Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper, an energy coordination control method based on intelligent multi-agent systems (MAS) is proposed for energy management and voltage control of a DC microgrid. The structure of the DC microgrid is designed to realize the mathematical modeling of photovoltaic cells, fuel cells and batteries. A two-layer intelligent MAS is designed for energy coordination control: grid-connection and islanding of a DC microgrid is combined with energy management of PV cells, fuel cells, loads and batteries. In the hidden layer and the output layer of the proposed neural network there are 17 and 8 neurons, respectively, and the “logsig” activation function is used for the neurons in the network. Eight kinds of feature quantities and 13 different actions are taken as the input and output parameters of the neural network from the micro-source and the load, and the as the control center agent’s decision-makers. The feasibility of the proposed intelligent multi-agent energy coordination control strategy is verified by MATLAB/Simulink simulation, and three types of examples are analyzed after increasing the load. The simulation results show that the proposed scheme exhibits better performance than the traditional approaches.

Go to article

Authors and Affiliations

P. Qaderi-Baban
M.B. Menhaj
M. Dosaranian-Moghadam
A. Fakharian
Download PDF Download RIS Download Bibtex

Abstract

In this study, the inverter in a microgrid was adjusted by the particle swarm optimization (PSO) based coordinated control strategy to ensure the stability of the isolated island operation. The simulation results showed that the voltage at the inverter port reduced instantaneously, and the voltage unbalance degree of its port and the port of point of common coupling (PCC) exceeded the normal standard when the microgrid entered the isolated island mode. After using the coordinated control strategy, the voltage rapidly recovered, and the voltage unbalance degree rapidly reduced to the normal level. The coordinated control strategy is better than the normal control strategy.
Go to article

Bibliography

[1] Mohamed A., Lamhamdi T., Moussaoui H.E., Markhi H.E., Intelligent energy management system of a smart microgrid using multiagent systems, Archives of Electrical Engineering, vol. 69, no. 1, pp. 23–38 (2020).
[2] Selakov A., Bekut D., Sari A.T., A novel agent-based microgrid optimal control for grid-connected, planned island and emergency island operations, International Transactions on Electrical Energy Systems, vol. 26, no. 9, pp. 1999–2022 (2016).
[3] Obara S., Sato K., Utsugi Y., Study on the operation optimization of an isolated island microgrid with renewable energy layout planning, Energy, vol. 161, no. OCT.15, pp. 1211–1225 (2018).
[4] Zhang T.F., Li X.X., A Control Strategy for Smooth Switching Between Island Operation Mode and Grid-Connection Operation Mode of Microgrid Containing Photovoltaic Generations, Power System Technology, vol. 39, pp. 904–910 (2015).
[5] Liang H., Dong Y., Huang Y., Zheng C., Li P., Modeling of Multiple Master–Slave Control under Island Microgrid and Stability Analysis Based on Control Parameter Configuration, Energies, vol. 11, no. 9 (2018).
[6] Zhang L., Chen K., Lyu L., Cai G., Research on the Operation Control Strategy of a Low-Voltage Direct Current Microgrid Based on a Disturbance Observer and Neural Network Adaptive Control Algorithm, Energies, vol. 12, no. 6 (2019).
[7] MaY.,Yang P., Guo H.,WangY., Dynamic Economic Dispatch and Control of a Stand-alone Microgrid in DongAo Island, Journal of Electrical Engineering & Technology, vol. 10, no. 4, pp. 1433–1441 (2015).
[8] Worku M., Hassan M., Abido M., Real Time Energy Management and Control of Renewable Energy based Microgrid in Grid Connected and Island Modes, Energies, vol. 12, no. 2 (2019).
[9] Xu X., Zhou X., Control Strategy for Smooth Transfer Between Grid-connected and Island Operation for Micro Grid, High Voltage Engineering, vol. 44, no. 8, pp. 2754–2760 (2018).
[10] Roque J.A.M., Gonzalez R.O., Rivas J.J.R., Castillo O.C., Caporal R.M., Design of aNew Controller for an Inverter Operation in Transitional Regime Within a Microgrid, IEEE Latin America Transactions, vol. 14, no. 12, pp. 4724–4732 (2017).
[11] Ma Y., Yang P., Zhao Z., Wang Y., Optimal Economic Operation of Islanded Microgrid by Using a Modified PSO Algorithm, Mathematical Problems in Engineering, vol. 2015, pp. 1–10 (2015).
[12] Li P., Xu D., Zhou Z., Lee W., Zhao B., Stochastic Optimal Operation of Microgrid Based on Chaotic Binary Particle SwarmOptimization, IEEE Transactions on Smart Grid, vol. 7, no. 1, pp. 66–73 (2016).
[13] Tan Y., Cao Y., Li C., Li Y., Yu L., Zhang Z., Tang S., Microgrid stochastic economic load dispatch based on two-point estimate method and improved particle swarm optimization, International Transactions on Electrical Energy Systems, vol. 25, no. 10, pp. 2144–2164 (2015).
[14] Radosavljevic J., Jevtic M., Klimenta D., Energy and operation management of a microgrid using particle swarm optimization, Engineering Optimization, vol. 48, no. 5, pp. 1–20 (2015).
[15] Maulik A., Das D., Optimal operation of microgrid using four different optimization techniques, Sustainable Energy Technologies and Assessments, vol. 21, pp. 100–120 (2017), DOI: 10.1016/j.seta.2017.04.005.
Go to article

Authors and Affiliations

Pan Wu
1
ORCID: ORCID
Xiaowei Xu
2

  1. Power Supply Co., Ltd.Luqiao District, Taizhou, Zhejiang Province, China
  2. Power Supply Co., Ltd.Tonglu, Zhejiang Province, China
Download PDF Download RIS Download Bibtex

Abstract

Based on the respective characteristics of line-commutated converter high-voltage direct current (LCC-HVDC) and voltage-source converter high voltage direct cur- rent (VSC-HVDC), two additional emergency DC power support (EDCPS) controllers are designed, respectively. In addition a coordinated control strategy based on a hybrid multi-infeed HVDC system for EDCPS is proposed. Considering the difference in system recovery between LCC-HVDC and VSC-HVDC in EDCPS, according to the magnitude of the amount of potential power loss, the LCC-HVDC and VSC-HVDC priority issues of boosting power for EDCPS are discussed in detail. Finally, a hybrid three-infeed HVDC that consists of two parallel LCC-HVDCs and one VSC-HVDC that is built in PSCAD/EMTDC are simulated. The effectiveness of the proposed approach is verified based on this hybrid three-infeed HVDC system.

Go to article

Authors and Affiliations

Congshan Li
ORCID: ORCID
Yikai Li
ORCID: ORCID
Jian Guo
Ping He
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In the asynchronous interconnected power grid that is composed of the multiterminal voltage-source converter high voltage direct current (VSC-MTDC) system, the control methods of each converter station and the frequency of the connected AC system are not the same. When a fault occurs in any place of the asynchronous interconnected system, it will cause the system to have power shortage or surplus, affecting the safe and stable operation of the interconnected power grid. In order to solve the problem of insufficient regional active power reserve, based on the VSC-MTDC asynchronous regional interconnection system and the principle of regional sharing, the dynamic power controller under disturbance conditions is established, and the controller parameters are set to achieve the accuracy of unbalanced power in the disturbance area measuring. Then, according to the degree of the disturbance power, considering the factors that affect the support effect of the converter station, an emergency DC power support (EDCPS) scheme under different power disturbances is formulated to achieve power compensation for the disturbance area. Based on PSCAD/EMTDC software, the proposed control strategy is simulated. The result shows that the converter station closer to the disturbance area has a better support effect, and the dynamic active power controller can timely and accurately deliver to the disturbance area when the active power reserve is insufficient.
Go to article

Bibliography

[1] Li X., Zeng Q.,Wang Y., Zhang Y., Control strategies of voltage source converter based direct current transmission system, Gaodianya Jishu/High Voltage Engineering, vol. 42, no. 10, pp. 3025–3037 (2016).
[2] Kontos E., Tsolaridis G., Teodorescu R., Bauer P., Full-bridge MMC DC fault ride-through and STATCOM operation in multi-terminal HVDC grids , Bulletin of the Polish Academy of Sciences: Technical Sciences, vol. 65, no. 5, pp. 653–662 (2017).
[3] Huang R., Zhu Z., Chen J., Chen M., Zou C., Xu S., Research and Experimental Validation of Control and Protection Strategy of HVDC Circuit Breaker in Fault Condition Application in Nan’ao Multi- Terminal VSC-HVDC System, Dianwang Jishu/Power System Technology, vol. 42, no. 7, pp. 2339–2345 (2018).
[4] Guo X., Zhou Y., Mei N., Zhao B., Construction and Characteristic Analysis of Zhangbei Flexible DC Grid, Dianwang Jishu/Power System Technology, vol. 42, no. 11, pp. 3698–3707 (2018).
[5] Xu T. et al., Design and Application of Emergency Coordination Control System for Multi-infeedHVDC Receiving-end System Coping with Frequency Stability Problem, Dianli Xitong Zidonghua/Automation of Electric Power Systems, vol. 41, no. 8, pp. 98–104 (2017).
[6] Lin Q., Li X., Hu N., Wang X., Li K., A multi-agent based emergency DC power support strategy, Dianwang Jishu/Power System Technology, vol. 38, no. 5, pp. 1150–1155 (2014).
[7] Yu T., Shen D., Ren Z., Research on emergency power shifting control of multi-circuit HVDC systems from Central China Power Grid to East China Power Grid, Power System Technology, vol. 28, no. 12, pp. 1–4+19 (2004).
[8] Yang W., Xue Y., Jing Y., Chao J., Huang W., Hong C., Yang B., Emergency DC power support to AC power system in the south china power grid, Dianli Xitong Zidonghua/Automation of Electric Power Systems, vol. 27, no. 17, pp. 68–72 (2003).
[9] Weng H., Xu Z., Xu F., Tu Q., Dong H., Research on constraint factor of emergency power support of HVDC systems, Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, vol. 34, no. 10, pp. 1519–1527 (2014).
[10] Li G., Fu G., Wang S., Li J., Emergency power support control for MMC flexible HVDC transmission system during AC fault, Power System Protection and Control, vol. 46, no. 13, pp. 107–112 (2018).
[11] Li Cong, Li Y., Guo J., He P., Research on emergency DC power support coordinated control for hybrid multi-infeed HVDC system, Archives of Electrical Engineering, vol. 69, no. 1, pp. 5–12 (2020).
[12] Zhu R., Li X., Ying D., A frequency stability control strategy for interconnected VSC-MTDC transmission system, Dianwang Jishu/Power System Technology, vol. 38, no. 10, pp. 2729–2734 (2014).
[13] Zhang W., Fang X., The Support for Regional Grid Catastrophe Recovery from Multi-terminal DC Asynchronous Interconnection, Power System and Automation, vol. 39, no. 1, pp. 66–69 (2017).
[14] XuT. et al., Coordinated Control Strategy of Multi-DC Emergency Power Support to Improve Frequency Stability of Power Systems, Dianli Xitong Zidonghua/Automation of Electric Power Systems, vol. 42, no. 22, pp. 69–77+143 (2018).
[15] Rakibuzzaman S., Robin P., Mike B., The Impact of Voltage Regulation of Multiinfeed VSC-HVDC on Power System Stability, IEEE Transactions on Energy Conversion, vol. 33, no. 4, pp. 1614-1627 (2018).
[16] Nadew A.B., Cornelis A.P., Analysis of Faults in Multiterminal HVDC Grid for Definition of Test Requirements of HVDC Circuit Breakers, IEEE Transactions on Power Delivery, vol. 33, no. 1, pp. 403–411 (2018).
[17] Fuchs A., Imhof M., Demiray T., Morari M., Stabilization of large power systems using vsc-hvdc and model predictive control, IEEE Transactions on Power Delivery, vol. 29, no. 1, pp. 480–488 (2014).
[18] Harnefors L., Johansson N., Zhang L., Berggren B., Interarea oscillation damping using active-power modulation of multiterminal HVDC transmissions, IEEE Transactions on Power Systems, vol. 29, no. 5, pp. 2529–2538 (2014).
19] Tang G., He Z., Pang H., Research, application and development of VSC-HVDC engineering technology, Dianli Xitong Zidonghua/Automation of Electric Power Systems, vol. 37, no. 15, pp. 3–14 (2013).
[20] Naushath M., Athula D., Aniruddha M., Ioni T., Investigation of Fault Ride-Through Capability of Hybrid VSC-LCC Multi-Terminal HVDC Transmission Systems, IEEE Transactions on Power Delivery, vol. 34, no. 1, pp. 241–250 (2019).
Go to article

Authors and Affiliations

Congshan Li
1
ORCID: ORCID
Tingyu Sheng
1
ORCID: ORCID
Yan Fang
1
ORCID: ORCID
Yikai Li
1
ORCID: ORCID

  1. School of Electrical and Information Engineering, Zhengzhou University of Light Industry, China
Download PDF Download RIS Download Bibtex

Abstract

Voltage source converter-based multi-terminal high-voltage direct current (VSCMTDC) transmission system can realize a multi-point power supply, multi-drop power receiving, and mutual coordination between the converter stations to ensure the reliability of the transmission. Based on the PSCAD/EMTDC platform, a five-terminal DC transmission system model is established. According to the fast power regulation capability and overload capacity of theVSC-MTDC power transmission system, an analysis of additional emergency power support for a transmission system under large disturbance conditions was carried out. A new control strategy for emergency power support that introduces its basic principle is proposed in this paper. It uses the short-term overload capability of the DC system. By changing the power reserve of the converter station and the electrical distance between the converter stations, the influence of the power reserve and the electrical distance on the emergency power supply guarantee is analyzed the stability of the system is improved, thereby improving the sudden change of power caused by voltage fluctuations, and the feasibility of the control module is verified by PSCAD simulation. The simulation results show that when the system power supply suddenly changes, the converter stations at a short distance and large power reserve has a better effect on emergency power supply protection. A comparative study of the active power support of a single converter station and multiple converter stations is carried out. The research results show that the use of emergency power support in the DC transmission system has a good effect on maintaining the stability of the inter-connection system and the reliability of the power supply.
Go to article

Authors and Affiliations

Congshan Li
1
ORCID: ORCID
Zikai Zhen
1
ORCID: ORCID
Tingyu Sheng
2
ORCID: ORCID
Yan Liu
1
ORCID: ORCID
Pu Zhong
1
Xiaowei Zhang
1

  1. Zhengzhou University of Light Industry, College of Electrical and Information Engineering, China
  2. Maintenance Company of State Grid Henan Electric Power Company, China

This page uses 'cookies'. Learn more