Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A microgrid with parallel structure operating under islanded mode is considered in this paper. Under microgrid islanded operation mode, lines bring adverse effect for power distribution between microsources (MSs). Because traditional droop control ignores this effect, MSs adopting this method can not achieve satisfactory power distribution. A kind of droop control including line compensation applied to this microgrid is proposed. It can eliminate this effect to obtain satisfactory power distribution. The relationship of two kinds of droop control with power distribution is analyzed. The reference voltage generated by droop control is applied to control output voltage of MSs. Comparison of two kinds of droop control through MATLAB/Simulink simulation is made to verify the superiority of droop control including line compensation for power distribution. The relationship between PCC voltage and output power of MSs is also presented.

Go to article

Authors and Affiliations

Dengke Gao
Jianguo Jiang
Shutong Qiao
Download PDF Download RIS Download Bibtex

Abstract

The microgrid (MG) technology integrates distributed generations, energy storage elements and loads. In this paper, dynamic performance enhancement of an MG consisting of wind turbine was investigated using permanent magnet synchronous generation (PMSG), photovoltaic (PV), microturbine generation (MTG) systems and flywheel under different circumstances. In order to maximize the output of solar arrays, maximum power point tracking (MPPT) technique was used by an adaptive neuro-fuzzy inference system (ANFIS); also, control of turbine output power in high speed winds was achieved using pitch angle control technic by fuzzy logic. For tracking the maximum point, the proposed ANFIS was trained by the optimum values. The simulation results showed that the ANFIS controller of grid-connected mode could easily meet the load demand with less fluctuation around the maximum power point. Moreover, pitch angle controller, which was based on fuzzy logic with wind speed and active power as the inputs, could have faster responses, thereby leading to flatter power curves, enhancement of the dynamic performance of wind turbine and prevention of both frazzle and mechanical damages to PMSG. The thorough wind power generation system, PV system, MTG, flywheel and power electronic converter interface were proposed by Rusing Mat-lab/Simulink.
Go to article

Authors and Affiliations

Maziar Izadbakhsh
Alireza Rezvani
Majid Gandomkar
Download PDF Download RIS Download Bibtex

Abstract

In response to the inability of the flexible DC transmission system connected to the AC grid under conventional control strategies to provide inertia to the system as well as to participate in frequency regulation, a virtual synchronous generator (VSG) control strategy is proposed for a voltage source converter (VSC)-based multi-terminal high-voltage direct current (VSC-MTDC) interconnection system. First, the virtual controller module is designed by coupling AC frequency and active power through virtual inertia control, so that the VSC-MTDC system can provide inertia response for AC grid frequency. Second, by introducing the power margin of the converter station into the droop coefficient, the unbalanced power on the DC side is reasonably allocated to reduce the overshoot of the DC voltage in the regulation process. Finally, the power regulation capability of the normal AC system is used to provide power support to the fault end system, reducing frequency deviations and enabling inter-regional resource complementation. The simulation model of the three-terminal flexible DC grid is built in PSCAD/EMTDC, and the effectiveness of the proposed control strategy is verified by comparing the conventional control strategy and the additional frequency control strategy.
Go to article

Authors and Affiliations

Congshan Li
1
ORCID: ORCID
Xiaowei Zhang
1
Ping He
1
ORCID: ORCID
Zikai Zhen
1
ORCID: ORCID
Kefeng Zhao
1

  1. College of Electrical Information Engineering, Zhengzhou University of Light Industry, China
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a honey badger algorithm (HB) based on a modified backwardforward sweep power flow method to determine the optimal placement of droop-controlled dispatchable distributed generations (DDG) corresponding to their sizes in an autonomous microgrid (AMG). The objectives are to minimise active power loss while considering the reduction of reactive power loss and total bus voltage deviation, and the maximisation of the voltage stability index. The proposed HB algorithm has been tested on a modified IEEE 33-bus AMG under four scenarios of the load profile at 40%, 60%, 80%, and 100% of the rated load. The analysis of the results indicates that Scenario 4, where the HB algorithm is used to optimise droop gains, the positioning of DDGs, and their reference voltage magnitudes within a permissible range, is more effective in mitigating transmission line losses than the other scenarios. Specifically, the active and reactive power losses in Scenario 4 with the HB algorithm are only 0.184% and 0.271% of the total investigated load demands, respectively. Compared to the base scenario (rated load), Scenario 4 using the HB algorithm also reduces active and reactive power losses by 41.86% and 31.54%, respectively. Furthermore, the proposed HB algorithm outperforms the differential evolution algorithm when comparing power losses for scenarios at the total investigated load and the rated load. The results obtained demonstrate that the proposed algorithm is effective in reducing power losses for the problem of optimal placement and size of DDGs in the AMG.
Go to article

Authors and Affiliations

Tham X. Nguyen
1
ORCID: ORCID
Robert Lis
1
ORCID: ORCID

  1. Faculty of Electrical Engineering, Wrocław University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

Aiming at the problem of DC voltage control deviation and instability caused by a large-scale renewable energy access VSC–MTDC system, this paper combines voltage margin control and droop control. A strategy for controlling collaborative optimization in a sparsely distributed communication network has been proposed. Firstly, the distributed modeling of the system is carried out by combining MAS technology with small signal modeling. Then, a distributed model predictive controller is designed for a single droop control converter station. On this basis, a distributed cooperative optimization control strategy is proposed. According to the DC voltage deviation, the system adopts different control methods to control the receiving converter station. Finally, based on PSCAD/EMTDC and MATLAB co-simulation platforms, a six-terminal flexible HVDC system is built to verify the effectiveness of the control strategy under different conditions such as input power fluctuation, any converter station out of operation and system communication failure.
Go to article

Authors and Affiliations

Jingye Li
1
Haiying Dong
2

  1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, China
  2. School of New Energy and Power Engineering, Lanzhou Jiaotong University, China

This page uses 'cookies'. Learn more