Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Contamination by pesticides is known to be one of the major issues that are enormously degrading the quality of food and fodder crops together with increased agricultural, environmental and aquatic pollution. Many analytical and laboratory methods are available for detection of these pesticides in products in order to maintain food security but these methods are not readily accessible to most people including farmers for on-site and onfield detection in the crops. The development of more convenient, fast, and cost-effective methods that can be easily accessed by laymen based on simple paper strips or mobile analyzers etc. are need of the time. This review includes a brief discussion about novel devices which have been introduced in the field for pesticide detection viz. easy to use colorimetric and non-colorimetric detection methods based on various electrochemical and optical sensing strategies. These techniques exhibited promising results in field of on-site pesticide detection owing to their easy production, high sensitivity and readily accessible results obtained with these portable devices. This review further describes emerging prospects, deficits and challenges associated with the application of the aforementioned sensing devices.
Go to article

Authors and Affiliations

Khushbu Gumber
1

  1. Chandigarh University, Gharuan, Mohali, Punjab, India
Download PDF Download RIS Download Bibtex

Abstract

Food and crops are sourced primarily from agriculture, and due to the enormous growth in population, agricultural goods are in great demand, while farmland is being developed for residences. Therefore, certain chemicals, like pesticides, are being overused and have become unavoidable to increase crop productivity and storage. Excessive release of pesticides into the environment and food chain may pose a health risk. Food and agricultural products need routine analyses to monitor the level of pesticide residuals. As pesticide detection techniques are labor-intensive and require highly qualified professionals, an alternative technique must be developed, such as analytical nanotechnology. The most commonly used nanomaterials for pesticide delivery, enrichment, degradation, detection, and removal are metals, clays, polymers, and lipids. In colorimetric analysis of pesticides, metal nanoparticles are widely used which are quick, easy, and do not require any sample preparation. This manuscript compiles the latest research on nanotechnology in pesticide formulation and detection for smart farming.
Go to article

Authors and Affiliations

Karthick Harini
1
ORCID: ORCID
Koyeli Girigoswami
1
ORCID: ORCID
Pragya Pallavi
1
ORCID: ORCID
Anbazhagan Thirumalai
1
ORCID: ORCID
Pemula Gowtham
1
ORCID: ORCID
Agnishwar Girigoswami
1
ORCID: ORCID

  1. Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai-603 103, India
Download PDF Download RIS Download Bibtex

Abstract

Clean and cheap device, namely dye-sensitized solar cells (DSSCs) were fabricated using a natural dye extracted from Sambucus ebulus. We prepared five sample solutions with various pH in the extraction process to improve power conversion efficiency. The UV–visible absorption investigation of sample solutions and on photoanode show the dyes from J-type aggregation on a photoanode substrate. Redox properties of all sample solutions certify thermodynamically a charge transfer from excited state to conduction band TiO2. The optical properties of various dye solutions were investigated and results showed darkness and bluish tint effect of dye solutions extracted in basic environment rather than those extracted in acidic condition. Moreover, in comparison to the basic condition, the dye solutions extracted in acidic environment were more saturated and colorimetrically less different from that one which extracted in neutral condition. Photophysical and photoelectrochemical performance of natural extraction dyes have been studied in dye-sensitized solar cell devices. The results show the rather high conversion efficiency of 0.57%, 1.15%, 1.02%, 0.35% and 0.15% of each individual dye extraction, respectively.

Go to article

Authors and Affiliations

M. Hosseinnezhad
R. Jafari
K. Gharanjig

This page uses 'cookies'. Learn more