Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 2
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

The Bogdanka coal mine, the only currently operating mine in the Lublin Coal Basin (LCB),

extracts coal from the Upper Carboniferous formations of the LCB. The average sulfur content in

the No. 385/2 seam is 0.98%, while in the case of the No. 391 seam it is slightly higher and amounts

to 1.15%. The iron sulfides (pyrite and marcasite) in bituminous coal seams form macroscopically

visible massive, vein, and dispersed forms. A microscopic examination has confirmed their complex

structure. Massive forms contain euhedral crystals and framboids. The sulfide aggregations are often

associated with a halo of dispersed veins and framboids. Pyrite and marcasite often fill the fusinite

cells. Framboids are highly variable when it comes to their size and the degree of compaction within

the carbonaceous matter. Their large aggregations form polyframboids. The cracks are often filled

with crystalline accumulations of iron sulfides (octaedric crystals). The Wavelenth Dispersive Spectrometry

(WDS) microanalysis allowed the chemical composition of sulfides in coal samples from the

examined depoists to be analyzed. It has been shown that they are dominated by iron sulfides FeS2 –

pyrite and marcasite. The examined sulfides contain small admixtures of Pb, Hg, Zn, Cu, Ag, Sb, Co,

Ni, As, and Cd. When it comes to the examined admixtures, the highest concentration of up to 0.24%,

is observed for As. In addition, small amounts of galena, siderite, and barite have also been found in

the examined coal samples. The amounts of the critical elements in the examined samples do not allow

for their economically justified exploitation. Higher concentrations of these elements can be found in

the ashes resulting from the combustion process.

Przejdź do artykułu

Autorzy i Afiliacje

Barbara Bielowicz
Jacek Misiak

Abstrakt

Determined was quantitative effect of nickel equivalent value on austenite decomposition degree during cooling-down castings of Ni-MnCu cast iron. Chemical composition of the alloy was 1.8 to 5.0 % C, 1.3 to 3.0 % Si, 3.1 to 7.7 % Ni, 0.4 to 6.3 % Mn, 0.1 to 4.9 % Cu, 0.14 to 0.16 % P and 0.03 to 0.04 % S. Analysed were castings with representative wall thickness 10, 15 and 20 mm. Scope of the examination comprised chemical analysis (including WDS), microscopic observations (optical and scanning microscopy, image analyser), as well as Brinell hardness and HV microhardness measurements of structural components.
Przejdź do artykułu

Autorzy i Afiliacje

A. Janus
A. Kurzawa

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji