Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 140
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the full transient, two-dimensional finite volume method numerical calculations of the classical involute scroll compressor geometry. The purpose of the study was to develop and evaluate an adaptable implementation of numerical fluid mechanics and thermodynamics modeling procedure with a mesh deformation. The methodology consisting in the compression chamber geometry preparation, mesh generation and governing equations solving was described. The evaluation was carried by simulating an adiabatic compression process and the results were compared with the theoretical zero-dimensional model and the existing research concerning the scroll chamber computational fluid dynamics modeling. It has been shown that the proposed modeling routine results in good accuracy for the scroll compressors study applications.

Go to article

Authors and Affiliations

Józef Rak
Download PDF Download RIS Download Bibtex

Abstract

Casting industry has been enriched with the processes of mechanization and automation in production. They offer both better working standards, faster and more accurate production, but also have begun to generate new opportunities for new foundry defects. This work discusses the disadvantages of processes that can occur, to a limited extend, in the technologies associated with mould assembly and during the initial stages of pouring. These defects will be described in detail in the further part of the paper and are mainly related to the quality of foundry cores, therefore the discussion of these issues will mainly concern core moulding sands. Four different types of moulding mixtures were used in the research, representing the most popular chemically bonded moulding sands used in foundry practise. The main focus of this article is the analysis of the influence of the binder type on mechanical and thermal deformation in moulding sands.
Go to article

Authors and Affiliations

A. Grabarczyk
1
ORCID: ORCID
K. Major-Gabryś
1
ORCID: ORCID
J. Jakubski
1
ORCID: ORCID
St.M. Dobosz
1
ORCID: ORCID
D. Bolibruchová
2
ORCID: ORCID
R. Pastirčák
2
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Foundry Engineering, Department of Moulding Materials, Mould Technology and Foundry of Non-ferrous Metals, Al. Mickiewicza 30, 30-059 Krakow, Poland
  2. University of Zilina, Žilinská Univerzita v Žiline, Faculty of Mechanical Engineering, Žilina, Slovak Republic
Download PDF Download RIS Download Bibtex

Abstract

Small as they are, such deformation structures occur in extensive clusters. They can provide valuable geological information and may pose a challenge for prospecting engineers.
Go to article

Authors and Affiliations

Piotr Strzelecki
1

  1. Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Kraków
Download PDF Download RIS Download Bibtex

Abstract

The behaviour of porous sinters, during compression and compression with reverse cyclic torsion tests is investigated in the article based on the combination of experimental and numerical techniques. The sinters manufactured from the Distaloy AB powder are examined. First, series of simple uniaxial compression tests were performed on samples with three different porosity volume fractions: 15, 20 and 25%. Obtained data were then used during identification procedure of the Gurson-Tvergaard-Needleman finite element based model, which can capture influence of porosity evolution on plasticity. Finally, the identified Gurson-Tvergaard- Needleman model was validated under complex compression with reverse cyclic torsion conditions and proved its good predictive capabilities. Details on both experimental and numerical investigations are presented within the paper.

Go to article

Authors and Affiliations

L. Madej
K. Perzyński
M. Składzień
M. Tkocz
M. Rosiak
F. Grosman
Download PDF Download RIS Download Bibtex

Abstract

The paper presents research results on the selection of parameters for the asymmetric rolling process of bimetallic plates 10CrMo9-10 + X2CrNiMo17-12-2. They consisted in determining the optimum parameters of the process, which would be ensured to obtain straight bands. Such deformation method introduces in the band the deformations resulting from shear stress, which affect changes in the microstructure. But their effect on the structure is more complicated than in the case of homogeneous materials. It has been shown that the introduction of asymmetric conditions into the rolling process results in greater grain refinement in the so-called hard layer. There was no negative effect on the structural changes in the soft layer observed.

Go to article

Authors and Affiliations

D. Rydz
ORCID: ORCID
B. Koczurkiewicz
G. Stradomski
T. Garstka
J. Wypart
Download PDF Download RIS Download Bibtex

Abstract

Some studies show that cells are able to penetrate through pores that are smaller than cell size. It concerns especially Red Blood Cells but it also may concern different types of biological cells. Such penetration of small pores is a very significant problem in the filtration process, for example in micro- or ultrafiltration. Deformability of cells allows them to go through the porous membrane and contaminate permeate. This paper shows how cells can penetrate small cylindrical holes and tries to assess mechanical stress in a cell during this process. A new mathematical approach to this phenomenon was presented, based on assumptions that were made during the microscopic observation of Red Blood Cell aspiration into a small capillary. The computational model concerns Red Blood Cell geometry. The mathematical model allows to obtain geometrical relation as well as mechanical stress relations.

Go to article

Authors and Affiliations

Maciej Szwast
Teresa Suchecka
Wojciech Piątkiewicz
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results obtained from the structural re.nement of selected metals and alloys produced by severe plasticdeformation processes. Large levels of deformations were produced using four methods, which di.ered in the character and dynamics of the loading, as well as in the intensity and homogeneity oft he plastic strain .eld. Qualitative and quantitative studies of the re.ned microstructure were carried out using stereological and computer image analytical methods. Microhardness and selected mechanical properties, such as strength and yield point, were also determined.

Go to article

Authors and Affiliations

K.J. Kurzydłowski
Download PDF Download RIS Download Bibtex

Abstract

The development of the crystallographic texture in copper subjected to severe plastic deformation (SPD) by means of high pressure torsion (HPT) and equal-channel angular pressing (ECAP) was experimentally investigated and analyzed by means of computer modelling. It was demonstrated, that the texture developed in HPT and ECAP Cu is characterized by significant inhomogeneity. Therefore, the analysis focused on the study of the texture distribution and its inhomogeneity in sample space. The detailed texture analysis, based on the X-ray diffraction technique, led to important observations concerning the localization of the maximum texture gradient and the regularity of its changes related to the parameters of the applied deformation. The obtained results provided the basis for certain conclusions concerning complex texture changes in SPD Cu.

Go to article

Authors and Affiliations

I.V. Alexandrow
M.V. Zhilina
J.T. Bonarski
Download PDF Download RIS Download Bibtex

Abstract

In the present work, studies have been carried out on the variations in the microstructure and hardness of P91 base-metal and welded joint. This variations result from the grit blasting and thermal cycle experienced during the thermal spraying process. The microstructural effects have been analyzed in terms of the depth of the deformation zone. Scanning Electron Microscopy and Xray diffraction were used as characterization techniques. The grit blasting carried out prior to thermal spraying has resulted in the highest change in sub-surface hardness of the heat affected zone (HAZ). However, flame treatment further reduced the subsurface hardness of the heat affected zone. The depth of deformation zone was highest for inter-critical heat affected zone (IC-HAZ). The overall coating process resulted in an increase in subsurface hardness of various regions of HAZ and fusion zone (FZ). The base metal showed a 7% increase in subsurface hardness due to the overall coating process. The IC-HAZ showed maximum variation with 36% increase in subsurface hardness. The coarse grained heat affected zone (CG-HAZ) and FZ did not show any change in subsurface hardness. As a whole, the hardness and microstructure of the welded joint was observed to be more sensitive to the thermal spray coating process as compared to the base metal.

Go to article

Authors and Affiliations

J.G. Thakare
C. Pandey
R.S. Mulik
M.M. Mahapatra
H.K. Narang
Download PDF Download RIS Download Bibtex

Abstract

In this study, high performance magnesium-yttria nanocomposite’s room temperature, strength and ductility were significantly enhanced by the dispersion of nano-sized nickel particles using powder blending and a microwave sintering process. The strengthening effect of the dispersed nano-sized nickel particles was consistent up to 100°C and then it gradually diminished with further increases in the test temperature. The ductility of the magnesium-yttria nanocomposite remained unaffected by the dispersed nano-sized nickel particles up to 100°C. Impressively, it was enhanced at 150°C and above, leading to the possibility of the near net shape fabrication of the nanocomposite at a significantly low temperature.

Go to article

Authors and Affiliations

Fida S. Hassan
Khin Sandar Tun
F. Patel
Nasser Al-Aqeeli
M. Gupta
Download PDF Download RIS Download Bibtex

Abstract

The contributions of work-hardening of austenite and the presence of martensite on the hardening of an AISI 304L stainless steel were evaluated based on plastic deformation under different reductions in thickness at two rolling temperatures. The cold deformation temperatures of 300 K and 373 K were chosen to induce strain-hardening plus strain-induced martensitic transformation in the former and strain-hardening in the latter. This made it possible to elucidate the real effects of strengthening mechanisms of metastable austenitic stainless steels during mechanical working.

Go to article

Authors and Affiliations

T. Mirzaie
H. Mirzadeh
M. Naghizadeh
Download PDF Download RIS Download Bibtex

Abstract

Casting industry has been enriched with the processes of mechanization and automation in production. They offer both better working standards, faster and more accurate production, but also have begun to generate new opportunities for new foundry defects. This work discusses the disadvantages of processes that can occur, to a limited extend, in the technologies associated with mould assembly and during the initial stages of pouring. These defects will be described in detail in the further part of the paper and are mainly related to the quality of foundry cores, therefore the discussion of these issues will mainly concern core moulding sands. Four different types of moulding mixtures were used in the research, representing the most popular chemically bonded moulding sands used in foundry practise. The main focus of this article is the analysis of the influence of the binder type on mechanical and thermal deformation in moulding sands.

Go to article

Authors and Affiliations

A. Grabarczyk
K. Major-Gabryś
S.M. Dobosz
J. Jakubski
D. Bolibruchová
M. Bruna
R. Pastirčák
Download PDF Download RIS Download Bibtex

Abstract

This study presents a description of the mechanics of forming dough pieces into cylindrical (cylinder-like) shapes. Based on the configuration of forming, the movement of the formed piece and its surface deformations were described. Kinematic relationships concerning the dough piece material as a rheological fluid were formulated. Next, the relationships coupling the kinematic quantities present with both descriptions were determined. The components of the deformation rate tensor, presented in the assumed forming configuration (cylindrical coordinate system), describe the velocity distribution on the surface of dough piece being formed and deformed. The determined kinematic quantities and their interrelations may be used to describe the process of forming dough pieces into cylindrical shapes.

Go to article

Authors and Affiliations

Feliks Chwarścianek
Download PDF Download RIS Download Bibtex

Abstract

Coal mining activities carried out for 200 years in Upper Silesia have had a negative effect on buildings. T his impact is in all cases related with continuous deformations of the surface and in certain cases with discontinuous deformations (mostly cave-ins), changes in water relations and mining tremors. T he paper presents an evaluation of the impact of a mining activity on a building situated in the Upper Silesian Coal Basin. T he building was affected by continuous deformations and mining tremors. Calculations were made of the values of deformation rates by means of Budryk–Knothe’s theory, which were partly verified on the basis of the results from geodetic measurements. An analysis of the velocity and acceleration of basement vibrations caused by mining-induced tremors was also conducted. T he conclusions included a high consistency between the results obtained on the basis of calculations and the values obtained by means of PGA and PGV measurements. In the case of tremors with the highest energy in the hipocentrum, there an empirical formula allowing for calculation of PGA value in given geological and mining conditions was also proposed. T he application range of the formula mentioned above is obviously limited only to the conditions in consideration. The presented conclusions indicate that at present, sufficiently precise methods, allowing for calculations for practical purposes, not only of deformation indices’ values, but also of PGV and PGA values, presently exist.

Go to article

Authors and Affiliations

Piotr Strzałkowski
Download PDF Download RIS Download Bibtex

Abstract

Water is the main source of daily life for everyone and everywhere in the world. Sufficient water distribution depends on the place and design of water tank in certain areas. Water storage tanks are relatively flexible structures and they can tolerate greater settlements than other engineering structures. Deformation of tanks may cause severe damages to tank or even loss of life and injury to people, so monitoring the structural deformation and dynamic response of water tank and its supporting system to the large variety of external loadings has a great importance for maintaining tank safety and economical design of manmade structures. This paper presents an accurate geodetic observations technique to investigate the inclination of an elevated circular water tank and the deformation of its supporting structural system (supporting columns and circular horizontal beams) using reflector-less total station. The studied water tank was designed to deliver water to around 55000 person and has a storage capacity about 750 m3. Due to the studied water tank age, a non-uniform settlement of tank foundation and movement of pumps and electric machines under tank’s body will cause stress and strain for tanks membrane and settlement of sediments. So the studied water tank can tend to experience movement vertically, horizontally or both. Three epochs of observations were done (July 2014, September 2014 and December 2014). The results of the practical measurements, calculations and analysis of the interesting deformation of the studied elevated tanks and its supporting system using least squares theory and computer programs are presented. As a results of monitoring the water storage tank, circular reinforced concrete beams and columns at three monitoring epochs. The body of water storage tank has an inclination to the east direction and the value of inclination is increased with the time.

Go to article

Authors and Affiliations

Zaki Zeidan
Ashraf A.A. Beshr
Sara Sameh
Download PDF Download RIS Download Bibtex

Abstract

Currently available field rock mass deformability determination methods are rather difficult to perform, due to their complexity and a time-consuming nature. This article shows results of a suitability assessment of a Pen206 borehole jack (a hydraulic penetrometer) for field rock mass deformability measurements. This type of the borehole jack is widely used in Polish hard coal mining industry. It was originally intended only for quick rock mass strength parameters determination. This article describes an analysis and scope of basic modifications performed mainly on a borehole jack head. It includes discussion of results with possible directions for future development of the device.

Go to article

Authors and Affiliations

Rafał Pierszalik
ORCID: ORCID
Sylwester Rajwa
ORCID: ORCID
Andrzej Walentek
Krzysztof Bier
Download PDF Download RIS Download Bibtex

Abstract

This article deals with the design of slewing rings (slewing bearings). A fully parametric, 3D virtual model of a ball slewing ring with four-point contact was created in the PTC/Creo Parametric CAD system. This model was subsequently used for finite-element analysis using Ansys/Workbench CAE software. The purpose of the FEM analysis was to determine the axial stiffness characteristics. Results of FEM analysis were experimentally verified using a test bench. At the end of the article, we present the nomograms of the deformation constant for different pitch diameters, rolling element diameters and contact angles.
Go to article

Bibliography

  1.  Y. Guo and R.G. Parker, “Stiffness matrix calculation of rolling element bearings using a finite element/contact mechanics model”, Mech. Mach. Theory 51, 32–45 (2012).
  2.  G. Chen and H. Wang, “Contact stress and radial stiffness of a cylindrical roller bearing with corrected roller generator”, Trans. Can. Soc. Mech. Eng. 40(5), 725–738 (2016).
  3.  L. Kania, R. Pytlarz, and S. Spiewak, “Modification of the raceway profile of a single-row ball slewing bearing”, Mech. Mach. Theory 128, 1–15 (2018).
  4.  R. Skyba, S. Hrček, L. Smetanka, and M. Majchrák, “Stiffness analysis of slewing bearings”, IOP Conf. Ser: Mater. Sci. Eng. 393, 012060 (2018).
  5.  P.P. Hou, L.Q. Wang, and Q.Y. Peng, “Vibration analysis of ball bearing considering waviness under high speed and an axial load”, Bull. Pol. Acad. Sci. Tech. Sci. 68(3), 517–527 (2020).
  6.  P. Ding, H. Wang, Y.F. Dai, J. Chen, H. Zhang, and F.Z. Sun, “MDCCS Based Multistage Life Prediction of Slewing Bearing with a Novel Performance Description: an Improved Variational Mode Decomposition Approach”, Exp. Tech. 43, 341–358 (2019).
  7.  Y. Zhang, B. Fang, L. Kong, and Y. Li, “Effect of the ring misalignment on the service characteristics of ball bearing and rotor system”, Mech. Mach. Theory 151, 103889 (2020).
  8.  V.S. Nagarajan, V. Kamaraj, and S. Sivaramakrishnan, “Geometrical sensitivity analysis based on design optimization and multiphysics analysis of PM assisted synchronous reluctance motor”, Bull. Pol. Acad. Sci. Tech. Sci. 67(1), 155–163 (2019).
  9.  E. Kurvinen, J. Sopanen, and A. Mikkola, “Ball bearing model performance on various sized rotors with and without centrifugal and gyroscopic forces”, Mech. Mach. Theory 90, 240−260 (2015).
  10.  G. Chen, G. Wen, Z. Xiao, and H. San, , “Experimental Study on Contact Force in a Slewing Bearing”, J. Tribol. 140(2), 021402 (2018).
  11.  I. Heras, J. Aguirrebeitia, M. Abasolo, and I. Coria, “An engineering approach for the estimation of slewing bearing stiffness in wind turbine generators”, Wind Energy 22, 376–391 (2018).
  12.  T.J. Royston and I. Basdogan, “Vibration transmission through self-aligning (spherical) rolling element bearings”, J. Sound Vibr. 215, 997–1014 (1998).
  13.  F. Bogard, S. Murer, L. Rasolofondraibe, and B. Pottier, “Numerical determination of the mechanical stiffness of a force measurement device based on capacitive probes: Application to roller bearings”, J. Comput. Des. Eng. 4, 29–36 (2017).
  14.  T.L.H. Walford and B.J. Stone, “The measurement of the radial stiffness of rolling element bearings under oscillating conditions”, J. Eng. Mech. Eng. Sci.22, 175–181 (1980).
  15.  R. Tiwari and V. Chakravarthy, “Simultaneous identification of residual unbalances and bearing dynamic parameters from impulse responses of rotor-bearing systems”, Mech. Syst. Signal Proc. 20, 1590–1614 (2006).
  16.  M.J. Goodwin, “Experimental Techniques for bearing impedance measurement”, J. Eng. Ind. 113(3), 335–342 (1991).
  17.  N. Bessous, S. Sbaa, and A.C. Megherbi, “Mechanical fault detection in rotating electrical machines using MCSA-FFT and MCSA-DWT techniques”, Bull. Pol. Acad. Sci. Tech. Sci. 67(3), 571–582 (2019).
  18.  P. He, Y. Wang, H. Liu, E. Guo, and H. Wang, ”Optimization design of structural parameters of single-row four-point contact ball slewing bearing”, J. Braz. Soc. Mech. Sci. Eng. 42, 291 (2020).
  19.  J. Brandlein, P. Eschmann, L. Hasbargen, and K. Weigand, Ball and roller bearings – theory, design and application, John Wiley&Sons Ltd., 2000.
  20.  I. Heras, J. Aguirrebeitia, M. Abasolo, I. Coria, and I. Escanciano, “Load distribution and friction torque in four-point contact slewing bearings considering manufacturing errors and ring flexibility”, Mech. Mach. Theory 137, 23–26 (2019).
  21.  D. Gunia and T. Smolnicki, “The influence of the geometrical parameters for stress distribution in wire raceway slewing bearing”, Arch. Mech. Eng. 64(3), 315–326 (2017).
  22.  A.J. Muminovic, M. Colic, E. Mesic, and I. Saric, “Innovative design of spur gear tooth with infill structure”, Bull. Pol. Acad. Sci. Tech. Sci. 68(3), 477–483 (2020).
  23.  S. Hrček, V. Kraus, R. Kohár, Š. Medvecký, and P. Lehocký, “Construction of a bearing testing apparatus to assess lifetime of large-scale bearings”, Commun: Sci. Lett. Univ. Žilina 11(2), 57–64 (2009).
Go to article

Authors and Affiliations

Slavomir Hrcek
1
Robert Kohar
1
Jan Steininger
2

  1. University of Zilina, Faculty of Mechanical Engineering, Department of Design and Machine Elements, Slovak Republic
  2. University of Zilina, Institute of Competitiveness and Innovations, Slovak Republic
Download PDF Download RIS Download Bibtex

Abstract

It is an established fact that when roads are planned and constructed, consideration needs to be given to ensuring the strength of the road surface. It is, however, also the case that when an existing road is being rebuilt or is under maintenance, its base may need to be fortified to increase the road’s vehicle-carrying capacity. The base may, for example, contain a high proportion of weak soil that would be difficult, time-consuming, and costly to remove. This paper aims to investigate the efficacy of using sand-filled piles to reduce road deformation. Experiments conducted on sponge samples confirm that there is a relationship between the total area of sand-filled piles and relative reduction in deformation. It finds that the relationship is non-linear, but that the relationship can be made linear by adjusting the area of sand-filled piles. When the area of sand-filled piles increases from 7.8% to 19.4%, the deformation module can change by up to 100%. Relative reduction in deformation can change from 14% to 45.5% when the area of sand-filled piles increases from 7.8% to 11.7%. The maximum reduction in deformation – 92.4% - occurs when the area of sand-filled piles exceeds 19.5%. Changing the loads borne also affects the deformation module. This paper found that when there was a 10 to 15kg load, and the number of sandfilled piles was increased, there was a change in the deformation module by 380-470%. When there was only a 5kg load on the sample, and the number of sand-filled piles was increased, there was a change in the deformation module by up to 1217%.
Go to article

Authors and Affiliations

Sami Mohammed Ayyad
1
Omar Asad Ahmad
1
ORCID: ORCID

  1. Amman Arab University, Faculty of Civil Engineering, Civil Engineering Department; Amman, Jordan Street–Mubis, 11953, Jordan,
Download PDF Download RIS Download Bibtex

Abstract

Mining activity influence on the environment belongs to the most negative industrial influences. Land subsidence can be a consequence of many geotectonic processes as well as due to anthropogenic interference with rock massif in part or whole landscape. Mine subsidence on the surface can be a result of many deep underground mining activities. The presented study offers the theory to the specific case of the deformation vectors solution in a case of disruption of the data homogeneity of the geodetic network structure in the monitoring station during periodical measurements in mine subsidence. The theory of the specific solution of the deformation vector was developed for the mine subsidence at the Košice-Bankov abandoned magnesite mine near the city of Košice in east Slovakia. The outputs from the deformation survey were implemented into Geographic Information System (GIS) applications to a process of gradual reclamation of whole mining landscape around the magnesite mine. After completion of the mining operations and liquidation of the mine company it was necessary to determine the exact edges of the Košice-Bankov mine subsidence with the zones of residual ground motion in order to implement a comprehensive reclamation of the devastated mining landscape. Requirement of knowledge about stability of the former mine subsidence was necessary for starting the reclamation works. Outputs from the presented specific solutions of the deformation vectors confirmed the multi-year stability of the mine subsidence in the area of interest. Some numerical and graphical results from the deformation vectors survey in the Košice-Bankov abandoned magnesite mine are presented. The obtained results were transformed into GIS for the needs of the self-government of the city of Košice to the implementation of the reclamation works in the Košice-Bankov mining area.
Go to article

Authors and Affiliations

Vladimir Sedlák
Jaroslav Hofierka
Michal Gallay
Jan Kaňuk
Download PDF Download RIS Download Bibtex

Abstract

This paper proposes a modification of the classical process for evaluating the statistical significance of displacements in the case of heterogeneous (e.g. linear-angular) control networks established to deformation measurements and analysis. The basis for the proposed solution is the idea of local variance factors. The theoretical discussion was complemented with an example of its application on a simulated horizontal control network. The obtained results showed that the evaluation of the statistical significance of displacements in the case of heterogeneous control networks should be carried out using estimators of local variance factors.
Go to article

Authors and Affiliations

Krzysztof Nowel
Waldemar Kamiński
Download PDF Download RIS Download Bibtex

Abstract

This study investigates several factors that have not been specified in the standard for dynamic stiffness, compressibility, and long-term deformation; these factors can be used to evaluate the acoustic and physical performances of resilient materials. The study is intended to provide basic data for deriving the factors that need to be additionally reviewed through the standards. Since magnitude of dynamic stiffness changes with an increase in loading time, it is necessary to examine the setting of the loading time for a load plate under test conditions. Samples of size 300×300 mm, rather than 200×200 mm, yielded more reliable results for compressibility measurement. Since the test to infer long-term deformation of resilient materials after a period of 10 years in some samples showed variation characteristics different from those specified in the standards, it is recommended that the test method should be reviewed through ongoing research.
Go to article

Authors and Affiliations

Kyoung-Woo Kim
Jun-Oh Yeon
Kwan-Seop Yang
Myung-Jun Kim
Download PDF Download RIS Download Bibtex

Abstract

This paper focused on the effect of pure torsion deformation and various torsion pitches on the mechanical properties of the commercial pure Al wires which has not been examined so far. The initial wires with diameter of 4 mm have been torsion deformed to different pitch length (PL). In order to investigate the effect of gradient microstructure caused by torsion deformation, three different pitch length of 15 mm, 20 mm and 30 mm are considered. The results revealed that the level of grain refinement is correlated with the amount of induced plastic shear strain by torsion deformation. For the wire with pitch length of 15 mm, the grain sizes decreased to about 106 μm and 47 μm in the wire center and edge from the initial size of about 150 μm of the annealed wire. The micro-hardness measurement results show a gradient distribution of hardness from the wire center to the wire surface that confirmed the increasing trend of plastic shear strain obtained by FE simulations. The hardness of annealed sample (35 HV) is increased up to 73 HV at the wire surface for the smallest pitch length. The yield and ultimate tensile strength of the torsion deformed wires are also increased up to about 85 MPa and 152 MPa from the initial values of 38 MPa and 103 MPa of the annealed one respectively while the maximum elongation reduced significantly.
Go to article

Authors and Affiliations

M. Sedighi
A. Vaezi
M. Pourbashiri
Download PDF Download RIS Download Bibtex

Abstract

This paper presents results obtained from a laboratory investigation conducted on material from a pressure vessel after longterm operation in the oil refinery industry. The tested material contained structural defects which arose from improper heat treatment during steel plate manufacturing. Complex tensile tests with acoustic emission signal recording were conducted on both notched and unnotched specimens. The detailed analysis of different acoustic emission criteria allowed as to detect each stage of plastic deformation and microstructural damage processes after a long-term operation, and unused carbon steels during quasi-static axial tension testing. The acoustic emission activity, generated in the typical stages of material deformation, was correlated by microscopy observations during the tensile test. The results are to be used as the basis for new algorithms for the assessment of the structural condition of in-service pressure equipment.

Go to article

Authors and Affiliations

I. Lyasota
Ł. Sarniak
P. Kustra

This page uses 'cookies'. Learn more