Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 10
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study is to find bacterial strains with antagonistic effects against Fusarium oxysporum f. sp. lycopersici ( Fol) and Ascochyta sp, which are phytopathogens responsible for fusarium wilt of tomato and ascochyta blight of peas, respectively. One hundred thirty- six bacteria isolated from the rhizosphere of tomatoes were screened. Five strains with the largest inhibition zones were selected. These strains were identified by the phenotypic method, later confirmed by sequencing of 16S rDNA. All strains belonged to the genus Bacillus spp. Their inhibition capacity was evaluated by the direct method by doing a dual culture, the inhibition rates ranged from 44.32 ± 0.8 to 61.36 ± 0.2 against Fol and 62.04 ± 0.8 to 74.1 ± 0.2% against Ascochyta sp. They were then evaluated by the indirect method by evaluating, on one hand, the antifungal effect of the volatile compounds produced by the strains and on the other hand, the antifungal effect of the filtrates. The results showed that volatile compounds inhibited plant pathogens’ growth with average inhibition rates of 55% against Fol and 17% against Ascochyta. For filtrates, the average inhibition rates were 33.01% against Fol and 33.74% against Ascochyta sp. Finally, the plant growth promoting rhizobacteria (PGPR) effect of B. halotolerans RFP57 was evaluated. This involved assessing their ability to stimulate the germination of tomato seeds and the growth of their vegetative organs. The results showed significant improvement in treated seedlings compared to controls. All these results show that the strains selected for this study have the potential for use as a biocontrol agent. However, it is clear that further in-depth studies are needed to confirm their true potentiality.
Go to article

Authors and Affiliations

Pelias Rafanomezantsoa
1
Samia Gharbi
2
Noureddine Karkachi
1
Mebrouk Kihal
1

  1. Department of Biology, University of Oran 1 Ahmed Ben Bella, Oran, Algeria
  2. Department of Biotechnology, University of Science and Technology of Oran Mohamed Boudiaf, Oran, Algeria
Download PDF Download RIS Download Bibtex

Abstract

The use of Bacillus thuringiensis (Bt) to control insect pests has already been established in various agronomic and forest crops. It is a bacterium that does not pollute the environment, is safe for mammals and vertebrates, lacks toxicity to plants and specifically targets insects. To date in-depth studies have not been conducted about the use of Bt to control the main pest of mahogany (Swietenia macrophylla King) and other Meliaceae species, the Hypsipyla grandella Zeller (Lepidoptera: Pyralidae). Therefore, this study aimed to test the pathogenicity of Bt strains on H. grandella caterpillars, as well to determine the lethal concentration required to kill 50% of the population (LC50) of the most promising strains. Ten strains of Bt toxic to lepidopteran proven in previous trials were used and these were incorporated into a natural diet with mahogany seeds to check their mortality. The LC50 of the top five strains was determined. The results indicate that H. grandella is highly susceptible to Bt toxins and the S1905 strain is highly toxic. Therefore, the use of Bt strains may be a tool to be incorporated into the integrated management of this important pest.
Go to article

Authors and Affiliations

de Castro Marcelo Tavares
Montalvăo Sandro Coelho Linhares
Monnerat Rose Gomes
Download PDF Download RIS Download Bibtex

Abstract

Fusarium wilt, incited by Fusarium oxysporum f. sp. lycopersici (FOL), causes serious production losses of tomato ( Solanum lycopersicum L.) plants. Biological control, using an antagonistic of Trichoderma species, is a bio-rationale and an alternative method to synthetic pesticides against most phytopathogens. The present study was undertaken to evaluate the effects of T. harzianum and/or T. viride in reducing Fusarium wilt and to determine the relationship between disease severity and plant growth promoting traits of these species. Trichoderma viride exhibited better phosphate solubilization and production of cellulases, ligninases, chitinases, proteases, hydrogen cyanide (HCN), siderophores and indole acetic acid (IAA) than T. harzianum. For field assessment, five treatments with three replicates were used. The field was inoculated with the wilt fungus (FOL). Both Trichoderma spp. used were applied as a seed treatment, mixed in the soil, and FOL inoculated soil served as the untreated control. During the two consecutive years, seed treatment with T. viride exhibited the least disease severity, the highest physiological activity, the highest biochemical and antioxidant contents, and tomato plants treated with it exhibited the best growth and yield. It was concluded that Trichoderma viride can potentially be used to reduce Fusarium wilt and promote plant growth and yield in commercial tomato production.
Go to article

Bibliography


Abd-El-Khair H., Elshahawy I.E., Haggag H.K. 2019. Field application of Trichoderma spp. combined with thiophanate-methyl for controlling Fusarium solani and Fusarium oxysporum in dry bean. Bulletin of the National Research Centre 43 (1): 19. DOI: https://doi.org/10.1186/s42269-019-0062-5
Abdelrahman M., Abdel-Motaal F., El-Sayed M., Jogaiah S., Shigyo M., Ito S.I., Tran L.S.P. 2016. Dissection of Trichoderma longibrachiatum-induced defense in onion (Allium cepa L.) against Fusarium oxysporum f. sp. cepa by target metabolite profiling. Plant Science 246: 128–138. DOI: https://doi.org/10.1016/j.plantsci.2016.02.008
Ahanger M.A., Tyagi S.R., Wani M.R., Ahmad P. 2014. Drought tolerance: role of organic osmolytes, growth regulators, and mineral nutrients. p. 25–55. In: Physiological Mechanisms and Adaptation Strategies in Plants under Changing Environment (P. Ahmad, M. Wani, eds.). Springer, New York, USA. DOI: https://doi.org/10.1007/978-1-4614-8591-9_2
Ahemad M., Kibret M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King Saud University – Science 26 (1):1–20. DOI: https://doi.org/10.1016/j.jksus.2013.05.001
Ahmad P., Hashem A., Abd-Allah E.F., Alqarawi A.A., John R., Egamberdieva D., Gucel S. 2015. Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Frontiers in Plant Science 6: 868. DOI: https://doi.org/10.3389/fpls.2015.00868
Ahmed M. 2011. Management of Fusarium wilt of tomato by soil amendment with Trichoderma koningii and a white sterile fungus. Indian Journal of Research 5: 35–38.
Al-Ani L.K.T. 2018. Trichoderma: beneficial role in sustainable agriculture by plant disease management. “Plant Microbiome: Stress Response 5: 105–126. DOI: https://doi.org/10.1007/978-981-10-5514-0_5
Antoun H., Kloepper J.W. 2001. Plant growth-promoting rhizobacteria (PGPR). p. 1477–1480. In: “Encyclopedia of genetics” (S. Brenner, J.F. Miller, eds.). Academic Press, New York, USA. DOI: https://doi.org/10.1006/rwgn.2001.1636
Benítez T., Rincón A.M., Limón M.C., Codon A.C. 2004. Biocontrol mechanisms of Trichoderma strains. International Microbiology 7 (4): 249–260.
Blumer C., Haas D. 2000. Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Archives of Microbiology 173 (3): 170–177. DOI: https://doi.org/10.1007/s002039900127
Castano R., Borrero C., Trillas M.I., Avilés M. 2013. Selection of biological control agents against tomato Fusarium wilt and evaluation in greenhouse conditions of two selected agents in three growing media. BioControl 58 (1): 105–116. DOI: https://doi.org/10.1007/s10526-012-9465-z
Chaves-Gómez J.L., Chavez-Arias C.C., Cotes Prado A.M., Gómez-Caro S., Restrepo-Díaz H. 2019. Physiological response of cape gooseberry seedlings to three biological control agents under Fusarium oxysporum f. sp. physali infection. Plant Disease 104 (2): 388–397. DOI: https://doi.org/10.1094/pdis-03-19-0466-re
Chet I., Inbar J. 1994. Biological control of fungal pathogens. Applied Biochemistry and Biotechnology 48 (1): 37–43. DOI: https://doi.org/10.1007/BF02825358
Contreras-Cornejo H.A., Macías-Rodríguez L., Vergara A.G., López-Bucio J. 2015. Trichoderma modulates stomatal aperture and leaf transpiration through an abscisic acid-dependent mechanism in Arabidopsis. Journal of Plant Growth Regulation 34 (2): 425–432. DOI: http://dx.doi.org/10.1007/s00344-014-9471-8
de Rodríguez D.J., Angulo-Sánchez J.L., Hernández-Castillo F.D. 2006. An overview of the antimicrobial properties of Mexican medicinal plants. Advances in Phytomedicine 3: 325–377. DOI: https://doi.org/10.1016/s1572-557x(06)03014-5
Deng J.J., Shi D., Mao H.H., Li Z.W., Liang S., Ke Y., Luo X.C. 2019. Heterologous expression and characterization of an antifungal chitinase (Chit46) from Trichoderma harzianum GIM 3.442 and its application in colloidal chitin conversion. International Journal of Biological Macromolecules 134: 113–121. DOI: https://doi.org/10.1016/j.ijbiomac.2019.04.177
Ehmann A. 1977. The Van Urk-Salkowski reagent – a sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of indole derivatives. Journal of Chromatography A 132 (2): 267–276. DOI: https://doi.org/10.1016/s0021-9673(00)89300-0
Eisendle M., Oberegger H., Buttinger R., Illmer P., Haas H. 2004. Biosynthesis and uptake of siderophores is controlled by the PacC-mediated ambient-pH regulatory system in Aspergillus nidulans. Eukaryotic Cell 3 (2): 561–563. DOI: https://doi.org/10.1128/ec.3.2.561-563.2004
Elshahawy I.E., El-Mohamady R.S. 2019. Biological control of Pythium damping-off and root-rot of tomato using Trichoderma isolates employed alone or in combinations. Journal of Plant Pathology 101 (3): 597–608. DOI: https://doi.org/10.1007/s42161-019-00248-z
Fang-Fang X., Ming-Fu G., Zhao-Ping H., Ling-Chao F. 2017. Identification of Trichoderma strain M2 and related growth promoting effects on Brassica chinensis L. International Journal of Agricultural Resources 34 (1): 80.
Fish W.W., Perkins-Veazie P., Collins J.K. 2002. A quantitative assay for lycopene that utilizes reduced volumes of organic solvents. Journal of Food Composition and Analysis 15 (3): 309–317. DOI: https://doi.org/10.1006/jfca.2002.1069.
Harikrushana P., Ramchandra S., Shah K.R. 2014. Study of wilt producing Fusarium spp. from tomato (Lycopersicon esculentum Mill). International Journal of Current Microbiology and Applied Sciences 3: 854–858. https://www.researchgatenet/publication/265793287_Original_Research_Article_Study_of_wilt_producing_Fusarium_sp_from_tomato_Lycopersicon_esculentum_Mill
Harish S., Kavino M., Kumar N., Saravanakumar D., Soorianathasundaram K., Samiyappan R. 2008. Biohardening with plant growth promoting rhizosphere and endophytic bacteria induces systemic resistance against banana bunchy top virus. Applied Soil Ecology 39 (2): 187–200. DOI: https://doi.org/10.1016/j.apsoil.2007.12.006
Harman G.E. 2006. Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96 (2): 190–194. DOI: https://doi.org/10.1094/phyto-96-0190
Harman G.E., Herrera-Estrella A.H., Horwitz B.A., Lorito M. 2012. Special issue: Trichoderma – from basic biology to biotechnology. Microbiology 158 (1): 1–2. DOI: https://doi.org/10.1099/mic.0.056424-0
Hasan Z.A.E., Mohd Zainudin N.A.I., Aris A., Ibrahim M.H., Yusof M.T. 2020. Biocontrol efficacy of Trichoderma asperellum‐enriched coconut fibre against Fusarium wilts of cherry tomato. Journal of Applied Microbiology 129 (4): 991–1003. DOI: https://doi.org/10.1111/jam.14674
Hashem A., Abd_Allah E.F., Alqarawi A.A., Al-Huqail A.A., Wirth S., Egamberdieva D. 2016. The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Frontiers in Microbiology 7: 1089. DOI: https://doi.org/10.3389/fmicb.2016.01089
Hiscox J.D., Israelstam G.F. 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany 57 (12): 1332–1334. DOI: https://doi.org/10.1139/b80-044
Hsu S.C., Lockwood J.L. 1975. Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Applied and Environmental Microbiology 29 (3): 422–426. DOI: https://doi.org/10.1128/aem.29.3.422-426.1975
Huang C.H., Roberts P.D., Datnoff L.E. 2012. Fusarium diseases of tomato. p. 145–158. In: “Fusarium Wilts of Greenhouse Vegetable and Ornamental Crops. APS Press, St. Paul, USA.
Jamil A., Ashraf S. 2020. Utilization of chemical fungicides in managing the wilt disease of chickpea caused by Fusarium oxysporum f. sp. ciceri. Archives of Phytopathology and Plant Protection 53 (17–18): 876–898. DOI: https://doi.org/10.1080/03235408.2020.1803705
Jamil A., Musheer N., Ashraf S. 2020. Antagonistic potential of Trichoderma harzianum and Azadirachta indica against Fusarium oxysporum f. sp. capsici for the management of chilli wilt. Journal of Plant Diseases and Protection. (In press) DOI: https://doi.org/10.1007/s41348-020-00383-1
Jangir M., Sharma S., Sharma S. 2019. Target and non-target effects of dual inoculation of biocontrol agents against Fusarium wilt in Solanum lycopersicum. Biological Control 138: 104069. DOI: https://doi.org/10.1016/j.biocontrol.2019.104069
Jogaiah S., Abdelrahman M., Tran L.S.P., Shin-ichi I. 2013. Characterization of rhizosphere fungi that mediate resistance in tomato against bacterial wilt disease. Journal of Experimental Botany 64 (12): 3829–3842. DOI: https://doi.org/10.1093/jxb/ert212
Kapur A., Hasković A., Čopra-Janićijević A., Klepo L., Topčagić A., Tahirović I., Sofić E. 2012. Spectrophotometric analysis of total ascorbic acid content in various fruits and vegetables. Bulletin of the Chemists and Technologists of Bosnia and Herzegovina 38 (4): 39–42.
Kausar H., Sariah M., Saud H.M., Alam M.Z., Ismail M.R. 2011. Isolation and screening of potential actinobacteria for rapid composting of rice straw. Biodegradation 22 (2): 367–375. DOI: https://doi.org/10.1007/s10532-010-9407-3
Khare E., Kumar S., Kim K. 2018. Role of peptaibols and lytic enzymes of Trichoderma cerinum Gur1 in biocontrol of Fusraium oxysporum and chickpea wilt. Environmental Sustainability 1 (1): 39–47. DOI: https://doi.org/10.1007/s42398-018-0022-2
Khoshmanzar E., Aliasgharzad N., Neyshabouri M.R., Khoshru B., Arzanlou M., Lajayer B.A. 2019. Effects of Trichoderma isolates on tomato growth and inducing its tolerance to water-deficit stress. International Journal of Environmental Science and Technology 17 (2): 869–878. DOI: https://doi.org/10.1007/s13762-019-02405-4
Komada H. 1975. Development of a selective medium for quantitative isolation of Fusarium oxysporum from natural soil. Review of Plant Protection Research 8: 114–124.
Kotasthane A., Agrawal T., Kushwah R., Rahatkar O.V. 2015. In-vitro antagonism of Trichoderma spp. against Sclerotium rolfsii and Rhizoctonia solani and their response towards growth of cucumber, bottle gourd and bitter gourd. European Journal of Plant Pathology 141 (3): 523–543. DOI: https://doi.org/10.1007/s10658-014-0560-0
Lacava P.T., Silva-Stenico M.E., Araújo W.L., Simionato A.V.C., Carrilho E., Tsai S.M., Azevedo J.L. 2008. Detection of siderophores in endophytic bacteria Methylobacterium spp. associated with Xylella fastidiosa subsp. pauca. Pesquisa Agropecuária Brasileira 43 (4): 521–528. DOI: https://doi.org/10.1590/s0100-204x2008000400011
Li R., Chen W., Cai F., Zhao Z., Gao R., Long X. 2017. Effects of Trichoderma-enriched biofertilizer on tomato plant growth and fruit quality. Journal of Nanjing Agricultural University 40 (3): 464–472.
Li Y.T., Hwang S.G., Huang Y.M., Huang C.H. 2018. Effects of Trichoderma asperellum on nutrient uptake and Fusarium wilt of tomato. Crop Protection 110: 275–282. DOI: https://doi.org/10.1016/j.cropro.2017.03.021
López-Bucio J., Pelagio-Flores R., Herrera-Estrella A. 2015. Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Scientia Horticulturae 196: 109–123. DOI: https://doi.org/10.1016/j.scienta.2015.08.043
Lopez-Mondejar R., Bernal-Vicente A., Ros M., Tittarelli F., Canali S., Intrigiolo F., Pascual J.A. 2010. Utilisation of citrus compost-based growing media amended with Trichoderma harzianum T-78 in Cucumis melo L. seedling production. Bioresource Technology 101 (10): 3718–3723. DOI: https://doi.org/10.1016/j.biortech.2009.12.102
Luo Y., Teng Y., Luo X.Q., Li Z.H.G. 2016. Development of wettable powder of Trichoderma reesei FS10-C and its plant growth-promoting effects. Biotechnology Bulletin 32: 194–199.
Macías-Rodríguez L., Guzmán-Gómez A., García-Juárez P., Contreras-Cornejo H.A. 2018. Trichoderma atroviride promotes tomato development and alters the root exudation of carbohydrates, which stimulates fungal growth and the biocontrol of the phytopathogen Phytophthora cinnamomi in a tripartite interaction system. FEMS Microbiology Ecology 94 (9): 137. DOI: https://doi.org/10.1093/femsec/fiy137
Madhavan S., Paranidharan V., Velazhahan R. 2011. Foliar application of Burkholderia spp. strain TNAU-1 leads to activation of defense responses in chilli (Capsicum annuum L.). Brazilian Journal of Plant Physiology 23 (4): 261–266. DOI: https://doi.org/10.1590/s1677-04202011000400003
Marzano M., Gallo A., Altomare C. 2013. Improvement of biocontrol efficacy of Trichoderma harzianum vs. Fusarium oxysporum f. sp. lycopersici through UV-induced tolerance to fusaric acid. Biological Control 67 (3): 397–408. DOI: https://doi.org/10.1016/j.biocontrol.2013.09.008
McGovern R.J. 2015. Management of tomato diseases caused by Fusarium oxysporum. Crop Protection 73: 78–92. DOI: https://doi.org/10.1016/j.cropro.2015.02.021
Mei L.I., Hua L.I.A.N., Su X.L., Ying T.I.A.N., Huang W.K., Jie M.E.I., Jiang X.L. 2019. The effects of Trichoderma on preventing cucumber Fusarium wilt and regulating cucumber physiology. Journal of Integrative Agriculture 18 (3): 607–617. DOI: https://doi.org/10.1016/s2095-3119(18)62057-x
Mishra A., Singh S.P., Mahfooz S., Singh S.P., Bhattacharya A., Mishra N., Nautiyal C.S. 2018. Endophyte-mediated modulation of defense-related genes and systemic resistance in Withania somnifera (L.) Dunal under Alternaria alternata stress. Applied Environmental Microbiology 84 (8): e0284517. DOI: https://doi.org/10.1128/aem.02845-17
Molla A.H., Haque M.M., Haque M.A., Ilias G.N.M. 2012. Trichoderma-enriched biofertilizer enhances production and nutritional quality of tomato (Lycopersicon esculentum Mill.) and minimizes NPK fertilizer use. Agricultural Research 1 (3): 265–272. DOI: https://doi.org/10.1007/s40003-012-0025-7
Mona S.A., Hashem A., Abd_Allah E.F., Alqarawi A.A., Soliman D.W.K., Wirth S., Egamberdieva D. 2017. Increased resistance of drought by Trichoderma harzianum fungal treatment correlates with increased secondary metabolites and proline content. Journal of Integrative Agriculture 16 (8): 1751–1757. DOI: https://doi.org/10.1016/s2095-3119(17)61695-2
Ng L.C., Ngadin A., Azhari M., Zahari N.A. 2015. Potential of Trichoderma spp. as biological control agents against bakanae pathogen (Fusarium fujikuroi) in rice. Asian Journal of Plant Pathology 9 (2): 46–58. DOI: https://doi.org/10.3923/ajppaj.2015.46.58
Nicolás C., Hermosa R., Rubio B., Mukherjee P.K., Monte E. 2014. Trichoderma genes in plants for stress tolerance-status and prospects. Plant Science 228: 71–78. DOI: https://doi.org/10.1016/j.plantsci.2014.03.005
Nielsen P., Sørensen J. 1997. Multi-target and medium-independent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere. FEMS Microbiology Ecology 22 (3): 183–192. DOI: https://doi.org/10.1111/j.1574-6941.1997.tb00370.x
Noori M.S., Saud H.M. 2012. Potential plant growth-promoting activity of Pseudomonas spp. isolated from paddy soil in Malaysia as biocontrol agent. Journal of Plant Pathology and Microbiology 3 (2): 1–4. DOI: https://doi.org/10.4172/2157-7471.1000120
Otieno N., Lally R.D., Kiwanuka S., Lloyd A., Ryan D., Germaine K.J., Dowling D.N. 2015. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Frontiers in Microbiology 6: 745. DOI: https://doi.org/10.3389/fmicb.2015.00745
Paramanandham P., Rajkumari J., Pattnaik S., Busi S. 2017. Biocontrol potential against Fusarium oxysporum f. sp. lycopersici and Alternaria solani and tomato plant growth due to Plant Growth–Promoting Rhizobacteria. International Journal of Vegetable Science 23 (4): 294–303. DOI: https://doi.org/10.1080/19315260.2016.1271850
Pérez-Miranda S., Cabirol N., George-Téllez R., Zamudio-Rivera L.S., Fernández F.J. 2007. O-CAS, a fast and universal method for siderophore detection. Journal of Microbiological Methods 70 (1): 127–131. DOI: https://doi.org/10.1016/j.mimet.2007.03.023
Qi W., Zhao L. 2013. Study of the siderophore‐producing Trichoderma asperellum Q1 on cucumber growth promotion under salt stress. Journal of Basic Microbiology 53 (4): 355–364. DOI: https://doi.org/10.1002/jobm.201200031
Ramaiah A.K., Garampalli R.K.H. 2015. In vitro antifungal activity of some plant extracts against Fusarium oxysporum f. sp. lycopersici. Asian Journal of Plant Science & Research 5 (1): 22–27.
Rao W.V.B.S., Sinha M.K. 1963. Phosphate dissolving organisms in the soil and rhizosphere. Indian Journal of Agricultural Sciences 33: 272–278.
Riker A.J., Riker R.S. 1936. Introduction to Research on Plant Diseases. John S Swift, St. Louis, USA.
Rudresh D.L., Shivaprakash M.K., Prasad R.D. 2005. Tricalcium phosphate solubilizing abilities of Trichoderma spp. in relation to P uptake and growth and yield parameters of chickpea (Cicer arietinum L.). Canadian Journal of Microbiology 51 (3): 217–222. DOI: https://doi.org/10.1139/w04-127
Saba H., Vibhash D., Manisha M., Prashant K.S., Farhan H., Tauseef A. 2012. Trichoderma–a promising plant growth stimulator and biocontrol agent. Mycosphere 3 (4): 524–531. DOI: https://doi.org/10.5943/mycosphere /3/4/14
Sallam N.M., Eraky A.M., Sallam A. 2019. Effect of Trichoderma spp. on Fusarium wilt disease of tomato. Molecular Biology Reports 46 (4): 4463–4470. DOI: https://doi.org/10.1007/s11033-019-04901-9
Sanoubar R., Barbanti L. 2017. Fungal diseases on tomato plant under greenhouse condition. European Journal of Biological Research 7 (4): 299–308.
Sawant S.D., Sawant I.S. 2010. Improving the shelf life of grapes by pre-harvest treatment with Trichoderma harzianum 5R. Journal of Eco-Friendly Agriculture 5 (2): 179–182.
Schoffelmeer E.A., Klis F.M., Sietsma J.H., Cornelissen B.J. 1999. The cell wall of Fusarium oxysporum. Fungal Genetics and Biology 27 (2–3): 275–282.
Schwyn R., Neilands J.B. 1987. Universal chemical assay for detection and estimation of siderophores. Analytical Biochemistry 160: 47–56. DOI: https://doi.org/10.1016/0003-2697(87)90612-9
Sharma J.P., Kumar S., Bikash D. 2012. Soil application of Trichoderma harzianum and T. viride on biochemical constituents in bacterial wilt resistant and susceptible cultivars of tomato. Indian Phytopathology 65 (3): 264–267.
Shoresh M., Harman G.E., Mastouri F. 2010. Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology 48: 21–43. DOI: https://doi.org/10.1146/annurev-phyto-073009-114450
Soesanto L., Utami D.S., Rahayuniati R.F. 2011. Morphological characteristics of four Trichoderma isolates and two endophytic Fusarium isolates. Canadian Journal of Science and Industrial Research 2: 294–306.
Srivastava R., Khalid A., Singh U.S., Sharma A.K. 2010. Evaluation of arbuscular mycorrhizal fungus, fluorescent Pseudomonas and Trichoderma harzianum formulation against Fusarium oxysporum f. sp. lycopersici for the management of tomato wilt. Biological Control 53: 24–31. DOI: https://doi.org/10.1016/j.biocontrol.2009.11.012
Surekha C.H., Neelapu N.R.R., Prasad B.S., Ganesh P.S. 2014. Induction of defense enzymes and phenolic content by Trichoderma viride in Vigna mungo infested with Fusarium oxysporum and Alternaria alternata. International Journal of Agricultural Science Research 4 (4): 31–40.
Verma P., Yadav, A.N., Kumar V., Singh D.P., Saxena A.K, 2017. Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. p. 543–580. In: “Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer, Singapore, Switzerland. DOI: https://doi.org/10.1007/978-981-10-6593-4_22
Vinale F., Sivasithamparam K., Ghisalberti E.L., Woo S.L., Nigro M., Marra R., Lombardi N., Pascale A., Ruocco M., Lanzuise S., Manganiello G. 2014. Trichoderma secondary metabolites active on plants and fungal pathogens. The Open Mycology Journal 8 (1): 127–39. DOI: https://doi.org/10.2174/1874437001408010127
Wightwick A.M., Reichman S.M., Menzies N.W., Allinson G. 2013. The effects of copper hydroxide, captan and trifloxystrobin fungicides on soil phosphomonoesterase and urease activity. Water, Air, & Soil Pollution 224 (12): 1–9. DOI: https://doi.org/10.1007/s11270-013-1703-1
Woo S.L., Ruocco M., Vinale F., Nigro M., Marra R., Lombardi N., Pascale A., Lanzuise S., Manganiello G., Lorito M. 2014. Trichoderma-based products and their widespread use in agriculture. The Open Mycology Journal 8 (1): 71–126. DOI: https://doi.org/10.2174/1874437001408010071
Yadav A.N., Kumar V., Dhaliwal H.S., Prasad R., Saxena A.K. 2018. Microbiome in crops: diversity, distribution, and potential role in crop improvement. p. 305–332. In: “Crop Improvement Through Microbial Biotechnology” (A.A. Rastegari, N. Yadav, A.N. Yadav, eds.). Elsevier. DOI: https://doi. org/10.1016/B978-0-444-63987-5.00015-3
Zaim S., Bekkar A.A., Belabid L. 2018. Efficacy of Bacillus subtilis and Trichoderma harzianum combination on chickpea Fusarium wilt caused by F. oxysporum f. sp. ciceris. Archives of Phytopathology and Plant Protection 51 (3–4): 217–226. DOI: https://doi.org/10.1080/03235408.2018.1447896
Zehra A., Meena M., Dubey M.K., Aamir M., Upadhyay R.S. 2017. Activation of defense response in tomato against Fusarium wilt disease triggered by Trichoderma harzianum supplemented with exogenous chemical inducers (SA and MeJA). Brazilian Journal of Botany 40 (3): 651–664. DOI: https://doi.org/10.1007/s40415-017-0382-3
Zhang F., Ge H., Zhang F., Guo N., Wang Y., Chen L., Ji X., Li C. 2016. Biocontrol potential of Trichoderma harzianum isolate T-aloe against Sclerotinia sclerotiorum in soybean. Plant Physiology and Biochemistry 100: 64–74. DOI: https://doi.org/10.1016/j.plaphy.2015.12.017
Zieslin N., Ben Zaken R. 1993. Peroxidase activity and presence of phenolic substances in peduncles of rose flowers. Plant Physiology Biochemistry 31 (3): 333–339.
Go to article

Authors and Affiliations

Arshi Jamil
1

  1. Department of Plant Protection, Aligarh Muslim University, Aligarh, India
Download PDF Download RIS Download Bibtex

Abstract

Taro leaf blight caused by Phytophthora colocasiae affects plant health and is a major threat to taro culture in Cameroon. Chemical fertilizers used often harm the ecosystem. Plant growth-promoting rhizobacteria (PGPR) are better alternatives that increase plant growth promotion and suppress phytopathogens. In the present study, a total of 67 fluorescent Pseudomonas spp. was characterized by 17.91, 5.97, and 4.47% populations of P. fluorescens, P. chlororaphis, and P. putida, respectively, among the most represented. More than 36% of bacteria showed antagonistic potential through the production of both diffusible and volatile compounds. Some of them (03) exhibited antagonistic activity in dual culture against P. colocasiae with a diameter greater than 13 mm. These rhizobacteria produced a significant amount of siderophore, IAA, SA, HCN, protease, lipases, and cellulases. For the pot experiment, treatment by Pseudomonas significantly increased the enzymatic activity involved in the resistance of taro, such as peroxidase (PO), polyphenol oxidase (PPO), and phenylalanine ammonia-lyase (PAL). The two antagonists also increased plant growth parameters of taro such as chlorophyll, plant height, shoot length, total leaf surface, fresh root biomass, and fresh leaf biomass. These findings showed that fluorescent Pseudomonas have an intriguing and undeniable potential in the fight against P. colocasiae, which could lead to the development of a biopesticide in the future.
Go to article

Authors and Affiliations

Samuel Arsène Ntyam Mendo
1
ORCID: ORCID
Dorice Nguelo Dzumafo
2
Laure Brigitte Kouitcheu Mabeku
3
Severin Tchameni Nguemezi
2
ORCID: ORCID
Lambert Sameza Modeste
2
Rosalie Anne Ngono Ngane
2

  1. Department of Biological Sciences, Higher Teacher Training College, University of Yaounde 1, Yaounde, Cameroon
  2. Department of Biochemistry, Faculty of Sciences, University of Douala, Douala, Cameroon
  3. Department of Microbiology, Faculty of Science, University of Yaoundé 1, Yaounde, Cameroon
Download PDF Download RIS Download Bibtex

Abstract

Luffa cylindrica M. Roem, is commonly called sponge gourd or Egyptian cucumber. In September 2018, several plants showing symptoms of powdery mildew were observed in some fields at different locations in Egypt. Identification and pathogenicity tests indicated that the causal fungus of powdery mildew disease of luffa cylindrica was Podosphaera xanthii. Results of surveyed luffa plants grown at different field localities of northern Egypt, for powdery mildew disease incidence revealed that the maximum record (57.33%) of disease occurrence was recorded in some fields belonging to Beheira governorate followed by, Alexandria and Sharqia (53.67% and 48.00%, respectively). Meanwhile, fewer occurrences were observed in Kafer El-Sheekh governorate (45.33%). We applied biocontrol agents as a foliar spray against powdery mildew in vitro and under field conditions. The effects of some essential oils, organic acid and bioproducts were also studied. All treatments significantly reduced P. xanthii compared to untreated plants. Chaetomium globosum and Saccharomyces cerevisiae alone or grown on rice straw and/or bagas showed highly reduced disease incidence compared to the other treatment. From the present study it could be suggested that the usage of biocontrol formulated on rice straw might be used as an easily applied, safe and cost effective control method against powdery mildew diseases.

Go to article

Authors and Affiliations

Nadia Gamil Elgamal
Mohamed Saeed Khalil
Download PDF Download RIS Download Bibtex

Abstract

The excessive use of chemical products to control thrips and the tomato spotted wilt virus (TSWV) is not only harmful to human health, the environment, and biodiversity, but also the resistance these generate in insects turns them inefficient in the long run. Consequently, to achieve sustainable and residue-free production, control alternatives must be explored. This work proposes the use of Beauveria bassiana (BB) in combination with inter-row cover (IC) to reduce the population of thrips and the incidence of TSWV on bell pepper. For this purpose, a trial was carried out in a bell pepper greenhouse, consisting of four randomly distributed treatments with four repetitions of 66 plants each. The treatments assayed were: T (without BB inoculation or IC), TC (without BB inoculation and with IC), B (inoculated with BB), and BC (inoculated with BB and IC). The B. bassiana CEP147 strain was used based on its effectiveness in previous laboratory tests. After detecting one thrips per flower, five foliar spray applications were made at weekly intervals. The trial lasted 4 months. During this time, the number of thrips in the three central plants of each repetition, the presence of symptoms compatible with TSWV, as well as the number of fruits, and their weight, length, width and health were monitored weekly. Between the fourth and sixth weeks after the last application, a significant reduction in the population of total thrips (nymphs + + adults) was observed in both treatments B and BC compared to T and TC. In addition, plants with symptoms compatible with TSWV were very scarce, and the fruits showed significant differences in their quality parameters, producing the longest and heaviest in the BC treatment. The results showed that combining biological and cultural control makes sustainable pepper production possible.
Go to article

Authors and Affiliations

María Emilia dos Santos Domingues
1
ORCID: ORCID
Mariana Del Pino
2
ORCID: ORCID
Andrea Vanesa Toledo
3
ORCID: ORCID

  1. Curso de Prácticas Profesionales I, Universidad Nacional Arturo Jauretche, Buenos Aires, Argentina
  2. Curso de Horticultura y Floricultura, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, Buenos Aires, Argentina
  3. Centro de Investigaciones de Fitopatología (CIDEFI-CICBA), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, Buenos Aires, Argentina
Download PDF Download RIS Download Bibtex

Abstract

The entomopathogenic fungi (EPF) are characterized as fungi with various functions and numerous mechanisms of action. The ability to establish themselves as beneficial endophytes provides a sound ground for their exploitation in crop production and protection. The purpose of this study was to evaluate the entomopathogenic strains of Beauveria bassiana and Mertarhizium anisopliae for their potential to colonize cucumber plants under natural environmental conditions in non-sterile substrate. Seed submersion in conidial suspension resulted in systemic colonization of cucumber plants 28 days post-inoculation. Scanning electron microscope micrographs demonstrated that conidia of both fungal genera have adhered, germinated and directly penetrated seed epidermal cells 24 hr post-submersion. Treated with EPF cucumber seeds resulted seedlings tissues of which contained a significantly higher amount of total phenolic compounds and unchanged amounts of chlorophylls. There was a significant negative effect of endophytic colonization on the Aphis gossypii population size after 5 days of exposure as well as a positive effect on cucumber growth and development 7 weeks post-inoculation. We suggest that reduction of A. gossypii population on mature Cucumis sativus plants is caused via an endophyte-triggered improvement of plant’s physiological parameters such as enhanced plant growth with subsequent increase in plant resistance through augmented production of phenolic compounds.
Go to article

Bibliography


Ainsworth E.A., Gillespie K.M. 2007. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nature Protocols 2: 875−877. DOI: 10.1038/nprot.2007.102
Akello J., Sikora R. 2012. Systemic acropedal influence of endophyte seed treatment on Acyrthosiphon pisum and Aphis fabae offspring development and reproductive fitness. Biological Control 61: 215−221. DOI: 10.1016/J.BIOCONTROL.2012.02.007
Akutse K., Maniania N., Fiaboe K., Van Den Berg J., Ekesi S. 2013. Endophytic colonization of Vicia faba and Phaseolus vulgaris (Fabaceae) by fungal pathogens and their effects on the life-history parameters of Liriomyza huidobrensis (Diptera: Agromyzidae). Fungal Ecology 6: 293−301. DOI: https://doi.org/10.1016/j.funeco.2013.01.003
Bajan C., Tyrawska D., Popowska-Nowak E., Bienkowski P. 1998. Biological response of Beauveria bassiana strains to heavy metal pollution and their accumulative ability. Ecological Chemistry and Engineering 5 (8−9): 676−685.
Bamisile B.S., Dash C.K., Akutse K.S., Keppanan R., Afolabi O.G., Hussain M., Qasim M., Wang L. 2018. Prospects of endophytic fungal entomopathogens as biocontrol and plant growth promoting agents: An insight on how artificial inoculation methods affect endophytic colonization of host plants. Microbiological Research 217: 34–50. DOI: https://doi.org/10.1016/j.micres.2018.08.016
Barelli L., Moreira C.C., Bidochka M.J. 2018. Initial stages of endophytic colonization by Metarhizium involves rhizoplane colonization. Microbiology 164: 1531–1540. DOI: 10.1099/mic.0.000729.
Barnes J.D., Balaguer L., Manrique E., Elvira S., Davison A.W. 1992. A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environment 32: 83–100. DOI: http://dx.doi.org/10.1016/0098-8472(92)90034-Y
Behie S.W., Jones S.J., Bidochka M.J. 2015. Plant tissue localization of the endophytic insect pathogenic fungi Metarhizium and Beauveria. Fungal Ecology 13: 112–119. DOI: 10.1016/J.FUNECO.2014.08.001
Blackman R.L. 2010. Aphids − Aphidinae (Macrosiphini). Handbook for the Identification of British Insects 2 (7): 1−413.
Blackman R.L., Eastop V.F. 2000. Aphids on the world’s crops: An identification and information guide. John Wiley and Sons, Chichester, UK. XF2006251066.
Braniša J., Jenisova Z., Porubska M., Jomova K., Valko M. 2014. Spectrophotometric determination of chlorophylls and carotenoids. An effect of sonication and sample processing. Journal of Microbiology, Biotechnology and Food Sciences 3 (2): 61−64.
Carriere Y., Bouchard A., Bourassa S., Brodeur J. 1998. Effect of endophyte incidence in perennial ryegrass on distribution, host choice, and performance of the hairy chinch bug (Hemiptera: Lygaeidae). Economic Entomology 91: 324–328. DOI: https://doi.org/10.1093/jee/91.1.324
Castillo-Lopez D., Zhu-Salzman K., Ek-Ramos M.J., Sword G.A. 2014. The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus) and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions. PLoS ONE 9 (8): e103891. DOI: 10.1371/journal.pone.0103891
Chung I.M., Park Chun J.C., Yun S.J. 2003. Resveratrol accumulation and resveratrol synthase gene expression in response to abiotic stresses and hormones in peanut plants. Plant Science 164: 103–109. DOI: 10.1016/S0168-9452(02)00341-2
Clay K. 1996. Interactions among fungal endophytes, grasses and herbivores. Researches on Population Ecology 38 (2): 191–201. DOI: https://doi.org/10.1007/BF02515727
Clay K., Marks S., Cheplick G.P. 1993. Effects of insect herbivory and fungal endophyte infection on competitive interactions among grasses. Ecology 74 (6): 1767–1777. DOI: https://doi.org/10.2307/1939935
Clifton E.H., Jaronski S.T., Coates B.S., Hodgson E.W., Gassmann A.J. 2018. Effects of endophytic entomopathogenic fungi on soybean aphid and identification of Metarhizium isolates from agricultural fields. PLoS ONE 13 (3): e0194815. DOI: https://doi.org/10.1371/journal.pone.0194815
Daayf F., Ongena M., Boulanger R., El Hadrami I., Belanger R.R. 2000. Induction of phenolic compounds in two cultivars of cucumber by treatment of healthy and powdery mildew infected plants with extracts of Reynoutria sachalinensis. Journal of Chemical Ecology 26 (7): 1579−1593. DOI: https://doi.org/10.1023/A:1005578510954
Diaz Napal G.N., Defago M., Valladares G., Palacios S. 2010. Response of Epilachna paenulata to two flavonoids, pinocembrin and quercetin, in a comparative study. Journal of Chemical Ecology 36 (8): 898–904. DOI: 10.1007/s10886-010-9823-1
Dugassa-Gobena D., Raps A., Vidal S. 1996. Einfluß von Acremonium strictum auf den Sterolhaushalt von Pflanzen: Ein möglicher Faktor zum veränderten Verhalten von Herbivoren. Mitteilungen aus der Biologischen Bundesanstalt fur Land- und Forstwirtschaft 321: 299.
Furstenberg-Hagg J., Zagrobelny M., Bak S. 2013. Plant defense against insect herbivores. International Journal of Molecular Sciences 14 (5): 10242–10297. DOI: 10.3390/ijms140510242
Gange A.C., Koricheva J., Currie A.F., Jaber L.R., Vidal S. 2019. Meta-analysis of the role of entomopathogenic and unspecialized fungal endophytes as plant bodyguards. New Pathologist 223 (4): 2002–2010. DOI: https://doi.org/10.1111/nph.15859
Gawel N.J., Jarret R.L. 1991. A modified CTAB DNA extraction procedure for musa and ipomoea. Plant Molecular Biology Reporter 9 (3): 262−266. DOI: 10.1007/BF02672076
Gissella M.V., David B.O., James R.B. 2006. Efficacy assessment of Aphidius colemani (Hymenoptera: Braconidae) for suppression of Aphis gossypii (Homoptera: Aphididae) in greenhouse-grown chrysanthemum. Economic Entomology 99 (4): 1104–1111. DOI: 10.1603/0022-0493-99.4.1104
Godfrey L.D., Rosenheim J.A., Goodell P.B. 2000. Cotton aphid emerges as major pest in SVJ cotton. California Agriculture 54 (6): 32–34. DOI: 10.3733/ca.v054n06p26
Gonzalez-Mas N., Sanchez-Ortiz A., Valverde-Garcia P., Quesada- Moraga E. 2019. Effects of endophytic entomopathogenic ascomycetes on the life-history traits of Aphis gossypii Glover and its interactions with melon plants. Insects 10 (6): 165. DOI: 10.3390/insects10060165
Grace S.C., Logan B.A. 2000. Energy dissipation and radical scavenging by the plant phenylpropanoid pathway. Philosophical Transactions: Biological Sciences 355 (1402): 1499−1510. DOI: 10.1098/rstb.2000.0710
Gurulingappa P., McGee P.A., Sword G. 2011. Endophytic Lecanicillium lecnii and Beauveria bassiana reduce the survival and fecundity of Aphis gossypii following contact with conidia and secondary metabolites. Crop Protection 30 (3): 349−353. DOI: 10.1016/J.CROPRO.2010.11.017
Gurulingappa P., Sword G.A., Murdoch G., McGee P.A. 2010. Colonization of crop plants by fungal entomopathogens and their effects on two insect pests when in planta. Bio- Control 55 (1): 34–41. DOI: https://doi.org/10.1016/j.biocontrol.2010.06.011
Hermoso de Mendoza A., Belliure B., Carbonell E.A., Real V. 2001. Economic thresholds for Aphis gossypii (Hemiptera: Aphididae) on Citrus clementina. Journal of Economic Entomology 94 (2): 439–444. DOI: https://doi.org/10.1603/0022-0493-94.2.439
Humber R.A. 1997. Fungi: identification. p. 153–185. In: “Manual of Techniques in Insect Pathology” (L.A. Lacey, ed.). Academic Press, London. DOI: https://doi.org/10.1016/B978-012432555-5/50011-7
Ibrahim L., Hamieh A., Ghanem H., Ibrahim S. 2011. Pathogenicity of entomopathogenic fungi from Lebanese soils against aphids, whitefly and non-target beneficial insects. International Journal of Agriculture Sciences 3 (3): 156−164. DOI: 10.9735/0975-3710.3.3.156-164
Ibrahim L., Laham L., Tomma A., Ibrahim S. 2015. Mass production, yield, quality, formulation and efficacy of entomopathogenic Metarhizium anisopliae conidia. British Journal of Applied Sciences and Technology 9 (5): 427−440. DOI: 10.9734/bjast/2015/17882
Ibrahim L., Spackman V.M.T., Cobb A.H. 2001. An investigation of wound healing in sugar beet roots using light and fluorescence microscopy. Annals of Botany 88 (2): 313−320. DOI: https://doi.org/10.1006/anbo.2001.1461
Jaber L.R., Enkerli J. 2016. Effect of seed treatment duration on growth and colonization of Vicia faba by endophytic Beauveria bassiana and Metarhizium brunneum. Biological Control 103: 187–195. DOI: https://doi.org/10.1016/j.biocontrol.2016.09.008
Jaber L.R., Enkerli J. 2017. Fungal entomopathogens as endophytes: can they promote plant growth? Biocontrol Science and Technology 27 (1): 28–41. DOI: https://doi.org/10.1080/09583157.2016.1243227
Jaber L.R., Vidal S. 2010. Fungal endophyte negative effects on herbivory are enhanced on intact plants and maintained in a subsequent generation. Ecological Entomology 35 (1): 25–36. DOI: https://doi.org/10.1111/j.1365-2311.2009.01152.x
Jensen R.E., Enkegaard A., Steenberg T. 2019. Increased fecundity of Aphis fabae on Vicia faba plants following seed or leaf inoculation with the entomopathogenic fungus Beauveria bassiana. PLoS ONE 14 (10): 1−13, e0223616. DOI: https://doi.org/10.1371/journal.pone.0223616
Kabaluk J.T., Ericsson J.D. 2007. Metarhizium anisopliae seed treatment increases yield of field corn when applied for wireworm control. Agronomy Journal 99 (5): 1377−1381. DOI: 10.2134/agronj2007.0017N
Kumar P.K.R., Hemanth G., Niharika P.S., Kolli S.K. 2015. Isolation and identification of soil mycoflora in agricultural fields at Tekkali Mandal in Srikakulam District. International Journal of Advances in Pharmacy, Biology and Chemistry 4 (2): 484−490.
Lacey L.A. 2016. Entomopathogens used as microbial control agents. p. 3−12. In: “Microbial Control of Insect and Mite Pests” (L.A. Lacey, ed.). Amsterdam: Elsevier/Academic Press. DOI: https://doi.org/10.1016/B978-0-12-803527- 6.00001-9
Lee S.B., Milgroom M.G., Taylor J.W. 1988. A rapid, high yield mini-prep method for isolation of total genomic DNA from fungi. Fungal Genetics Newsletter 35: 23–24. DOI: https://doi.org/10.4148/1941-4765.1531
Liao J., Li X., Wong T.Y., Wang J.J., Khor C.C., Tai ES., Aung T., Teo Y.Y., Cheng C.Y. 2014. Impact of measurement error on testing genetic association with quantitative traits. PloS ONE 9 (1): e87044. DOI: https://doi.org/10.1371/journal.pone.0087044
Liao X., Lovett B., Fang W., St. Leger R.J. 2017. Metarhizium robertsii produces indole-3-acetic acid, which promotes root growth in Arabidopsis and enhances virulence to insects. Microbiology 163 (7): 980–991. DOI: 10.1099/mic.0.000494
Lingg A.J., Donaldson M.D. 1981. Biotic and abiotic factors affecting stability of Beauveria bassiana conidia in soil. Journal of Invertebrate Pathology 38 (2): 191−200. DOI: https://doi.org/10.1016/0022-2011(81)90122-1
Lopez D.C., Zhu-Salzman K., Ek-Ramos M.J., Sword G.A. 2014. The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus) and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions. PLoS One 9: e103891. DOI: 10.1371/journal.pone.0104342
Maniania N.K., Sithanantham S., Ekesi S., Ampong-Nyarko K., Baumgärtner J., Löhr B., Matoka C.M. 2003. A field trial of the entomogenous fungus Metarhizium anisopliae for control of onion thrips, Thrips tabaci. Crop Protection 22 (3): 553–559. DOI: https://doi.org/10.1016/S0261-2194(02)00221-1
Matallanas B., Lantero E., M’Saad M., Callejas C., Ochando M.D. 2013. Genetic polymorphism at the cytochrome oxidase I gene in mediterranean populations of Batrocera oleae (Diptera: Tephritidae). Applied Entomology 137 (8): 624–630. DOI: https://doi.org/10.1111/jen.12037
McKinnon A.C., Saari S., Moran-Diez M.E., Meyling N.V., Raad M., Glare T.R. 2017. Beauveria bassiana as an endophyte: a critical review on associated methodology and biocontrol potential. BioControl 62: 1–17. DOI: 10.1007/s10526-016-9769-5.
Omkar P.A. 2004. Predaceous coccinellids in India: predatorprey catalogue. Oriental Insects 38 (1): 27–61. DOI: 10.1080/00305316.2004.10417373
Ownley B.H., Dee M.M., Gwinn K. 2008. Effect of conidial seed treatment rate of entomopathogenic Beauveria bassiana 11-98 on endophytic colonization of tomato seedlings and control of Rhizoctonia disease. Phytopathology 98 (6): S118−S118.
Pańka D., Piesik D., Jeske M., Musiał N., Koczwara K. 2013. Production of phenolic compounds by perennial ryegrass (Lolium perenne L.)/Neotyphodium lolii association as a defense reaction towards infection by Fusarium poae and Rhizoctonia solani. p. 124−125. In: “Endophytes for Plant Protection: the State of the Art” (C. Schneider, C. Leifert, F. Feldmann, eds.). Deutsche Phytomedizinische Gesellschaft, Braunschweig.
Pathan A.K., Bond J., Gaskin R.E. 2010. Sample preparation for SEM of plant surfaces. Materials Today 12 (1): 32−43. DOI: 10.1016/S1369-7021(10)70143-7
Perea-Domínguez X.P., Hernández-Gastelum L.Z., Olivas- -Olguin H.R., Espinosa-Alonso L.G., Valdez-Morale M., Medina-Godoy S. 2018. Phenolic composition of tomato varieties and an industrial tomato by-product: free, conjugated and bound phenolics and antioxidant activity. Journal of Food Science and Technology 55 (9): 3453–3461. DOI: https://doi.org/10.1007/s13197-018-3269-9
Pereira R.M., Stimac J.L., Alves S.B. 1993. Soil antagonism affecting the dose − response of workers of the red imported fire ant, Solenopsis invicta, to Beauveria bassiana conidia. Journal of Invertebrate Pathology 61 (2): 156−161. DOI: https://doi.org/10.1006/jipa.1993.1028
Petrini O., Fisher P.J. 1987. Fungal endophytes in Salicornia perennis. Transactions of the British Mycological Society 87 (4): 647−651. DOI: https://doi.org/10.1016/S0007-1536-(86)80109-7
Pineda A., Zheng S.-J., van Loon J.J.A., Pieterse C.M.J., Dicke M. 2010. Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends in Plant Science 15 (9): 507–514. DOI: https://doi.org/10.1016/j.tplants.2010.05.007
Powell W.A., Klingeman W.E., Ownley B.H., Gwinn K.D. 2009. Evidence of endophytic Beauveria bassiana in seed-treated tomato plants acting as a systemic entomopathogen to larval Helicoverpa zea (Lepidoptera: Noctuidae). Journal of Entomological Science 44 (4): 391−396. DOI: https://doi.org/10.18474/0749-8004-44.4.391
Rajab L., Ahmad M., Gazal I. 2020. Endophytic establishment of the fungal entomopathogen, Beauveria bassiana (Bals.) Vuil., in cucumber plants. Egyptian Journal of Biological Pest Control 30: 143. DOI: https://doi.org/10.1186/s41938-020-00344-8
Raps A., Vidal S. 1998. Indirect effects of an unspecialized endophytic fungus on specialized plant-herbivorous insect interactions. Oecologia 114 (4): 541–547. DOI: 10.1007/s004420050478
Rebijith K.B., Asoka R., Krishna V., Krishna Kumar N.K., Ramamurth V.V. 2012. Development of species-specific markers and molecular differences in mitochondrial and nuclear DNA sequences of Aphis gossypii and Myzus persicae (Hemiptera: Aphididae). Florida Entomologist 95 (3): 674−682. DOI: 10.1653/024.095.0318
Rodriguez R.J., White Jr. J.F., Arnold A.E., Redman R.S. 2009. Fungal endophytes: Diversity and functional roles. New Phytologist 182 (2): 314–330. DOI: http://dx.doi.org/10.1111/j.1469-8137.2009.02773.x
Russo M.L., Pelizza S.A., Cabello M.N., Stenglein S.A., Scorsetti A.C. 2015. Endophytic colonisation of tobacco, corn, wheat and soybeans by the fungal entomopathogen Beauveria bassiana (Ascomycota, Hypocreales). Biocontrol Science and Technology 25 (4): 475−480. DOI: 10.1080/09583157.2014.982511
Saari S., Helander M., Faeth S.H. 2010. The effects of endophytes on seed production and seed predation of tall fescue and meadow fescue. Microbial Ecology 60: 928–934. DOI: https://doi.org/10.1007/s00248-010-9749-8
Saikkonen K., Lehtonen P., Helander M., Koricgeva J., Faeth S.H. 2006. Model systems in ecology: dissecting the endophyte grass literature. Trends in Plant Science 11 (9): 428−433. DOI: 10.1016/j.tplants.2006.07.001
Sánchez-Rodríguez A.R., Del Campillo M.C., Quesada-Moraga E. 2015. Beauveria bassiana: An entomopathogenic fungus alleviates Fe chlorosis symptoms in plants grown on calcareous substrates. Scientia Horticulturae 197: 193–202. DOI: https://doi.org/10.1016/j.scienta.2015.09.029
Sasan R.K., Bidochka M.J. 2012. The insect-pathogenic fungus Metarhezium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. American Journal of Botany 99 (1): 101−107. DOI: 10.3732/ajb.1100136
Schulz B., Boyle C. 2005. Fungal endophyte continuum. Mycological Research 109 (6): 661–686. DOI: https://doi.org/10.1017/S095375620500273X
Shaalan R., Ibrahim L. 2019. Entomopathogenic fungal endophytes: can they colonize cucumber plants? p. 853−860. In: “Book of Proceedings of the IX International Scientific Agriculture Symposium AGROSYM 2018”. 04−07 October 2018, Bosnia and Herzegovina.
Shi X.G., Zhu Y.K., Xia X.M., Qiao K., Wang HY., Wang KY. 2012. The mutation in nicotinic acetylcholine receptor β1 subunit may confer resistance to imidacloprid in Aphis gossypii (Glover). Journal of Food, Agriculture and Environment 10 (2): 1227−1230.
Skinner M., Parker B.L., Kim J.S. 2014. Role of entomopathogenic fungi in integrated pest management. p. 169–191. In: “Integrated Pest Management: Current Concepts and Ecological Perspectives” (D.P. Abrol, ed.). Academic Press, San Diego. DOI: https://doi.org/10.1016/B978-0-12-398529-3.00011-7
Song H., Chen J., Staub J., Simon P. 2010. QTL analyses of orange color and carotenoid content and mapping of carotenoid biosynthesis genes in cucumber (Cucumis sativus L.). Acta Horticulturae 871: 607−614. DOI: 10.17660/ACTAHORTIC.2010.871.83
Stoetzel M.B., Miller G.L., O’Brien P.J., Graves J.B. 1996. Aphids (Homoptera: Aphididae) colonizing cotton in the United States. Florida Entomologist 79 (2): 193−205. DOI: 10.2307/3495817
Tefera T., Vidal S. 2009. Effect of inoculation method and plant growth medium on endophytic colonization of sorghum by the entomopathogenic fungus Beauveria bassiana. BioControl 54: 663−669. DOI: 10.1007/s10526-009-9216-y
Tucker S.L., Talbot N.J. 2001. Surface attachment and pre- -penetration stage development by plant pathogenic fungi. Annual Review of Phytopathology 39: 385–417. DOI: 10.1146/annurev.phyto.39.1.385
Ullrich C.I., Koch E., Matecki C., Schäfer J., Burkl T., Rabenstein F., Kleespies R.G. 2017. Detection and growth of endophytic entomopathogenic fungi in dicot crop plants. Journal für Kulturpflanzen 69 (9): 291–302. DOI: 10.1399/JfK.2017.09.02
Umboh S.D., Salaki C.L., Tulung M., Mandey L.C., Maramis R.T.D. 2016. The isolation and identification of fungi from the soil in gardens of cabbage were contaminated with pesticide residues in subdistrict Modoinding. International Journal of Research in Engineering and Science 4 (7): 25−32.
Vandre W. 2013. Cucumber production in greenhouses. University of Alaska Fairbanks Cooperative Extension Service. Available on: www.uaf.edu/ces
Vega F.E. 2018. The use of fungal entomopathogens as endophytes in biological control: a review. Mycologia 110 (1): 4–30. DOI: https://doi.org/10.1080/00275514.2017.1418578
Vega F.E., Goettel M.S., Blackwell M., Chandler D., Jackson M.A., Keller S., Koike M., Maniania N.K., Monzón A., Ownley B.H. et al. 2009. Fungal entomopathogens: New insights on their ecology. Fungal Ecology 2 (4): 149–159. DOI: https://doi.org/10.1016/j.funeco.2009.05.001
Vega F.E., Meyling N.V., Luangsa-Ard J.J., Blackwell M. 2012. Fungal entomopathogens. p. 171–220. In: “Insect Pathology” 2nd ed. (F.E. Vega, H.K. Kaya, eds.). Academic Press, San Diego. DOI: 10.1016/B978-0-12-384984-7.00006-3
Vega F.E., Posada F., Aime M.C., Pava-Ripolli M., Infante F., Rehner S.A. 2008. Entomopathogenic fungal endophytes. Biological Control 46 (1): 72–82. DOI: https://doi.org/10.1016/j.biocontrol.2008.01.008
Vidal S., Jaber L. 2015. Entomopathogenic fungi as endophytes: plant–endophyte–herbivore interactions and prospects for use in biological control. Current Science 109 (1): 46−54. Vincent C., Goettel M.S., Lazarovits G. (eds.) 2007. Biological Control: A Global Perspective. CAB International/ AAFC, Wallingford, United Kingdom. DOI: 10.1079/9781845932657.0000
Wagner B.L., Lewis L.C. 2000. Colonization of corn, Zea mays, by the entomopathogenic fungus Beauveria bassiana. Applied and Environmental Microbiology 66 (8): 3468−3473. DOI: 10.1128/aem.66.8.3468-3473.2000
White T.J., Bruns T.D., Lee S.B., Taylor J.W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. p. 315–322. In: “PCR Protocols: A Guide to Methods and Applications” (M.A. Innis, D.H. Gelfand, J.J. Sninsky, T.J. White, eds.). Academic Press, San Diego. DOI: http://dx.doi.org/10.1016/B978-0-12-372180-8.50042-1
Wilson D. 1995. Endophyte – the evolution of a term, and clarification of its use and definition. Oikos 73: 274−276. DOI: https://doi.org/10.2307/3545919
Wraight S.P., Inglis G.D., Goettel M.S. 2007. Fungi. p. 223−248. In: “Field Manual of Techniques in Invertebrate Pathology: Application and Evaluation of Pathogens for Control of Insects and other Invertebrate Pest”. 2nd ed. (L.A. Lacey, H.K. Kaya, eds.). Springer, Dordrecht, the Netherlands.
Wu Z.H., Wang T.H., Huang W., Qu Y.B. 2001. A simplified method for chromosome DNA preparation from filamentous fungi. Mycosystema 20 (4): 575–577.
Go to article

Authors and Affiliations

Roshan S. Shaalan
1 2
ORCID: ORCID
Elvis Gerges
3
Wassim Habib
3
Ludmilla Ibrahim
2

  1. Department of Plant Protection, University of Forestry, Sofia, Bulgaria
  2. Department of Plant Protection, Lebanese University, Beirut, Lebanon
  3. Department of Plant Protection, Lebanese Agricultural Research Institute, Lebanon
Download PDF Download RIS Download Bibtex

Abstract

Tan spot, caused by Pyrenophora tritici-repentis (Ptr), is a worrisome destructive foliar disease of wheat-growing areas around the world. Streptomyces spp. have been investigated as biocontrol agents because they beneficially interact with host plants and produce important bioactive substances that can act in the suppression of diseases in plants. In the present study, antifungal activity and plant growth-promoting of Streptomyces spp. strains 6(4), R18(6), and their consortium, were evaluated through in vitro and greenhouse assays. The Ultra High-Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry (UHPLC-QTOF MS) technique was used to analyze the crude extract of each strain. The results of the in vitro tests showed that the 6(4) metabolites caused several abnormalities in the conidial germination of Ptr. This strain also produced indole acetic acid (IAA) and siderophores. Strain R18(6) did not alter conidial germination of Ptr, and produced IAA and phosphate solubilizers. In the greenhouse, the treatment ‘seed inoculation plus foliar spray’ with streptomycetes propagules and metabolites contributed to biomass gain, with no statistical difference between the strains ( p < 0.05). Treatments with 6(4) ‘seed inoculation’, ‘seed inoculation plus foliar spray’, and consortium ‘seed inoculation’ showed the lowest percentage of injured area compared to other treatments ( p < 0.05). UHPLC-QTOF MS data showed that erucamide is present in the culture of 6(4), but not in the culture of R18(6). Therefore, this substance is one of those involved in Ptr hyphal abnormalities, and R18(6) use indirect mechanisms of action to control Ptr. We concluded that these Streptomyces spp. and their metabolites have a promising potential for biological control of Ptr to protect wheat plants from tan spot damage.
Go to article

Authors and Affiliations

Priscila Monteiro Pereira
1
Flávio Martins Santana
2
Alexsandro Dallegrave
3
Sueli Teresinha Van Der Sand
1

  1. Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
  2. Embrapa Clima Temperado, Estação Experimental Terras Baixas, Capão do Leão, Rio Grande do Sul, Brazil
  3. Departamento de Central Analítica, Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
Download PDF Download RIS Download Bibtex

Abstract

The efficacy of the fungus Lecanicillium lecanii and two bacteria, Bacillus thuringiensis and Streptomyces avermitilis against the two-spotted spider mite Tetranychus urticae Koch and side effects on its predatory mite Phytoseiulus persimilis A.-H. was studied under laboratory conditions. Both S. avermitilis and B. thuringiensis based biopesticides resulted in maximum mortality rates of 90–100% and 91–99% for spider mite adults and larvae, respectively. The mortality of spider mite larvae under fungus L. lecanii treatment was around 60%. These bacteria and fungus also had toxic effects against P. persimilis on the same day of applying insecticides and releasing the predatory mite. The release of predatory mites one day post-treatment of plants with L. lecanii and 7 days post-treatment with B. thuringiensis or S. avermitilis did not negatively affect the survival of predators released. These findings support the potential use of entomopathogenic fungi and bacteria in combination with predatory mites in spider mite biocontrol.

Go to article

Authors and Affiliations

Alexandra A. Zenkova
Ekaterina V. Grizanova
Irina V. Andreeva
Daria Y. Gerne
Elena I. Shatalova
Vera P. Cvetcova
Ivan M. Dubovskiy
Download PDF Download RIS Download Bibtex

Abstract

Many species of Trichoderma produce secondary metabolites such as volatile organic compounds (VOCs) that reduce plant diseases and promote their growth. In this work we evaluated the antagonistic effects of VOCs released by eight strains of two Trichoderma species against Pyrenophora teres Drechsler, the causal agent of barley net blotch. Antagonism was estimated based on the percentage of mycelial growth inhibition according to the confronted cultures method. VOCs extraction and identification were performed by gas chromatography and mass spectrometry, through different methodologies for VOCs emitted by antagonists and pathogens alone or when confronted. VOCs produced by all Trichoderma strains inhibited mycelial growth of the pathogen in a range of 3 to 32%, showing weak and unpigmented mycelia with vacuolization. In addition, P. teres stimulated the release of VOCs by both Trichoderma species. The major groups of VOCs detected were sesquiterpenes, followed by diterpenes, terpenoids and eight-carbon compounds. This is the first report about characterization of volatiles emitted by Trichoderma in the presence of P. teres.
Go to article

Authors and Affiliations

Paulina Moya
Juan Roberto Girotti
Andrea Vanesa Toledo
Sisterna Marina Noemi

This page uses 'cookies'. Learn more