Search results

Filters

  • Journals
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Search results

Number of results: 15
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A gear system transmits power by means of meshing gear teeth and is conceptually simple and effective in power transmission. Thus typical applications include electric utilities, ships, helicopters, and many other industrial applications. Monitoring the condition of large gearboxes in industries has attracted increasing interest in the recent years owing to the need for decreasing the downtime on production machinery and for reducing the extent of secondary damage caused by failures. This paper addresses the development of a condition monitoring procedure for a gear transmission system using artificial neural networks (ANNs) and support vector machines (SVMs). Seven conditions of the gear were investigated: healthy gear and gear with six stages of depthwise wear simulated on the gear tooth. The features extracted from the measured vibration and sound signals were mean, root mean square (rms), variance, skewness, and kurtosis, which are known to be sensitive to different degrees of faults in rotating machine elements. These characteristics were used as an input features to ANN and SVM. The results show that the multilayer feed forward neural network and multiclass support vector machines can be effectively used in the diagnosis of various gear faults.

Go to article

Authors and Affiliations

Muniyappa Amarnath
Download PDF Download RIS Download Bibtex

Abstract

Complex gaps may be formed when carrying out live working in substations, while the discharge characteristics of complex gaps are different from those of single gaps. This paper focuses on the prediction of critical 50% positive switching impulse breakdown voltage ( U 50–crit + of phase-to-phase complex gaps formed in 220 kV substations. Firstly, several electric field features were defined on the shortest discharge path of the complex gap to reflect the electric field distribution. Then support vector machine (SVM) prediction models were established according to the connection between electric field distribution and breakdown voltage. Finally, the U 50–crit¸+ data of the complex gap were obtained through twice electric field calculations and predictions. The prediction results show that the minimum U 50–crit + of phase-to-phase complex gaps is 1147 kV, and the critical position is 0.9 m away from the high voltage conductor, accounting for 27% of the whole gap. Both critical position and voltage are in good agreement with the values provided in IEC 61472.
Go to article

Authors and Affiliations

Zhenpeng Tang
1
Yuancheng Qin
2
ORCID: ORCID
Changsheng Wu
1
Ronghuan Mai
1

  1. Jiangmen Power Supply Bureau Co., Ltd., China
  2. School of Automation, Wuhan University of Technology, China
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the work was to predict the selected product parameters of the dry separation process using a pneumatic sorter. From the perspective of application of coal for energy purposes, determination of process parameters of the output as: ash content, moisture content, sulfur content, calorific value is essential. Prediction was carried out using chosen machine learning algorithms that proved to be effective in forecasting output of various technological processes in which the relationships between process parameters are non-linear. The source of data used in the work were experiments of dry separation of coal samples. Multiple linear regression was used as the baseline predictive technique. The results showed that in the case of predicting moisture and sulfur content this technique was sufficient. The more complex machine learning algorithms like support vector machine (SVM) and multilayer perceptron neural network (MPL) were used and analyzed in the case of ash content and calorific value. In addition, k-means clustering technique was applied. The role of cluster analysis was to obtain additional information about coal samples used as feed material. The combination of techniques such as multilayer perceptron neural network (MPL) or support vector machine (SVM) with k-means allowed for the development of a hybrid algorithm. This approach has significantly increased the effectiveness of the predictive models and proved to be a useful tool in the modeling of the coal enrichment process.

Go to article

Authors and Affiliations

Alina Żogała
Maciej Rzychoń
Download PDF Download RIS Download Bibtex

Abstract

This paper analyses the effectiveness of determining gas concentrations by using a prototype WO3 resistive gas sensor together with fluctuation enhanced sensing. We have earlier demonstrated that this method can determine the composition of a gas mixture by using only a single sensor. In the present study, we apply Least-Squares Support-Vector-Machine-based (LS-SVM-based) nonlinear regression to determine the gas concentration of each constituent in a mixture. We confirmed that the accuracy of the estimated gas concentration could be significantly improved by applying temperature change and ultraviolet irradiation of the WO3 layer. Fluctuation-enhanced sensing allowed us to predict the concentration of both component gases.
Go to article

Authors and Affiliations

Łukasz Lentka
Janusz M. Smulko
Radu Ionescu
Claes G. Granqvist
Laszlo B. Kish
Download PDF Download RIS Download Bibtex

Abstract

To investigate the effect of different proximate index on minimum ignition temperature(MIT) of coal dust cloud, 30 types of coal specimens with different characteristics were chosen. A two-furnace automatic coal proximate analyzer was employed to determine the indexes for moisture content, ash content, volatile matter, fixed carbon and MIT of different types of coal specimens. As the calculated results showed that these indexes exhibited high correlation, a principal component analysis (PCA) was adopted to extract principal components for multiple factors affecting MIT of coal dust, and then, the effect of the indexes for each type of coal on MIT of coal dust was analyzed. Based on experimental data, support vector machine (SVM) regression model was constructed to predicate the MIT of coal dust, having a predicating error below 10%. This method can be applied in the predication of the MIT for coal dust, which is beneficial to the assessment of the risk induced by coal dust explosion (CDE).

Go to article

Authors and Affiliations

Dan Zhao
ORCID: ORCID
Hao Qi
Jingtao Pan
Download PDF Download RIS Download Bibtex

Abstract

In order to improve the utilization rate of coal resources, it is necessary to classify coal and gangue, but the classification of coal is particularly important. Nevertheless, the current coal and gangue sorting technology mainly focus on the identification of coal and gangue, and no in-depth research has been carried out on the identification of coal species. Accordingly, in order to preliminary screen coal types, this paper proposed a method to predict the coal metamorphic degree while identifying coal and gangue based on Energy Dispersive X-Ray Diffraction (EDXRD) principle with 1/3 coking coal, gas coal, and gangue from Huainan mine, China as the research object. Differences in the phase composition of 1/3 coking coal, gas coal, and gangue were analyzed by combining the EDXRD patterns with the Angle Dispersive X-Ray Diffraction (ADXRD) patterns. The calculation method for characterizing the metamorphism degree of coal by EDXRD patterns was investigated, and then a PSO-SVM model for the classification of coal and gangue and the prediction of coal metamorphism degree was developed. Based on the results, it is shown that by embedding the calculation method of coal metamorphism degree into the coal and gangue identification model, the PSO-SVM model can identify coal and gangue and also output the metamorphism degree of coal, which in turn achieves the purpose of preliminary screening of coal types. As such, the method provides a new way of thinking and theoretical reference for coal and gangue identification.
Go to article

Authors and Affiliations

Yanqiu Zhao
1
ORCID: ORCID
Shuang Wang
1
Yongcun Guo
1
Gang Cheng
1
Lei He
1
Wenshan Wang
1

  1. School of Mechanical Engineering, Anhui University of Science and Technology, China
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we propose using a propeller modulation on the transmitted signal (called sonar micro- Doppler) and different support vector machine (SVM) kernels for automatic recognition of moving sonar targets. In general, the main challenge for researchers and craftsmen working in the field of sonar target recognition is the lack of access to a valid and comprehensive database. Therefore, using a comprehensive mathematical model to simulate the signal received from the target can respond to this challenge. The mathematical model used in this paper simulates the return signal of moving sonar targets well. The resulting signals have unique properties and are known as frequency signatures. However, to reduce the complexity of the model, the 128- point fast Fourier transform (FFT) is used. The selected SVM classification is the most popular machine learning algorithm with three main kernel functions: RBF kernel, linear kernel, and polynomial kernel tested. The accuracy of correctly recognizing targets for different signal-to-noise ratios (SNR) and different viewing angles was assessed. Accuracy detection of targets for different SNRs (−20, −15, −10, −5, 0, 5, 10, 15, 20) and different viewing angles (10, 20, 30, 40, 50, 60, 70, 80) is evaluated. For a more fair comparison, multilayer perceptron neural network with two back-propagation (MLP-BP) training methods and gray wolf optimization (MLP-GWO) algorithm were used. But unfortunately, considering the number of classes, its performance was not satisfactory. The results showed that the RBF kernel is more capable for high SNRs (SNR = 20, viewing angle = 10) with an accuracy of 98.528%.
Go to article

Authors and Affiliations

Abbas Saffari
1
ORCID: ORCID
Seyed Hamid Zahiri
1
ORCID: ORCID
Navid Khozein Ghanad
2
ORCID: ORCID

  1. University of Birjand, Birjand, Iran
  2. Sajjad University of Mashhad, Mashhad, Iran
Download PDF Download RIS Download Bibtex

Abstract

Customer churn prediction is used to retain customers at the highest risk of churn by proactively engaging with them. Many machine learning-based data mining approaches have been previously used to predict client churn. Although, single model classifiers increase the scattering of prediction with a low model performance which degrades reliability of the model. Hence, Bag of learners based Classification is used in which learners with high performance are selected to estimate wrongly and correctly classified instances thereby increasing the robustness of model performance. Furthermore, loss of interpretability in the model during prediction leads to insufficient prediction accuracy. Hence, an Associative classifier with Apriori Algorithm is introduced as a booster that integrates classification and association rule mining to build a strong classification model in which frequent items are obtained using Apriori Algorithm. Also, accurate prediction is provided by testing wrongly classified instances from the bagging phase using generated rules in an associative classifier. The proposed models are then simulated in Python platform and the results achieved high accuracy, ROC score, precision, specificity, F-measure, and recall.
Go to article

Authors and Affiliations

Anitha M A
1
Sherly K K
2

  1. Faculty of Computer Science and Engineering, College of Engineering Cherthala, Alappuzha, Kerala, India
  2. Information Technology Department, Rajagiri School of Engineering & Technology Kochi-682039, Kerala, India
Download PDF Download RIS Download Bibtex

Abstract

Leaf - a significant part of the plant, produces food using the process called photosynthesis. Leaf disease can cause damage to the entire plant and eventually lowers crop production. Machine learning algorithm for classifying five types of diseases, such as Alternaria leaf diseases, Bacterial Blight, Gray Mildew, Leaf Curl and Myrothecium leaf diseases, is proposed in the proposed study. The classification of diseases needs front face of leafs. This paper proposes an automated image acquisition process using a USB camera interfaced with Raspberry PI SoC. The image is transmitted to host PC for classification of diseases using online web server. Pre-processing of the acquired image by host PC to obtain full leaf, and later classification model based on SVM is used to detect type diseases. Results were checked with a 97% accuracy for the collection of acquired images.
Go to article

Bibliography

[1] A. Akhtar, A. Khanum, S. A. Khan, and A. Shaukat, “Automated plant disease analysis (apda): performance comparison of machine learning techniques,” in 2013 11th International Conference on Frontiers of Information Technology. IEEE, 2013, pp. 60–65.
[2] M. H. Saleem, J. Potgieter, and K. M. Arif, “Plant disease detection and classification by deep learning,” Plants, vol. 8, no. 11, p. 468, 2019.
[3] R. M. Haralick, K. Shanmugam, and I. H. Dinstein, “Textural features for image classification,” IEEE Transactions on Systems, Man, and Cybernetics, no. 6, pp. 610–621, 1973.
[4] J. Isleib, Signs and symptoms of plant disease, 2019 (accessed February 3, 2019). [Online]. Available: https://www.canr.msu.edu/news/signs and symptoms of plant disease is it fungal viral or bacterial
[5] R. Borges, M. Rossato, M. Santos, M. Ferreira, M. Fonseca, A. Reis, and L. Boiteux, “First report of a leaf spot caused by paramyrothecium roridum on tectona grandis in brazil,” Plant Disease, vol. 102, no. 8, pp. 1661–1661, 2018.
[6] H. K. Mewada, A. V. Patel, and K. K. Mahant, “Concurrent design of active contour for image segmentation using zynq zc702,” Computers & Electrical Engineering, vol. 72, pp. 631–643, 2018.
[7] M. Rzanny, M. Seeland, J. W¨aldchen, and P. M¨ader, “Acquiring and preprocessing leaf images for automated plant identification: understanding the tradeoff between effort and information gain,” Plant methods, vol. 13, no. 1, pp. 1–11, 2017.
[8] D. Vukadinovic and G. Polder, “Watershed and supervised classification based fully automated method for separate leaf segmentation,” in The Netherland Congress on Computer Vision, 2015, pp. 1–2.
[9] C. Niu, H. Li, Y. Niu, Z. Zhou, Y. Bu, and W. Zheng, “Segmentation of cotton leaves based on improved watershed algorithm,” in International Conference on Computer and Computing Technologies in Agriculture. Springer, 2015, pp. 425–436.
[10] L. S. Pinto, A. Ray, M. U. Reddy, P. Perumal, and P. Aishwarya, “Crop disease classification using texture analysis,” in 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT). IEEE, 2016, pp. 825–828.
[11] A. Abraham, R. Falcon, and M. Koeppen, Computational Intelligence in Wireless Sensor Networks: Recent Advances and Future Challenges. Springer, 2017, vol. 676.
[12] S. Hu, H. Wang, C. She, and J. Wang, “Agont: ontology for agriculture internet of things,” in International Conference on Computer and Computing Technologies in Agriculture. Springer, 2010, pp. 131–137.
[13] Y. Shi, Z. Wang, X. Wang, and S. Zhang, “Internet of things application to monitoring plant disease and insect pests,” in 2015 International conference on Applied Science and Engineering Innovation. Atlantis Press, 2015.
[14] A. Kapoor, S. I. Bhat, S. Shidnal, and A. Mehra, “Implementation of iot (internet of things) and image processing in smart agriculture,” in 2016 International Conference on Computation System and Information Technology for Sustainable Solutions (CSITSS). IEEE, 2016, pp. 21–26.
[15] N. Anantrasirichai, S. Hannuna, and N. Canagarajah, “Automatic leaf extraction from outdoor images,” arXiv preprint arXiv:1709.06437, 2017.
[16] V. Singh and A. K. Misra, “Detection of plant leaf diseases using image segmentation and soft computing techniques,” Information processing in Agriculture, vol. 4, no. 1, pp. 41–49, 2017.
[17] N. P. Singh, R. Kumar, and R. Srivastava, “Local entropy thresholding based fast retinal vessels segmentation by modifying matched filter,” in International Conference on Computing, Communication & Automation. IEEE, 2015, pp. 1166–1170.
[18] E. Hamuda, M. Glavin, and E. Jones, “A survey of image processing techniques for plant extraction and segmentation in the field,” Computers and Electronics in Agriculture, vol. 125, pp. 184–199, 2016.
[19] B.-y. Sun and M.-c. Lee, “Support vector machine for multiple feature classifcation,” in 2006 IEEE International Conference on Multimedia and Expo. IEEE, 2006, pp. 501–504.
[20] S. Arivazhagan, R. N. Shebiah, S. Ananthi, and S. V. Varthini, “Detection of unhealthy region of plant leaves and classification of plant leaf diseases using texture features,” Agricultural Engineering International: CIGR Journal, vol. 15, no. 1, pp. 211–217, 2013.
[21] S. Arivazhagan, R. Shebiah, S. Ananthi, and S. Varthini, “Detection of unhealthy region of plant leaves and classification of plant leaf diseases using texture features,” Agricultural Engineering International: CIGR Journal, vol. 15, no. 1, pp. 211–217, 2013.
Go to article

Authors and Affiliations

Hiren Mewada
1
Jignesh Patoliaya
2

  1. Faculty of Electrical Engineering, Prince Mohammad Bin Fahd University, Al Kobhar, Kingdom of Saudi Arabai
  2. Charotar University of Science and Technology, Changa, India
Download PDF Download RIS Download Bibtex

Abstract

Computer aided detection systems are used for the provision of second opinion during lung cancer diagnosis. For early-stage detection and treatment false positive reduction stage also plays a vital role. The main motive of this research is to propose a method for lung cancer segmentation. In recent years, lung cancer detection and segmentation of tumors is considered one of the most important steps in the surgical planning and medication preparations. It is very difficult for the researchers to detect the tumor area from the CT (computed tomography) images. The proposed system segments lungs and classify the images into normal and abnormal and consists of two phases, The first phase will be made up of various stages like pre-processing, feature extraction, feature selection, classification and finally, segmentation of the tumor. Input CT image is sent through the pre-processing phase where noise removal will be taken care of and then texture features are extracted from the pre-processed image, and in the next stage features will be selected by making use of crow search optimization algorithm, later artificial neural network is used for the classification of the normal lung images from abnormal images. Finally, abnormal images will be processed through the fuzzy K-means algorithm for segmenting the tumors separately. In the second phase, SVM classifier is used for the reduction of false positives. The proposed system delivers accuracy of 96%, 100% specificity and sensitivity of 99% and it reduces false positives. Experimental results shows that the system outperforms many other systems in the literature in terms of sensitivity, specificity, and accuracy. There is a great tradeoff between effectiveness and efficiency and the proposed system also saves computation time. The work shows that the proposed system which is formed by the integration of fuzzy K-means clustering and deep learning technique is simple yet powerful and was effective in reducing false positives and segments tumors and perform classification and delivers better performance when compared to other strategies in the literature, and this system is giving accurate decision when compared to human doctor’s decision.
Go to article

Authors and Affiliations

J. Maruthi Nagendra Prasad
1
S. Chakravarty
1
M. Vamsi Krishna
2

  1. Centurion University of Technology and Management, Orissa, India
  2. Chaitanya Engineering College, Kakinada, India
Download PDF Download RIS Download Bibtex

Abstract

Groundwater contamination due to leakage of gasoline is one of the several causes which affect the groundwater environment by polluting it. In the past few years, In-situ bioremediation has attracted researchers because of its ability to remediate the contaminant at its site with low cost of remediation. This paper proposed the use of a new hybrid algorithm to optimize a multi-objective function which includes the cost of remediation as the first objective and residual contaminant at the end of the remediation period as the second objective. The hybrid algorithm was formed by combining the methods of Differential Evolution, Genetic Algorithms and Simulated Annealing. Support Vector Machines (SVM) was used as a virtual simulator for biodegradation of contaminants in the groundwater flow. The results obtained from the hybrid algorithm were compared with Differential Evolution (DE), Non Dominated Sorting Genetic Algorithm (NSGA II) and Simulated Annealing (SA). It was found that the proposed hybrid algorithm was capable of providing the best solution. Fuzzy logic was used to find the best compromising solution and finally a pumping rate strategy for groundwater remediation was presented for the best compromising solution. The results show that the cost incurred for the best compromising solution is intermediate between the highest and lowest cost incurred for other non-dominated solutions.

Go to article

Authors and Affiliations

Deepak Kumar
Sudheer Ch
Shashi Mathur
Jan Adamowski
Download PDF Download RIS Download Bibtex

Abstract

Accurate network fault diagnosis in smart substations is key to strengthening grid security. To solve fault classification problems and enhance classification accuracy, we propose a hybrid optimization algorithm consisting of three parts: anti-noise processing (ANP), an improved separation interval method (ISIM), and a genetic algorithm-particle swarm optimization (GA-PSO) method. ANP cleans out the outliers and noise in the dataset. ISIM uses a support vector machine (SVM) architecture to optimize SVM kernel parameters. Finally, we propose the GA-PSO algorithm, which combines the advantages of both genetic and particle swarm optimization algorithms to optimize the penalty parameter. The experimental results show that our proposed hybrid optimization algorithm enhances the classification accuracy of smart substation network faults and shows stronger performance compared with existing methods.

Go to article

Authors and Affiliations

Xin Xia
Xiaofeng Liu
Jichao Lou
Download PDF Download RIS Download Bibtex

Abstract

This study focuses on the problem of mapping impervious surfaces in urban areas and aims to use remote sensing data and orthophotos to accurately classify and map these surfaces. Impervious surface indices and green space assessments are widely used in land use and urban planning to evaluate the urban environment. Local governments also rely on impervious surface mapping to calculate stormwater fees and effectively manage stormwater runoff. However, accurately determining the size of impervious surfaces is a significant challenge. This study proposes the use of the Support Vector Machines (SVM) method, a pattern recognition approach that is increasingly used in solving engineering problems, to classify impervious surfaces. The research results demonstrate the effectiveness of the SVM method in accurately estimating impervious surfaces, as evidenced by a high overall accuracy of over 90% (indicated by the Cohen’s Kappa coefficient). A case study of the “Parkowo-Lesne” housing estate in Warsaw, which covers an area of 200,000 m², shows the successful application of the method. In practice, the remote sensing imagery and SVM method allowed accurate calculation of the area of the surface classes studied. The permeable surface represented about 67.4% of the total complex and the impervious surface corresponded to the remaining 32.6%. These results have implications for stormwater management, pollutant control, flood control, emergency management, and the establishment of stormwater fees for individual properties. The use of remote sensing data and the SVM method provides a valuable approach for mapping impervious surfaces and improving urban land use management.
Go to article

Authors and Affiliations

Janusz Sobieraj
1
ORCID: ORCID
Marcos Fernández Marín
2
ORCID: ORCID
Dominik Metelski
3
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16,00-637 Warsaw, Poland
  2. Universitat Politccnica de Valcncia, Department of Computer Science and Artificial Intelligence,46980 Paterna (Valencia), Spain
  3. University of Granada, Faculty of Economics and Business Sciences, Campus Cartuja, 18071Granada, Spain
Download PDF Download RIS Download Bibtex

Abstract

This work present an efficient hardware architecture of Support Vector Machine (SVM) for the classification of Hyperspectral remotely sensed data using High Level Synthesis (HLS) method. The high classification time and power consumption in traditional classification of remotely sensed data is the main motivation for this work. Therefore presented work helps to classify the remotely sensed data in real-time and to take immediate action during the natural disaster. An embedded based SVM is designed and implemented on Zynq SoC for classification of hyperspectral images. The data set of remotely sensed data are tested on different platforms and the performance is compared with existing works. Novelty in our proposed work is extend the HLS based FPGA implantation to the onboard classification system in remote sensing. The experimental results for selected data set from different class shows that our architecture on Zynq 7000 implementation generates a delay of 11.26 μs and power consumption of 1.7 Watts, which is extremely better as compared to other Field Programmable Gate Array (FPGA) implementation using Hardware description Language (HDL) and Central Processing Unit (CPU) implementation.
Go to article

Authors and Affiliations

H.N. Mahendra
1
S. Mallikarjunaswamy
1

  1. Department of Electronics and Communication Engineering, JSS Academy of Technical Education Bengaluru and Affiliated to Visvesvaraya Technological University, Belagavi, India

This page uses 'cookies'. Learn more