devices in power systems using metaheuristic optimisation techniques: An updated review, Ain Shams Engineering Journal (2019), DOI: 10.1016/j.asej.2019.10.013.
[6] Belazzoug M., Boudour M., Sebaa K., FACTS location and size for reactive power system compensation through the multi-objective optimization, Archives of Control Sciences, vol. 20, no. 4, pp. 473–489 (2010).
[7] Kotsampopoulos P., Georgilakis P., Lagos D.T., Kleftakis V., Hatziargyriou N., FACTS providing grid services: applications and testing, Energies, vol. 12, no. 13 (2019), DOI: 10.3390/en12132554
[8] Kavitha K.,Neela R., Optimal allocation of multi-type FACTS devices and its effect in enhancing system security using BBO, WIPSO & PSO, Journal of Electrical Systems and Information Technology, vol. 5, no. 3, pp. 777–793 (2018).
[9] Shehata A.A., Korovkin N.V., An accuracy enhancement of optimization techniques containing fractional-polynomial relationships, 2020 International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE), pp. 1–5 (2020).
[10] Dash S.P., Subhashini K.R., Satapathy J.K., Optimal location and parametric settings of FACTS devices based on JAYA blended moth flame optimization for transmission loss minimization in power systems, Microsystem Technologies, vol. 26, no. 5, pp. 1543–1552 (2020).
[11] Saurav S., Gupta V.K., Mishra S.K., Moth-flame optimization based algorithm for FACTS devices allocation in a power system, 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), pp. 1–7 (2017).
[12] Jyotshna D.K., Madhuri N., Optimal allocation of SVC for enhancement of voltage stability using harmony search algorithm, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, vol. 4, no. 7, pp. 6693–6701 (2015).
[13] Ravi K., Rajaram M., Optimal location of FACTS devices using Improved Particle Swarm Optimization, International Journal of Electrical Power and Energy Systems, vol. 49, pp. 333–338 (2013).
[14] Mathad V.G., Ronad B.G., Jangamshetti S.H., Review on comparison of FACTS controllers for power system stability enhancement, International Journal of Scientific and Research Publications, vol. 3, no. 3, pp. 2250–3153 (2013).
[15] Murali D., Rajaram M., Reka N., Comparison of FACTS devices for power system stability enhancement, International Journal of Computer Applications, vol. 8, no. 4, pp. 30–35 (2010).
[16] Rezaee J.A., Particle swarm optimisation (PSO) for allocation of FACTS devices in electric transmission systems: A review, Renewable and Sustainable Energy Reviews, vol. 52, pp. 1260-1267 (2015).
[17] Shaheen A.M., Spea S.R., Farrag S.M., Abido M.A., A review of meta-heuristic algorithms for reactive power planning problem, Ain Shams Engineering Journal, vol. 9, no. 2, pp. 215–231 (2018).
[18] Suresh V., Janik P., Jasinski M., Metaheuristic approach to optimal power flow using mixed integer distributed ant colony optimization, Archives of Electrical Engineering, vol. 69, no. 2, pp. 335–348 (2020).
[19] Benchabira A., Khiat M., A hybrid method for the optimal reactive power dispatch and the control of voltages in an electrical energy network, Archives of Electrical Engineering, vol. 68, no. 3, pp. 535–551 (2019).
[20] Ziyu T., Dingxue Z., A modified particle swarm optimization with an adaptive acceleration coefficient, 2009 Asia-Pacific Conference on Information Processing, vol. 2, pp. 330–332 (2009).
[21] Mirjalili S., Lewis A., Sadiq A.S., Autonomous particles groups for particle swarm optimization, Arabian Journal for Science and Engineering, vol. 39, no. 6, pp. 4683–4697 (2014). [22] The IEEE 14 and 30 Bus Test Systems, available online at: http://labs.ece.uw.edu/pstca.
[23] Cui Z., Zeng J., Yin Y., An improved PSO with time-varying accelerator coefficients, 2008 8th International Conference on Intelligent Systems Design and Applications, vol. 2, pp. 638–643 (2008).
[24] Bao G.Q., Mao K.F., Particle swarmoptimization algorithm with asymmetric time varying acceleration coefficients, 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO), no. 3, pp. 2134–2139 (2009).
[25] Mirjalili S., Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm, Knowledge-Based Systems, vol. 89, pp. 228–249 (2015).
Go to article

Authors and Affiliations

Ahmed A. Shehata
1
ORCID: ORCID
Ahmed Refaat
2
ORCID: ORCID
Mamdouh K. Ahmed
1
ORCID: ORCID
Nikolay V. Korovkin
1
ORCID: ORCID

  1. Institute of Energy, Peter the Great Saint-Petersburg Polytechnic University, Russia
  2. Electrical Engineering Department, Port-Said University, Egypt
Download PDF Download RIS Download Bibtex

Abstract

In this paper voltage stability is analysed based not only on the voltage deviations from the nominal values but also on the number of limit violating buses and severity of voltage limit violations. The expression of the actual state of the system as a numerical index like severity, aids the system operator in taking better security related decisions at control centres both during a period of contingency and also at a highly stressed operating condition. In contrary to conventional N – 1 contingency analysis, Northern Electric Reliability Council (NERC) recommends N – 2 line contingency analysis. The decision of the system operator to overcome the present contingency state of the system must blend harmoniously with the stability of the system. Hence the work presents a novel N – 2 contingency analysis based on the continuous severity function of the system. The study is performed on 4005 possible combinations of N – 2 contingency states for the practical Indian Utility 62 bus system. Static VAr Compensator is used to improve voltage profile during line contingencies. A multi- objective optimization with the objective of minimizing the voltage deviation and also the number of limit violating bus with optimal location and optimal sizing of SVC is achieved by Particle Swarm Optimization algorithm.
Go to article

Authors and Affiliations

S.P. Mangaiyarkarasi
T. Sree Renga Raja

This page uses 'cookies'. Learn more