Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Cyanobacterial and algal blooms lead to the deterioration of freshwater ecosystems but also generate technical problems in water management in the industry. Power plants often use freshwater lakes and reservoirs as a source of cooling water and in the case of cogeneration stations (combined heat and power) also as a source of agents for heating energy distribution. A preliminary research in one of the heat and power stations in eastern Poland which uses water from suffering with algal blooms reservoir was carried out in April 2011. The study was focused on the changes in the phytoplankton quantitative and qualitative structure as well as in basic physico- -chemical parameters along the water treatment line, which consists of several stages serving as sampling points (from the pump station to the purified water tank). The initial phytoplankton biomass in the reservoir was high (fresh biomass: 65.8 mg dm-3, chlorophyll a: 146.7 μg dm-3) with diatoms prevailing (98% of the total biomass) from which the most numerous were: Cyclotella comta and Aulacoseira granulata. After several stages of the purification process (sedimentation, biocide addition, flocculation, gravel filtering, ion exchange) the water still consisted a considerable amount of algae (fresh biomass: 2.48 mg dm-3, chlorophyll a: 6.0 μg dm-3). However, the final biomass in purified water tank (after reversed osmosis process) was very low (fresh biomass: 0.03 mg dm-3, chlorophyll a: 0.1 μg dm-3). Results had shown that high algal biomass in the water used in power generation plant is difficult to remove and consequently requires considerable technical (thus also economical) efforts to adjust the water for the industrial use.
Go to article

Authors and Affiliations

Monika Tarkowska-Kukuryk
Wojciech Pęczuła
Tomasz Mieczan
Wojciech Płaska
Jacek Rechulicz
Download PDF Download RIS Download Bibtex

Abstract

The mid-Ludfordian pronounced, positive carbon isotope excursion (CIE), coincident with the Lau/kozlowskii extinction event, has been widely studied so far in shallow-water, carbonate successions, whereas its deep-water record remains insufficiently known. The aim of this research is to reconstruct the sedimentary environments and the palaeoredox conditions in the axial part of the Baltic-Podolian Basin during the event. For these purposes, the Pasłęk IG-1 core section has been examined using microfacies analysis, framboid pyrite diameter and carbon isotope measurements. The prelude to the event records an increased influx of detrital dolomite interpreted as eolian dust, coupled with a pronounced decrease in the diameter of the pyrite framboids, indicating persistent euxinic conditions across the event. The event climax is recorded as the Reda Member and consists of calcisiltites, composed of calcite microcrystals (‘sparoids’), which are interpreted as suspensoids induced by phytoplankton blooms in the hipersaturation conditions present in the epipelagic layer of the basin. Both the prelude and climax facies show lamination, interpreted as having resulted from periodical settling of marine snow, combined with hydraulic sorting within a ‘benthic flocculent layer’, which additionally may be responsible for a low organic matter preservation rate due to methanogenic decomposition. Contrary to the observed basinward CIE decline in the benthic carbonates in the basin, the Reda Member records an extremely positive CIE (up to 8.25‰). Given the pelagic origin of the sparoids, the CIE seems to record surface-water carbon isotope ratios. This points to a large carbon isotope gradient and kinetic fractionation between surface and bottom waters during the mid-Ludfordian event in a strongly stratified basin. The Reda facies-isotope anomaly is regarded as undoubtedly globally triggered, but amplified by the stratified and euxinic conditions in the partly isolated, Baltic-Podolian basin. Hence, the common interpretation of the basin record as representative for the global ocean needs to be treated with great caution.

Go to article

Authors and Affiliations

Wojciech Kozłowski

This page uses 'cookies'. Learn more