Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 12
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Modern electrical-power systems are often exploited for transmitting highfrequency carrier signals for communications purposes. Series-connected air-core coils represent the fundamental component allowing such applications by providing a proper filtering in the frequency domain. They must be designed, however, to withstand also the line short-circuit current. When a high-magnitude current flows through a coil, strong mechanical stresses are produced within the conductor, leading to possible damage of the coil. In this paper, an approximate analytical model is derived for the relationship between the maximum mechanical stress and the electrical/geometrical parameters of the coil. Such a model provides the guidelines for a fast and safe coil design, whereas numerical simulations are only needed for the design refinement. The presented approach can be extended to other applications such as, for example, the mechanical stress resulting from the inrush currents in the coils of power transformers.
Go to article

Authors and Affiliations

D. Bellan
Download PDF Download RIS Download Bibtex

Abstract

This paper reports a new strand wire winding method in a solenoidal coil with limited geometry that enables good impedance matching. In the proposed method strand wires are wound layer-by-layer on top of each other allowing one to set equivalent inductance and resistance of the coil to desired values while obtaining dense magnetic flux and high current carrying capacity. As a proof-of-concept demonstration, simple model setups were constructed with solenoidal coils composed of copper wire strands wound according to the proposed method, and a plastic pipe. The measurements were repeated with a metal shell placed inside the coil to model a complete heating system. System inductance and resistance were measured at two different frequencies. The results show that with the new winding method it is possible to increase a coil’s turn number and the number of strand layers composed by the coil. Also, adding and removing strand layers in the proposed coil architectures enable inductance and resistance values to decrease and increase, respectively, in a controlled way. To understand changes of system parameters, simulations were also performed. The calculated inductance and resistance values in the simulations agree well with the measurement results and magnetic flux distribution created in the system demonstrates the changes.
Go to article

Authors and Affiliations

Veli Tayfun Kilic
1

  1. Department of Electrical and Electronics Engineering, Abdullah Gul University, Kayseri, Turkiye
Download PDF Download RIS Download Bibtex

Abstract

The effect of shell side and coil side volume flow rate on overall heat transfer coefficient, effectiveness, pressure drop and exergy loss of shell and helical coil heat exchanger were studied experimentally under steady state conditions. The working fluid, i.e., water was allowed to flow at three different flow rates of 1, 2, and 3 l/min on shell side (cold water) and at 1, 1.5, 2, 2.5, and 3 l/min on coil side (hot water) for each shell side flow rate at the temperatures of 298±0.4K and 323±0.4K, respectively. The results found that the overall heat transfer coefficient increased with increasing both shell side and coil side volume flow rates. The inner Nusselt number significantly increased with the coil side Dean number.

Go to article

Authors and Affiliations

Rajesh Kumar
Prakash Chandra
Prabhansu
Download PDF Download RIS Download Bibtex

Abstract

The paper presents analytical relationships based on the theory of Green’s functions. The relationships refer to instantaneous and continuous as well as point and ring heat sources which are discussed. The relationship relating to continuous ring source is the basis for modelling and designing of spiral ground heat exchangers. Heat transfer in the infinite and semi-infinite body was considered. In the latter case, the image method was discussed. Using the results of measurements regarding heat transfer in the ground with a heat exchanger in the form of a single coil installed, a comparison of calculated ground temperatures with measured values was presented.

Go to article

Authors and Affiliations

Barbara Larwa
Krzysztof Kupiec
Download PDF Download RIS Download Bibtex

Abstract

The Helmholtz coil constant (k h) is a crucial standard in magnetic moment measurement devices for permanent magnet materials. To overcome the problem of lowaccuracy of the direct-current (DC) calibration method, this study used a constant sinusoidal current in the Helmholtz coil and measured the induced voltage of the detection coil with known coil turns and coil area. Subsequently, the k h was calculated. The noise signal deduction rate in the induction voltage of the detection coil was greater than 99%, its influence on the induction voltage is less than 0.005%, and the repeatability of the calibration results is 0.003% (1δ). The results reveal that the alternating current (AC) method and orthogonal calculation (OC) can accurately measure the valid values of the voltage signal under the influence of the spatial stray field during the calibration of k h.
Go to article

Authors and Affiliations

Kuankuan Zhang
1 2
Mingxing Cao
1
Jian He
1
Wenjie Gong
1
Yunhua Huang
2

  1. Magnetic Materials Measurement Laboratory, National Institute of Metrology, Beijing 100029, China
  2. University of Science and Technology Beijing, Beijing 100083, China
Download PDF Download RIS Download Bibtex

Abstract

The arc suppression coil determines whether it can effectively extinguish the arc when it is grounded in the neutral non-effective grounding system. An artificial grounding test is an importantway to verify its performance. In this study, 13 substations with the 10 kV system in the Ningxia areawere selected and considered. Based on the artificial single-phase grounding test, the residual current, the compensation current and the off-resonance degree were measured in the arc suppression coil, and the performance of the arc suppression coil in the 10 kV system was verified. The experimental results show that the error of arc suppression coil automatic measurement is large, the off-resonance degree is large, the resistive component in the compensation current is excessive, the harmonic component exists in the compensating current and capacitive current. To solve these problems, this paper puts forward the corresponding countermeasures for reference.

Go to article

Authors and Affiliations

Hui Ni
Pei Ding
Yunlong Ma
Shaogui Ai
Feiyue Ma
Qingping Zhang
Download PDF Download RIS Download Bibtex

Abstract

The article proposes the method of synthesis of active elements with time-varying parameters R(t), C(t) and L(t). In order to construct the elements, it is necessary to use operational amplifiers, multipliers and classic RLC components. The variability in time of the elements results from applying voltage to control terminals. Assuming that the parameters of elements R(t), L(t), C(t) are exponentially varying, dependencies describing the control voltage waveforms which enable such a parameter variability were determined. The obtained results were illustrated with examples and PSpice simulations.

Go to article

Authors and Affiliations

Anna Piwowar
Janusz Walczak
Download PDF Download RIS Download Bibtex

Abstract

Helical coil heat exchangers are widely used in a variety of industry applications such as refrigeration systems, process plants and heat recovery. In this study, the effect of Reynolds number and the operating temperature on heat transfer coefficients and pressure drop for laminar flow conditions was investigated. Experiments were carried out in a shell and tube heat exchanger with a copper coiled pipe (4 mm ID, length of 1.7 m and coil pitch of 7.5 mm) in the temperature range from 243 to 273 K. Air – propan-2-ol vapor mixture and coolant (methylsilicone oil) flowed inside and around the coil, respectively. The fluid flow in the shell-side was kept constant, while in the coil it was varied from 6.6 to 26.6 m/s (the Reynolds number below the critical value of 7600). Results showed that the helical pipe provided higher heat transfer performance than a straight pipe with the same dimensions. The convective coefficients were determined using theWilson method. The values for the coiled pipe were in the range of 3–40 W/m2 ·K. They increased with increasing the gas flow rate and decreasing the coolant temperature.

Go to article

Authors and Affiliations

Krzysztof Kowalski
Dorota Downarowicz
Download PDF Download RIS Download Bibtex

Abstract

Pot-cored coils are commonly used as probes in eddy current testing. In this paper, an analytical model of such a coil placed over a three-layer plate with a hole has been presented. The proposed solution enables the modelling of both magnetic and non-magnetic conductive plates that contain different types of hole, i.e. a through, a surface, an inner or a subsurface hole. The problem was solved by using the truncated region eigenfunction expansion (TREE) method. The analysis was carried out in a cylindrical coordinate system in which the solution domain was radially limited. With the employment of the filamentary coil, the expressions for the magnetic vector potential, and subsequently for the impedance of the cylindrical coil were obtained. The final formulas were presented in a closed form and then implemented in Matlab. The resistance and reactance values were compared with the results obtained in the experiment and using the finite element method in the Comsol Multiphysics package. In each of the cases, good agreement was obtained.

Go to article

Authors and Affiliations

G. Tytko
Download PDF Download RIS Download Bibtex

Abstract

This study investigates image processing techniques for detecting surface cracks in spring steel components, with a focus on applications like Magnetic Particle Inspection (MPI) in industries such as railways and automotive. The research details a comprehensive methodology that covers data collection, software tools, and image processing methods. Various techniques, including Canny edge detection, Hough Transform, Gabor Filters, and Convolutional Neural Networks (CNNs), are evaluated for their effectiveness in crack detection. The study identifies the most successful methods, providing valuable insights into their performance. The paper also introduces a novel batch processing approach for efficient and automated crack detection across multiple images. The trade-offs between detection accuracy and processing speed are analyzed for the Morphological Top-hat filter and Canny edge filter methods. The Top-hat method, with thresholding after filtering, excelled in crack detection, with no false positives in tested images. The Canny edge filter, while efficient with adjusted parameters, needs further optimization for reducing false positives. In conclusion, the Top-hat method offers an efficient approach for crack detection during MPI. This research offers a foundation for developing advanced automated crack detection system, not only to spring sector but also extends to various industrial processes such as casting and forging tools and products, thereby widening the scope of applicability.
Go to article

Bibliography

[1] Gubeljak, N., Predan, J., Senčič, B. & Chapetti, M. (2014). Effect of residual stresses and inclusion size on fatigue resistance of parabolic steel springs. Materials Testing. 56(4), 312-317. DOI:10.3139/120.110567.
[2] Xu, C., Yilong L., Ming Y., Jiabang Y. & Xiang P. (2021). Effects of the ultra-sonic assisted surface rolling process on the fatigue crack initiation position distribution and fatigue life of 51CrV4 spring steel. Materials. 14(10), 2565, 1-19. DOI:10.3390/ma14102565.
[3] Yun, J.P., Choi, Dc., Jeon, Yj. et al., (2014). Defect inspection system for steel wire rods produced by hot rolling process. The International Journal of Advanced Manufacturing Technology. 70, 1625-1634. DOI:10.1007/s00170-013-5397-8.
[4] Perichiyappan, S. & Jagadeesha, T. (2021). Modelling and simulation of primary suspension springs used in Indian railways. Materials Today: Proceedings. 46(17), 8450-8454. DOI: 10.1016/j.matpr.2021.03.478.
[5] Kumar, S., Kumar, V., Nandi, R.K. et al. (2008). Investigation into surface defects arising in hot-rolled SUP 11A grade spring billets. Journal of Failure Analysis and Prevention. 8(6), 492-497. DOI:10.1007/s11668-008-9169-y.
[6] Filipović, M., Eriksson, C. & Överstam, H. (2006). Behaviour of surface defects in wire rod rolling. Steel research international. 77(6), 439-444, DOI:10.1002/srin.200606411.
[7] Matjeke, V.J., Van Der Merwe, J.W., Mukwevho, G. & Phasha, M.J. (2019). Thermal characteristics of spring steels used in railway bogies. SN Applied Sciences. 1, 1548, 1-8. DOI:10.1007/s42452-019-1546-5.
[8] Nagumo, Y., Tanifuji, K. & Imai, J. (2010). A basic study on wheel flange climbing using model wheelset. International Journal of Railway. 3(2), 60-67. DOI:10.1299/kikaic.74.242.
[9] The Rail Safety Inspection Office. (2021). Accident and incident investigation report: Derailment of the regional passenger train No. 21209 between Chvalkov and Vcelnicka operating control points. Retrieved November 7, 2023, from https://www.dicr.cz/files/uploads/Zpravy/MU/DI_Chvalkov_Vcelnicka_210715.pdf.
[10] Maass, M., Deutsch, W.A., Bartholomai, F. (2014). Magnetic Particle Inspection on train components. In 11th European Conference on Non-Destructive Testing, 6-11 October 2014 (pp. 1-9). Prague, Czech Republic.
[11] Deng, J., Singh, A., Zhou, Y., Lu, Y. & Lee, V.C.S. (2022). Review on computer vision-based crack detection and quantification methodologies for civil structures. Construction and Building Materials. 356, 129238. DOI:10.1016/j.conbuildmat.2022.129238.
[12] Mohan, A. & Poobal, S. (2018). Crack detection using image processing: A critical review and analysis. Alexandria Engineering Journal. 57(2), 787-798. DOI:10.1016/j.aej.2017.01.020.

Go to article

Authors and Affiliations

Marcin M. Marciniak
1

  1. Rzeszow University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents and assesses an inverse heat conduction problem (IHCP) solution procedure which was developed to determine the local convective heat transfer coefficient along the circumferential coordinate at the inner wall of a coiled pipe by applying the filtering technique approach to infrared temperature maps acquired on the outer tube’s wall. The data−processing procedure filters out the unwanted noise from the raw temperature data to enable the direct calculation of its Laplacian which is embedded in the formulation of the inverse heat conduction problem. The presented technique is experimentally verified using data that were acquired in the laminar flow regime that is frequently found in coiled−tube heat−exchanger applications. The estimated convective heat transfer coefficient distributions are substantially consistent with the available numerical results in the scientific literature.

Go to article

Authors and Affiliations

F. Bozzoli
L. Cattani
G. Pagliarini
S. Rainieri
Download PDF Download RIS Download Bibtex

Abstract

The article presents a new generation of ultra-fast hybrid switching systems (USH) for reliable, ultra-fast protection of various medium and low voltage DC systems (MVDC and LVDC). The DC switch-off takes place in a vacuum chamber (VC) cooperating with a semiconductor module using current commutation of natural or forced type. Against the background of the current state of science and technology, the paper depicts the basic scopes of USH applications and their particular suitability for operation in high magnetic energy DC circuits. In the case of DC system failures, this magnetic energy should be dissipated outside the system as soon as possible. Usually, magnetic blow-out switches (MBOS) with relatively low operating speed are used for this purpose. The article describes the theoretical basis and principles of construction of two types of novel USH systems: a direct current switching system (DCSS) and a direct current ultra-fast hybrid modular switch (DCU-HM). The DCSS family is designed for quench protection of superconducting electromagnets’ coils in all areas of application. The DCU-HM family is designed for the protection of all systems or vehicles of DC electrical traction and for related industrial applications. The conducted comparative analysis of the effectiveness of USH with respect to MBOS shows clear technical advantages of the new generation switching systems over MBOS. List of abbreviations used in the article is provided at the end.
Go to article

Bibliography

  1.  A.N. Greenwood, P. Barkan, and W.C. Kracht, “HVDC vacuum circuit breakers”, IEEE Trans. Power App. Syst. PAS-91(4), 1575‒1588 (1972).
  2.  C.W. Kimblin et al., “Development of a current limiter using vacuum arc commutation”, EPRI EL-393 Research Proj. 564‒1, USA, 1977.
  3.  T. Senda, T. Tamagawa, K. Higuchi, T. Horiuchi, and S. Yanabu, “Development of HVDC circuit breaker based on hybrid interruption scheme”, IEEE Trans. Power App. Syst. PAS-103(3), 545–552 (1984).
  4.  M. Bartosik, “Progress in DC breaking”, Proc. 8th Int. Conf. Switching Arc Phenomena SAP 1997, part 2, Lodz, Poland, 1997, pp. 29–41.
  5.  M. Bartosik, R. Lasota, and F.Wójcik, “New generation of D.C. circuit breakers”, Proc. 3rd Int. Conf. on Electrical Contacts, Arcs, Apparatus and Appl. (IC-ECAAA), Xian, China, 1997, pp. 349–353.
  6.  A. Daibo, Y. Niwa, N. Asari, W. Sakaguchi, K. Takimoto, K. Ka-naya, and T. Ishiguro, “High-speed current interruption performance of hybrid DCCB for HVDC transmission system”, IEEE J. Ind. Appl. 8(5), 835–842 (2019).
  7.  N. Xia, J. Zou, D. Liang, Y. Gao, Z. Huang, and Y. Wang, “Investigations on the safe stroke of mechanical HVDC vacuum circuit breaker”, J. Eng. (IET) 16, 3022–3025 (2019).
  8.  R. Rodrigues, Y. Du, A. Antoniazzi, and P. Cairoli, “A Review of Solid-State Circuit Breakers”, IEEE Trans. Power Electron. 36(1), 364‒377, (2021).
  9.  M. Wilson, “Superconducting Magnets for Accelerators”, CAS, 2006. [Online]. Available: https://cas.web.cern.ch/sites/cas.web.cern.ch/ files/lectures/zakopane-2006/wilson-lect.pdf
  10.  F. Wójcik, “Ultra-fast shutdown of DC power circuits”, Sc. Bull. 1071, TUL, Sc. Papers 396. Habilitation thesis. Lodz, Poland, 2010, [in Polish].
  11.  PN-EN 50123-1. Railway applications. Fixed installations. DC switchgear. General requirements. (PL/EU standard).
  12.  M. Bartosik, R. Lasota, and F. Wójcik, “Direct current-limiting vacuum circuit breaker”, Proc. 12th Symp. “Electrical Phenomena in Vacuum” ZEP-91, Sc. Fasc. Elektryka 39, Tech. Univ. of Poznan, Poland, 1991, pp. 21–24.
  13.  M. Bartosik, R. Lasota, and F. Wójcik, “Arcless D.C. hybrid circuit breaker”, Proc. 8th Int. Conf. Switching Arc Phenomena SAP-97, Lodz, Poland, 1997, pp. 115–119.
  14.  M. Bartosik, R. Lasota, and F. Wójcik, “New type of DC vacuum circuit-breakers for locomotives”, Proc. 9th Int. Conf. Switching Arc Phenomena SAP-2000(1), Conf. Mat. Lodz, Poland, 2001, pp. 49–53.
  15.  M. Bartosik, R. Lasota, and F. Wójcik, “Ultra-High-Speed D.C. Hybrid Circuit-Breakers of DCNT Type for Substations of Urban and Mine Traction”, Proc. of the 10th Int. Conf. Switching Arc Phenomena, Lodz, Poland, 2005, pp. 360–364.
  16.  M. Bartosik, P. Borkowski, E. Raj, and F. Wójcik, “The New Family of Low-Voltage, Hyper-Speed Arcless, Hybrid, DC Circuit Breakers for Urban Traction Vehicles and Related Industrial Applications”, IEEE Trans. Power Del. 34(1), 251–259 (2019).
  17.  Ch. Peng, A. Huang, I. Husain, B. Lequesne, and R. Briggs, “Drive circuits for ultra-fast and reliable actuation of Thomson coil actuators used in hybrid AC and DC circuit breakers”, IEEE Appl. Power Electronics Conf. and Exp. (APEC), 2016, pp. 2927–2934.
  18.  K. Krasuski, P. Berowski, A. Dzierżyński, A. Hejduk, S. Kozak, and H. Sibilski, “Analysis of arc in a vacuum chamber with an AMF”, Proc. Electrotech. Inst. 269, 91–99 (2015).
  19.  P.G. Slade, The Vacuum Interrupter Theory, Design and Application, CRC Press, 2007.
  20.  “Vacuum interrupters”, Eaton Holec Cath. No. 3.9.1.
  21.  T. Maciołek, M. Lewandowski, A. Szeląg, and M. Steczek, “Influence of contact gaps on the conditions of vehicles supply and wear and tear of catenary wires in a 3 kV DC traction system”, Bull. Pol. Acad. Sci. Tech. Sci. 68(4), 759–768 (2020).
  22. [22]  The applicable standards: PN-EN 50121-3-2, PN-EN 50123-1,PN-EN 50123-2, PN EN 50123-5, PN-EN 50124-1, PN-EN 50153, PN-EN 50155, PN-EN 50163, PN-EN 60068-1 (also: 60068-2-1, 60068-2-2, 60068-2-52), PN-EN 60077-1 (also: 60077-2), PN-EN 60077-3, PN- EN 60529, UIC Charter 550/1997.
  23.  M. Bartosik, P. Borkowski, and F. Wójcik, “Ultra-fast hybrid, vacuum-semiconductor switch to reduce the effects of quench in DC-powered superconducting induction circuits with high magnetic energies”, Polish Patent Office, P.429439, (DCSS), granted (2021).
  24.  M. Bartosik, P. Borkowski, A. Jeske, Ł. Nowak, and F. Wójcik, “Ultra-fast DC hybrid circuit breaker designed especially for railway traction”, Polish Patent Office, P.429285, (DCU-HM), granted (2021).
  25.  Ł. Kolimas, S. Łapczynski, M. Szulborski, and M. Świetlik, “Low voltage modular circuit breakers: FEM employment for modelling of arc chambers”, Bull. Pol. Acad. Sci. Tech. Sci. 68(1), 61–70 (2020).
Go to article

Authors and Affiliations

Marek Bartosik
1
Piotr Borkowski
1
ORCID: ORCID
Franciszek Wójcik
1

  1. Lodz University of Technology, Department of Electrical Apparatus (DEA TUL), 116 Zeromskiego Street, 90-924 Lodz, Poland

This page uses 'cookies'. Learn more