Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 2
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

Electrical Discharge Machining (EDM) process with copper tool electrode is used to investigate the machining characteristics of AISI D2 tool steel material. The multi-wall carbon nanotube is mixed with dielectric fluids and its end characteristics like surface roughness, fractal dimension and metal removal rate (MRR) are analysed. In this EDM process, regression model is developed to predict surface roughness. The collection of experimental data is by using L9 Orthogonal Array. This study investigates the optimization of EDM machining parameters for AISI D2 Tool steel using Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method. Analysis of variance (ANOVA) and F-test are used to check the validity of the regression model and to determine the significant parameter affecting the surface roughness. Atomic Force Microscope (AFM) is used to capture the machined image at micro size and using spectroscopy software the surface roughness and fractal dimensions are analysed. Later, the parameters are optimized using MINITAB 15 software, and regression equation is compared with the actual measurements of machining process parameters. The developed mathematical model is further coupled with Genetic Algorithm (GA) to determine the optimum conditions leading to the minimum surface roughness value of the workpiece.

Przejdź do artykułu

Autorzy i Afiliacje

S. Prabhu
B.K. Vinayagam
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The measurements of the concentrations of gaseous and dust pollutants in the anthropogenic environment are an important element of environmental monitoring and for determining directions of preventive activities in the field of health protection. The article presents the results involving the concentrations of suspended dust and gaseous pollutants in the outdoor air, which were recorded at three measuring stations of air quality in the Silesian and Opole voivodeships (Wodzisław Śląski, Zabrze, Kędzierzyn-Koźle). The results were supplemented with the values recorded by the mobile laboratory located at the Center for Continuing Education - Branch of the Silesian University of Technology in Rybnik. The research results were used for a synthetic assessment of the threat level to the anthropogenic environment. In the computational layer, the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) was employed, which is included in the group of methods for solving multi-criteria decision-making problems (Multi Attribute Decision Making).
Przejdź do artykułu

Bibliografia

  1. Air Quality Index – AQI, https://powietrze.uni.wroc.pl/base/t/indeks-jakosci-powietrza
  2. Bąk, A. (2016). Linear ordering of objects using the Hellwig and TOPSIS methods – comparative analysis. PRACE NAUKOWE Uniwersytetu Ekonomicznego we Wrocławiu. Nr 426. Taksonomia 26 Klasyfikacja i analiza danych – teoria i zastosowania. Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu, Wrocław, pp. 22-31. (in Polish)
  3. Behzadian, M., Otaghsara, S.K., Yazdani, M. & Ignatius, J. (2012). A state-of the art survey of TOPSIS applications, Expert Systems with Applications, 39, 17, pp. 13051- 13069. DOI:10.1016/j.eswa.2012.05.056.
  4. Boran, F.E., Genc, S., Kurt, M. & Akay, D. (2009). A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method, Expert Systems with Applications, 36, 8, pp. 11363-11368. DOI:10.1016/j.eswa.2009.03.039.
  5. Chen, C.T. (2000). Extensions of the TOPSIS for group decision-making under fuzzy environment, Fuzzy Sets and Systems, 114, 1, pp. 1-9. DOI:10.1016/S0165-0114(97)00377-1.
  6. Dymova, L., Sevastjanova, P. & Tikhonenko, A. (2013). A direct interval extension of TOPSIS method, Expert Systems with Applications, 40, 12, pp. 4841-4847. DOI:10.1016/j.eswa.2013.02.022.
  7. EEA. Air Quality in Europe 2022, https://www.eea.europa.eu//publications/air-quality-in-europe-2022 (14. 11.2023).
  8. Geoportal2.pl, https://polska.geoportal2.pl/map/www/mapa.php?mapa=polska
  9. Holnicki, P., Kałuszko, A. & Nahorski, Z. (2021). Analysis of emission abatement scenario to improve urban air quality, Archives of Environmental Protection, 47, 2, pp. 103–114. DOI:10.24425/aep.2021.137282.
  10. Hwang, C.-L. & Yoon, K. (1981). Multiple Attribute Decision Making. Lecture Notes in Economics and Mathematical Systems, 186, Springer 1981.
  11. ISGlobal—Ranking of Cities. 2021. https://isglobalranking.org/ranking/#air (14.11.2023).
  12. Juginović, A., Vuković, M., Aranza, I. & Biloš, V. (2021). Health Impacts of Air Pollution Exposure from 1990 to 2019 in 43 European Countries, Scientifc Reports, 11, 22516. DOI:10.1038/s41598-021-01802-5.
  13. Kaczmarczyk, M. (2016) Low emissions. Energy efficiency in municipalities and local governments, Geosystem.(in Polish)
  14. Lopuszanska-Dawid, M., Kołodziej, H., Lipowicz, A., Szklarska, A., Kopiczko, A. & Bielicki, T. (2020). Social class-specific secular trends in height among 19-year old Polish men: 6th national surveys from 1965 till 2010, Economics and Human Biology, 37, 100832. DOI:10.1016/j.ehb.2019.100832
  15. Machaczka, O., Jiřík, V., Janulková, T., Michalík, J., Siemiatkowski, G., Osrodka, L., Krajny, E. & Topinka, J. (2023). Comparisons of lifetime exposures between differently polluted areas and years of life lost due to all-cause mortality attributable to air pollution, Environmental Sciences Europe, 35, 73. DOI:10.1186/s12302-023-00778-5.
  16. Meo, S.A., Ahmed Alqahtani, S., Saad Binmeather, F., Abdulrhman, Al., Rasheed, R., Mohammed, A.G. & Mohammed, A.R. (2022). Effect of environmental pollutants PM2.5, CO, O3 and NO2, on the incidence and mortality of SARS-COV-2 in largest metropolitan cities, Delhi, Mumbai and Kolkata, India Sultan, Journal of King Saud University – Science, 34, 1, 101687. DOI:10.1016/j.jksus.2021.101687.
  17. Paplinska-Goryca, M., Misiukiewicz-Stepien, P., Proboszcz, M. Nejman-Gryz, P., Gorska, K. Zajusz-Zubek, E. & Krenke, R. (2021). Interactions of nasal epithelium with macrophages and dendritic cells variously alter urban PM-induced inflammation in healthy, asthma and COPD, Scientifc Reports, 11, 13259. DOI:10.1038/s41598-021-92626-w.
  18. Roszkowska, E. & Kacprzak, D. (2016). The fuzzy SAW and fuzzy TOPSIS procedures based on ordered fuzzy numbers, Information Sciences, 369, pp. 564-584. DOI:10.1016/j.ins.2016.07.044.
  19. Shih, H.S., Shyur, H.J. & Lee, E.S. (2007). An extension of TOPSIS for group decision making, Mathematical and Computer Modelling, 45, 7-8, pp. 801-813. DOI:10.1016/j.mcm.2006.03.023.
  20. Wang ,T.C. & Chang, T.H. (2007). Application of TOPSIS in evaluating initial training aircraft under a fuzzy environment, Expert Systems with Applications, 33, 4, pp. 870- 880. DOI:10.1016/j.eswa.2006.07.003.
  21. WHO Global Air Quality Guidelines, 2021, https://apps.who.int/iris/handle/10665/345329 (14.11.2023).
  22. WHO. Air Quality Database (Update 2022), https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (14.11.2023).
  23. Yazdi, M.D., Wang, Y., Di, Q., Requia, W.J., Wei, Y., Shi, L., Sabath, M.B., Dominici, F., Coull, B., Evans, J.S., Koutrakis, P. & Schwartz, J.D. (2021). Long-term effect of exposure to lower concentrations of air pollution on mortality among US Medicare participants and vulnerable subgroups: a doubly-robust approach, The Lancet Planetary Health, e689–e697. DOI:10.1016/s2542-5196(21)00204-7.
  24. Yazdi, M.M. (2015). TOPSIS method for multiple-criteria decision making (MCDM) – package topsis, https://cran.r-project.org/web/packages/tops
  25. Zoran, M.A., Savastru, R.S., Savastru, Dan, M. & Tautan, M.N. (2020). Assessing the relationship between surface levels of PM2.5 and PM10 particulate matter impact on COVID-19 in Milan, Italy, Science of The Total Environment, 738, 139825. DOI:10.1016/j.scitotenv.2020.139825.
Przejdź do artykułu

Autorzy i Afiliacje

Elwira Zajusz-Zubek
1
ORCID: ORCID
Zygmunt Korban
2

  1. Silesian University of Technology, Faculty of Energy and Environmental Engineering, Poland
  2. Silesian University of Technology, Faculty of Mining, Safety Engineering and Industrial Automation, Poland

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji