Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper is a case study conducted to present an approach to the process of designing

new products using virtual prototyping. During the first stage of research a digital geometric

model of the vehicle was created. Secondly it underwent a series of tests utilising the

multibody system method in order to determine the forces and displacements in selected

construction nodes of the vehicle during its movement on an uneven surface. In consequence

the most dangerous case of loads was identified. The obtained results were used to conduct

detailed strength testing of the bicycle frame and changes its geometry. For the purposes

of this case study two FEA software environments (Inventor and SolidWorks) were used. It

has been confirmed that using method allows to implement the process of creating a new

product more effectively as well as to assess the influence of the conditions of its usage more

efficiently. It was stated that using of different software environments increases the complexity

of the technical process of production preparation but at the same time increases the

certainty of prototype testing. The presented example of simulation calculations made for

the bicycle can be considered as a useful method for calculating other prototypes with high

complexity of construction due to its systematized character of chosen conditions and testing

procedure. It allows to verify the correctness of construction, functionality and perform

many analyses, which can contribute to the elimination of possible errors as early as at the

construction stage.

Go to article

Authors and Affiliations

Krzysztof Łukaszewicz
Download PDF Download RIS Download Bibtex

Abstract

An on-line optimising control strategy involving a two level extended Kalman filter (EKF) for dynamic model identification and a functional conjugate gradient method for determining optimal operating condition is proposed and applied to a biochemical reactor. The optimiser incorporates the identified model and determines the optimal operating condition while maximising the process performance. This strategy is computationally advantageous as it involves separate estimation of states and process parameters in reduced dimensions. In addition to assisting on-line dynamic optimisation, the estimated time varying uncertain process parameter information can also be useful for continuous monitoring of the process. This strategy ensures that the biochemical reactor is operated at the optimal operation while taking care of the disturbances that are encountered during operation. The simulation results demonstrate the usefulness of the two level EKF assisted dynamic optimizer for on-line optimising control of uncertain nonlinear biochemical systems.

Go to article

Authors and Affiliations

Eswari Jujjavarapu Satya
Polumati Anand
Chimmiri Venkateswarlu
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a simulation model of the hybrid magnetic bearing dedicated to simulations of transient state. The proposed field-circuit model is composed of two components. The first part constitutes a set of ordinary differential equations that describes electrical circuits and mechanics. The second part of the simulation model consists of parameters such as magnetic forces, dynamic inductances and velocity-induced voltages obtained from the 3D finite element analysis. The MATLAB/Simulnik softwarewas used to implement the simulation model with the required control system. The proposed field-circuit model was validated by comparison of time responses with the prototype of the hybrid magnetic bearing.

Go to article

Bibliography

[1] G. Schweitzer and H. Maslen. Magnetic bearings, theory, design, and application to rotating machinery. Springer, 2009.
[2] L. Ji, L. Xu, and Ch. Jin. Research on a low power consumption six-pole heteropolar hybrid magnetic bearing. IEEE Transactions on Magnetics, 49(8):4918–4926, 2013. doi: 10.1109/TMAG.2013.2238678.
[3] A. Piłat. Active magnetic suspension and bearing. In G. Petrone and G. Cammarata, Recent advances in modelling and simulation, chapter 24, pages 453–470. I-Tech Education and Publishing, 2008.
[4] A. Iordanidis, R. Wrobel, D. Holliday, and P. Mellor. A field-circuit model of an electrical gearbox actuator. In Proceedings of Second International Conference on Power Electronics, Machines and Drives (PEMD 2004), pages 21–26, Edinburgh, UK, 31 March–2 April, 2004. doi: 10.1049/cp:20040410.
[5] B. Tomczuk, A. Waindok, and D. Wajnert. Transients in the electromagnetic actuator with the controlled supplier. Journal of Vibroengineering, 14(1):39–44, 2012. https://www.jvejournals.com/article/10546/pdf.
[6] B. Tomczuk and M. Sobol. A field-network model of a linear oscillating motor and its dynamics characteristics. IEEE Transactions on Magnetics, 41(8):2362–2367, 2005. doi: 10.1109/TMAG.2005.852941.
[7] B. Tomczuk and D.Wajnert. Field–circuit model of the radial active magnetic bearing system. Electrical Engineering, 100(4):2319–2328, 2018. doi: 10.1007/s00202-018-0707-7.
[8] J. Zimon, B. Tomczuk, and D. Wajnert. Field-circuit modeling of AMB system for various speeds of the rotor. Journal of Vibroengineering, 14(1):165–170, 2012. https://www.jvejournals.com/article/10565/pdf.
[9] M. Łukaniszyn, M. Jagieła and, R.Wróbel. Electromechanical properties of a disc-type salient pole brushless DC motor with different pole numbers. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 22(2):285–303, 2003. doi: 10.1108/03321640310459216.
[10] M. Łukaniszyn, R. Wróbel, and M. Jagieła. Field-circuit analysis of construction modifications of a torus-type PMDC motor. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 22(2):337–355, 2003. doi: 10.1108/03321640310459261.
[11] R. Pollanen, J. Nerg, and O. Pyrhonen. Reluctance network method based dynamic model of radial active magnetic bearings. In Proceedings of the 2005 IEEE International Magnetics Conference (INTERMAG), pages 715–716, Nagoya, Japan, 4–8 April, 2005. doi: 10.1109/INTMAG.2005.1464144.
[12] M. Antila, E. Lantto and A. Arkkio. Determination of forces and linearized parameters of radial active magnetic bearings by finite element technique. IEEE Transactions on Magnetics, 34(3):684–694, 1998. doi: 10.1109/20.668066.
[13] B. Polajzer, G. Stumberger, J. Ritonja, and D. Dolinar. Variations of active magnetic bearings linearized model parameters analyzed by finite element computation. IEEE Transactions on Magnetics, 44(6):1534–1537, 2008. doi: 10.1109/TMAG.2007.916650.
[14] B. Tomczuk and D. Koteras. 3D Field Analysis in 3-phase amorphous modular transformer under increased frequency operation. Archives of Electrical Engineering, 64(1):119–127, 2015. doi: 10.1515/aee-2015-0011.
[15] Z. Badics and Z.J. Cendes. Source field modeling by mesh incidence matrices. IEEE Transactions on Magnetics, 43(4):1241–1244, 2007. doi: 10.1109/TMAG.2006.890967.
[16] D. Wajnert and B. Tomczuk. Simulation for the determination of the hybrid magnetic bearing’s electromagnetic parameters. Przegląd Elektrotechniczny, 93(2):157–160, 2017. http://pe.org.pl/articles/2017/2/34.pdf.
[17] A. Mystkowski. Energy saving robust control of active magnetic bearings in flywheel. Acta Mechanica et Automatica, 6(3):72–76, 2012.
[18] A. Piłat. PD control strategy for 3 coils AMB. In Proceedings of the 10th International Symposium on Magnetic Bearing, pages 34–39, Martigny, Switzerland, August 21–23, 2006.
[19] D. Kozanecka. Digitally controlled magnetic bearing. Łódz University of Technology, 2001 (in Polish).
[20] S. Myburgh, G. von Schoor, and E. O. Ranft. A non-linear simulation model of an active magnetic bearings supported rotor system. In Proceedings of The XIX International Conference on Electrical Machines (ICEM 2010), pages 1–6, Rome, Italy, 6–8 September 2010. doi: 10.1109/ICELMACH.2010.5607982.
[21] Z. Gosiewski and A. Mystkowski. Robust control of active magnetic suspension: Analytical and experimental results. Mechanical Systems and Signal Processing, 22(6):1297–1303, 2008. doi: 10.1016/j.ymssp.2007.08.005.
[22] A. Mystkowski. Robust control of vibration of the magnetically suspended rotor. Ph.D. Thesis, AGH University of Science and Technology, Cracow, Poland, 2007 (in Polish).
[23] A. Piłat. Control of magnetic levitation systems. Ph.D. Thesis, AGH University of Science and Technology, Cracow, Poland, 2002 (in Polish).
[24] Z. Gosiewski. Magnetic bearings for rotating machines. Controlling and research. Biblioteka Naukowa Instytutu Lotnictwa, 1999 (in Polish).
[25] K. Falkowski. The development of the laboratory model of the gyroscope with the magnetically levitating rotor and its research. Ph.D. Thesis, Warsaw University of Technology, Warsaw, Poland, 1999 (in Polish).
[26] G.F. Franklin, J.D. Powell and A. Emami-Naeini. Feedback control of dynamic systems. Prentice Hall, 2002.
[27] S. Szymaniec. “Measurement paths” used to measure relative vibrations in electric machines. Zeszyty Problemowe – Maszyny Elektryczne, 81:55–60, 2009 (in Polish).
Go to article

Authors and Affiliations

Dawid Wajnert
1

  1. Opole University of Technology, Department of Electrical Engineering and Mechatronics, Opole, Poland.
Download PDF Download RIS Download Bibtex

Abstract

The ongoing period of the pandemic makes everybody focused on the matters related to fighting this immense problem posed to the societies worldwide. The governments deal with the threat by publishing regulations which should allow to mitigate the pandemic, walking on thin ice as the decision makers do not always know how to properly respond to the threat in order to save people. Computer-based simulations of e.g. parts of the city or rural area should provide significant help, however, there are some requirements to fulfill. The simulation should be verifiable, supported by the urban research and it should be possible to run it in appropriate scale. Thus in this paper we present an interdisciplinary work of urban researchers and computer scientists, proposing a scalable, HPC-grade model of simulation, which was tested in a real scenario and may be further used to extend our knowledge about epidemic spread and the results of its counteracting methods. The paper shows the relevant state of the art, discusses the micro-scale simulation model, sketches out the elements of its implementation and provides tangible results gathered for a part of the city of Krakow, Poland.
Go to article

Bibliography

  1.  I. Mironowicz, Modele transformacji miast. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej, 2016.
  2.  A. Matusik, K. Racoń-Leja, M. Gyurkovich, and K. Dudzic-Gyurkovich, “Hydrourban spatial development model for a resilient inner-city. the example of gdańsk,” Archit. City Environ., vol. 15, no. 43, pp. 1–2, 2020.
  3.  J.L. Kriken, P. Enquist, and R. Rapaport, City building: nine planning principles for the twenty-first century. Princeton Architectural Press, 2011.
  4.  W. Kosiński, Paradigm of the City of the 21st Century. Between the Past of the Polis and the Future of the Metropolis, J. Gyurkovich, Ed. Kraków: Wydaw. PK, 2016.
  5.  J.F.P. Rose, The well-tempered city: what modern science, ancient civilizations, and human nature teach us about the future of urban life. Harper Wave, 2017.
  6.  E. Rewers, Post-Polis. Wstęp do filozofii ponowoczesnego miasta. Kraków: Universitas, 2005, [in Polish].
  7.  M. Dymnicka, Przestrzeń publiczna, a przemiany miasta. Warszawa: Wydawnictwo Naukowe Scholar, 2013, [in Polish].
  8.  M. Gyurkovich et al., Hybrid Urban Structures, M. Gyurkovich, Ed. Kraków: Wydaw. PK, 2016.
  9.  S. Kostof, The City Shaped.Urban Patterns and Meanings through History. London – New York: Thames & Hudson, 1999.
  10.  A.A. Kantarek, Tkanka urbanistyczna.Wybrane zagadnienia, J. Gyurkovich, Ed. Kraków: Wydaw. PK, 2019, [in Polish].
  11.  A. Noworól, “Functional urban area as the city of the future,” Tech. Trans., vol. 111, no. 1-A, 2014.
  12.  K. Racoń-Leja, Miasto i wojna: wpływ II wojny światowej na przekształcenia struktury przestrzennej i współczesną kondycję urbanistyczną wybranych miast europejskich, J. Gyurkovich, Ed. Kraków: Wydaw. PK, 2019, [in Polish].
  13.  J. Teller, “Urban density and covid-19: towards an adaptive approach,” Build. Cities, vol. 2, no. 1, pp. 150–165, 2021.
  14.  C. at Johns Hopkins University, “Covid-19 dashboard by the center for systems science and engineering,” 2021, [Online] Available: https:// coronavirus.jhu.edu/map.html.
  15.  M. Castells, “Communication, power and counter-power in the network society,” Int. J. Commun., vol. 1, no. 1, p. 29, 2007.
  16.  R. Sennet, “How should we live? density in postpandemic cities,” Domus, no. 1046, 2020, [Online]. Available: https://www.domusweb. it/en/architecture/2020/05/09/how-should-we-live-density-in-post-pandemic-cities.html.
  17.  M. Kowicki, Rozproszenie zabudowy na obszarach Małopolski, a kryzys kreatywności opracowań planistyczno-przestrzennych. Kraków: Wydaw. PK, 2014, [in Polish].
  18.  G. Korzeniak et al., Małe i średnie miasta w policentrycznym rozwoju Polski. Kraków: Instytut Rozwoju Miast, 2014, [in Polish].
  19.  GUS, “Demographic Yearbook of Poland,” 2019.
  20.  N.A. Salingaros, “Eight city types and their interactions: the “eight-fold” model,” Techn. Trans., vol. 2, pp. 5–70, 2017.
  21.  J. Busquets and M. Corominas, Cerda and the Barcelona of the future: reality versus project. Centre de Cultura Contemporania de Barcelona, 2009.
  22.  A.A. Kantarek, K. Kwiatkowski, and I. Samuels, “From rural plots to urban superblocks,” Urban Morphology: journal of the International Seminar on Urban Form, vol. 22, no. 2, pp. 155–157, 2018.
  23.  M. Gyurkovich and A. Sotoca, “Towards the Cracow Metropolis – a dream or a reality? A selected issues,” Tech. Trans., vol. 115, no. 2, pp. 5–25, 2018.
  24.  P. Lorens, Równoważenie rozwoju przestrzennego miast polskich. Gdańsk: Wydaw. PG, 2013, [in Polish].
  25. Back to the Sense of the City: 11th VCT International monograph book, Year 2016, July, Krakow. Barcelona: Centre of Land Policy and Valuations (CPSV), 2016.
  26.  A. Zwoliński, “Geometrical structure of public spaces in virtual city models. exploring urban morphology by hierarchy of open spaces,” Space Form, vol. 2019, no. 37, pp. 235–243, 2019.
  27.  K. Lynch, Good city form. MIT Press, 2001.
  28.  D.C. Duives, W. Daamen, and S.P. Hoogendoorn, “State-ofthe-art crowd motion simulation models,” Transp. Res. Part C Emerging Technol., vol. 37, pp. 193–209, 2013.
  29.  E.D. Kuligowski, “Computer evacuation models for buildings,” in SFPE Handbook of Fire Protection Engineering. Springer, 2016, pp. 2152–2180.
  30.  B. Zhan, D.N. Monekosso, P. Remagnino, S.A. Velastin, and L.-Q.Xu, “Crowd analysis: a survey,” Mach. Vision Appl., vol. 19, no. 5‒6, pp. 345–357, 2008.
  31.  K. Teknomo, Y. Takeyama, and H. Inamura, “Review on microscopic pedestrian simulation model,” CoRR, vol. abs/1609.01808, 2016. [Online]. Available: http://arxiv.org/abs/1609.01808.
  32.  M. Paciorek, A. Bogacz, and W. Turek, “Scalable signal-based simulation of autonomous beings in complex environments,” in Computational Science – ICCS 2020. Cham: Springer International Publishing, 2020, pp. 144–157.
  33.  J. Wąs and R. Lubaś, “Towards realistic and effective agentbased models of crowd dynamics,” Neurocomputing, vol. 146, pp. 199–209, 2014.
  34.  P. Wittek and X. Rubio-Campillo, “Scalable agent-based modelling with cloud hpc resources for social simulations,” in 4th IEEE International Conference on Cloud Computing Technology and Science Proceedings. IEEE, 2012, pp. 355–362.
  35.  J. Bujas, D. Dworak, W. Turek, and A. Byrski, “Highperformance computing framework with desynchronized information propagation for large-scale simulations,” J. Comput. Sci, vol. 32, pp. 70–86, 2019.
  36.  Y. Mohamadou, A. Halidou, and P.T. Kapen, “A review of mathematical modeling, artificial intelligence and datasets used in the study, prediction and management of covid-19,” Appl. Intell, vol. 50, no. 11, pp. 3913–3925, 2020.
  37.  M. Fuentes and M. Kuperman, “Cellular automata and epidemiological models with spatial dependence,” Physica A, vol. 267, no. 3, pp. 471‒486, 1999.
  38.  I. Tiwari, P. Sarin, and P. Parmananda, “Predictive modeling of disease propagation in a mobile, connected community using cellular automata,” Chaos: Interdiscip. J. Nonlinear Sci., vol. 30, no. 8, p. 081103, 2020.
  39.  M. Dascalu, M. Malita, A. Barbilian, E. Franti, and G.M. Stefan, “Enhanced cellular automata with autonomous agents for covid-19 pandemic modeling,” Rom. J. Inf. Sci. Technol, vol. 23, pp. S15–S27, 2020.
  40.  Y. Xiao, M. Yang, Z. Zhu, H. Yang, L. Zhang, and S. Ghader, “Modeling indoor-level non-pharmaceutical interventions during the covid-19 pandemic: a pedestrian dynamics-based microscopic simulation approach,” Transp. Policy, vol. 109, pp. 12–23, 2021.
  41.  T. Kapecki, “Elements of sustainable development in the context of the environmental and financial crisis and the covid-19 pandemic,” Sustainability, vol. 12, no. 15, pp. 1–12, 2020.
  42.  A. Jasiński, “Public space or safe space–remarks during the covid-19 pandemic,” Tech. Trans., vol. 117, no. 1, 2020.
  43.  S. Gzell, “Urban design and the sense of the city,” Tech. Trans., vol. 113, no. 2-A, pp. 15–19, 2016.
  44.  M. Hanzl, “Urban forms and green infrastructure–the implications for public health during the covid-19 pandemic,” Cities Health, pp. 1–5, 2020, doi: 10.1080/23748834.2020.1791441.
  45.  M.D. Pinheiro and N.C. Luís, “Covid-19 could leverage a sustainable built environment,” Sustainability, vol. 12, no. 14, p. 5863, 2020.
  46.  M.R. Fatmi, “Covid-19 impact on urban mobility,” J. Urban Manage., vol. 9, no. 3, pp. 270–275, 2020.
  47.  A. Porębska, P. Rizzi, S. Otsuki, and M. Shirotsuki, “Walkability and resilience: A qualitative approach to design for risk reduction,” Sustainability, vol. 11, no. 10, p. 2878, 2019.
  48.  F. Vergara Perucich, J. Correa Parra, and C. Aguirre-Nuñez, Atlas de indicadores espaciales de vulnerabilidad ante el covid-19 en Chile, F. Vergara, Ed. Centro Producción del Espacio, 2020.
  49.  W.H. Whyte et al., The social life of small urban spaces. Conservation Foundation Washington, DC, 1980.
  50.  A. Białkiewicz, B. Stelmach, and M.J. Żychowska, “Dobra kultury współczesnej. zarys problemu ochrony,” Wiadomości Konserwatorskie – J. Heritage Conserv., no. 63, pp. 152–162, 2020, [in Polish].
  51.  E. Szczerek, Rewitalizacja osiedli wielkopłytowych a ciągłośc´ i komplementarność przestrzeni publicznej miasta, A. Franta, Ed. Kraków: Wydaw. PK, 2018, [in Polish].
  52.  B. Malinowska-Petelenz, Sacrum in civitas: wybrane zagadnienia, A.A. Kantarek, Ed. Kraków: Wydaw. PK, 2018, [in Polish].
  53.  J. Gehl and B. Svarre, How to study public life. Washington, DC: Island press, 2013.
Go to article

Authors and Affiliations

Mateusz Paciorek
1
ORCID: ORCID
Damian Poklewski-Koziełł
2
ORCID: ORCID
Kinga Racoń-Leja
2
ORCID: ORCID
Aleksander Byrski
1
ORCID: ORCID
Mateusz Gyurkovich
2
ORCID: ORCID
Wojciech Turek
1
ORCID: ORCID

  1. AGH University of Science and Technology, al. Adama Mickiewicza 30, 30-059 Krakow, Poland
  2. Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents a constitutive model for Shape Memory Alloys (SMA) along with result of dynamic simulations of SMA model. The applications of devices incorporating SMA in civil engineering focus mostly on mitigation of the seismic hazard effects in new-build and historical buildings or improvement of fatigue resilience. The unique properties of SMA, such as shape memory effect and superelasticity give promising results for such applications. The presented model includes additional phenomenon of SMA – internal loops. The paper shows the method of formulation of physical relations of SMA based on special rheological structure, which includes modified Kepes’s model. This rheological element, introduced as dual-phase plasticity body, is given in the context of martensite phase transformation. One of the advantages of such an approach is a possibility of formulation of constitutive relationships as a set of explicit differential equations. The application of the model is demonstrated on example of dynamic simulations of three dimensional finite element subjected to dynamic excitation.

Go to article

Authors and Affiliations

A. Zbiciak
K. Wasilewski
Download PDF Download RIS Download Bibtex

Abstract

The airflow through a two-dimensional horizontal rectangular cross-section channel in the presence of two baffles has been numerically examined and analyzed in the steady turbulent regime. The baffles were of the zig-zag type or plane one. The calculations are based on the finite volume approach and the average Navier–Stokes equations along with the energy equation, have been solved using the SIMPLE algorithm. The nonuniform structured quadrilateral-type element mesh is used in this study. The fluid flow patterns represented for Reynolds numbers based on the hydraulic diameter of the channel ranging from 5000 to 20 000. Effects of various Reynolds number values on flow fields, dimensionless axial velocity profiles, as well as local and average friction coefficients in the test channel is presented. The obtained results show that the flow structure is characterized by strong deformations and large recirculation regions. In general, the fluid velocity and skin friction loss rise with the increase in the flow rate and hence the Reynolds number.

Go to article

Authors and Affiliations

Chafika Zidani
Boumédiènne Benyoucef
Faouzi Didi
Nabila Guendouz

This page uses 'cookies'. Learn more