Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The grid integration of large-scale wind and solar energy affects the power flow of wind-PV-thermal-bundled power transmission systems and may introduce an unpredicted threat to the power system’s small signal stability. Meanwhile, a power system stabilizer (PSS) and static synchronous series compensator (SSSC) play an important role in improving the static and dynamic stability of the system. Based on this scenario and in view of the actual engineering requirements, the framework of wind-PV-thermal-bundled power transmitted by an AC/DC system with the PSS and SSSC is established considering the fluctuation of wind and photovoltaic power output and the characteristics of the PSS and SSSC. Afterwards, the situation model is constructed in the IEEE 2-area 4-unit system, and the influence of the PSS and SSSC on the system stability under different operating conditions is analyzed in detail through eigenvalue analysis and time-domain simulation. Finally, an index named the gain rate is defined to describe the improvement of the stability limitations of various wind-PV-thermal operating conditions with the PSS and SSSC. The results indicate (K) that the damping characteristics, dynamic stability and stability limitations for various wind-PV-thermal operating conditions of the wind-PV-thermal-bundled power transmission system can be significantly improved by the interaction of the PSS and SSSC.

Go to article

Authors and Affiliations

Ping He
ORCID: ORCID
Xinxin Wu
Congshan Li
ORCID: ORCID
Mingming Zheng
Zhao Li
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The static series synchronous compensator (SSSC) has demonstrated its capability in providing voltage support and improving power system stability. The objective of this paper is to analyze the dynamic interaction stability mechanism of a hybrid renewable energy system connected with doubly-fed induction generators (DFIGs) and solid oxide fuel cell (SOFC) energy with the SSSC. For this purpose, a linearized mathematical model of this modified hybrid single-machine infinite-bus (SMIB) power system is developed to analyze the physical mechanism of the SSSC in suppressing oscillations and the influence on the dynamic stability characteristics of synchronization. Typical impacting factors such as the series compensation level, the SOFC penetration and tie-line power are considered in the SMIB and two-area systems. The impact of dynamic interactions on enhancing damping characteristics and improving transient performance of the studied systems is demonstrated using eigenvalue analysis and dynamic time-domain simulations, which validates the validity of the proposed physical mechanism simultaneously.
Go to article

Bibliography

[1] Yu S.L., Fernando T., Iu H.-H.-C., Dynamic behavior study and state estimator design for solid oxide fuel cells in hybrid power systems, IEEE Transaction on Power Systems, vol. 31, no. 6, pp. 5190–5199 (2016).
[2] He P., Arefifar S.A., Li C.S., Small signal stability analysis of doubly-fed induction generator-integrated power systems based on probabilistic eigenvalue sensitivity indices, IET Generation, Transmission and Distribution, vol. 13, no. 14, pp. 3127–3137 (2019).
[3] YangY., Zhao J., Liu H., A matrix-perturbation-theory-based optimal strategy for small-signal stability analysis of large-scale power grid, Protection and Control of Modern Power Systems, vol. 3, no. 3, pp. 353–363 (2015).
[4] Liu J., Su C.,Wang C., Influence of solid oxide fuel cell on power system transient stability, The Journal of Engineering, vol. 2019, no. 16, pp. 1081–1086 (2019).
[5] Magdy G., Shabib G., Elbaset A.A., Optimized coordinated control of LFC and SMES to enhance frequency stability of a real multi-source power system considering high renewable energy penetration, Protection and Control of Modern Power Systems, vol. 3, no. 3, pp. 407–421 (2018).
[6] Du W.J., Wang H.F., Cai H., Modelling a grid-connected SOFC power plant into power systems for small-signal stability analysis and control, International Transactions on Electrical Energy Systems, vol. 23, no. 3, pp. 330–341 (2012).
[7] He P., Wu X.X., Li C.S., Damping characteristics improvement and index evaluation of a windpv- thermal-bundled power transmission system by combining PSS and SSSC, Archives of Electrical Engineering, vol. 69, no. 3, pp. 705–721 (2020).
[8] Vikash A., Sanjeev K.M., Power flow analysis and control of distributed FACTS devices in power system, Archives of Electrical Engineering, vol. 67, no. 3, pp. 545–561 (2018).
[9] Bhushan R., Chatterjee K., Effects of parameter variation in DFIG-based grid connected system with a FACTS device for small-signal stability analysis, IET Generation, Transmission and Distribution, vol. 11, no. 11, pp. 2762–2777 (2017).
[10] Verveckken J., Silva F., Barros D., Direct power control of series converter of unified power-flow controller with three-level neutral point clamped converter, IEEE Transactions on Power Delivery, vol. 27, no. 4, pp. 1772–1782 (2012).
[11] Wang L., Vo Q.S., Power Flow Control and Stability Improvement of Connecting an Offshore Wind Farm to a One-Machine In?nite-Bus System Using a Static Synchronous Series Compensator, IEEE Transactions on Sustainable Energy, vol. 4, no. 2, pp. 358–369 (2013).
[12] Das D., Haque M.E., Gargoom A., Operation and control of grid integrated hybrid wind-fuel cell system with STATCOM, 22nd Australasian Universities Power Engineering Conference (AUPEC), Bali, pp. 1–6 (2012).
[13] Mahapatra S., Panda S., Swain S.C., A hybrid firefly algorithm and pattern search technique for SSSC based power oscillation damping controller design, Ain Shams Engineering Journal, vol. 5, no. 4, pp. 1177–1188 (2014).
[14] Al-Sarray M., McCann R.A., Control of an SSSC for oscillation damping of power systems with wind turbine generators, IEEE Power and Energy Society Innovation Smart Grid Technologies Conference (ISGN), Washington, USA, pp. 1–5 (2017).
[15] Darabian M., Jalilvand A., Improving power system stability in the presence of wind farms using STATCOMand predictive control strategy, IETRenewable Power Generation, vol. 12, no. 1, pp. 98–111 (2018).
[16] Movahedi A., Halvaei Niasar A., Gharehpetian G.B., LVRT improvement and transient stability enhancement of power systems based on renewable energy resources using the coordination of SSSC and PSSs controllers, IET Renewable Power Generation, vol. 13, no. 11, pp. 1849–1860 (2019).
[17] Truong D.N., Ngo V.T., Designed damping controller for SSSC to improve stability of a hybrid offshore wind farms considering time delay, International Journal of Electrical Power and Energy Systems, vol. 65, no. 2, pp. 425–431 (2015).
[18] PramodKumar,Namrata K., Voltage control and power oscillation damping of multi-area power system using static synchronous series compensator, Journal of Electrical and Electronics Engineering, vol. 1, no. 5, pp. 26–33 (2012).
[19] Sahu P.R., Hota P.K., Panda S., Power system stability enhancement by fractional order multi input SSSC based controller employing whale optimization algorithm, Journal of Electrical Systems and Information Technology, vol. 5, no. 2018, pp. 326–336 (2018).
[20] Yu Y.N., Electric Power System Dynamics, Academic Press Inc (1983).
[21] He P.,Wen F.S., Ledwich G., An investigation on interarea mode oscillations of interconnected power systems with integrated wind farms, International Journal of Electrical Power and Energy Systems, vol. 78, no. 2, pp. 148–157 (2016).
[22] Wang L., Wang K.H., Dynamic stability analysis of a DFIG-based offshore wind farm connected to a power grid through an HVDC link, IEEE Transactions on Power Systems, vol. 26, no. 3, pp. 1501–1510 (2011).
[23] Sedghisigarchi K., Feliachi A., Dynamic and transient analysis of power distribution systems with fuel cells-Part II: Fuel-cell dynamic model, IEEE Transactions on Energy Conversion, vol. 19, no. 2, pp. 429–434 (2016).
[24] Benabid R., Boudour M., Abido M.A., Development of a new power injection model with embedded multi-control functions for static synchronous series compensator, IET Generation, Transmission and Distribution, vol. 6, no. 7, pp. 680–692 (2012).
[25] Pradhan A.C., Lehn P.W., Frequency-domain analysis of the static synchronous series compensator, IEEE Transactions on Power Delivery, vol. 21, no. 1, pp. 440–449 (2006). [26] Kundur P., Power system stability and control, McGraw-Hill Press (1994).

Go to article

Authors and Affiliations

Ping He
1
ORCID: ORCID
Pan Qi
1
ORCID: ORCID
Yuqi Ji
1
ORCID: ORCID
Zhao Li
1
ORCID: ORCID

  1. Zhengzhou University of Light Industry, No.5 Dongfeng Road, Jinshui District, Zhengzhou, 450002, China
Download PDF Download RIS Download Bibtex

Abstract

Wind power integration through the voltage source converter-based high-voltage direct current (VSC-HVDC) system will be a potential solution for delivering large-scale wind power to the “Three-North Regions” of China. However, the interaction between the doubly-fed induction generator (DFIG) and VSC-HVDC system may cause the risk of subsynchronous oscillation (SSO). This paper establishes a small-signal model of the VSC based multi-terminal direct current (VSC-MTDC) system with new energy access for the problem, and the influencing factors causing SSO are analyzed based on the eigenvalue analysis method. The theoretical analysis results show that the SSO in the system is related to the wind farm operating conditions, the rotor-side controller (RSC) of the DFIG and the interaction of the controller in the VSC-MTDC system. Then, the phase lag characteristic is obtained based on the signal test method, and a multi-channel variable-parameter subsynchronous damping controller (SSDC) is designed via selecting reasonable parameters. Finally, the correctness of the theoretical analysis and the effectiveness of the multi-channel variable-parameter SSDC are verified based on time-domain simulation.
Go to article

Bibliography

[1] Tang G.F., HVDC based on voltage source converter, China Electric Power Press (2010).
[2] Li C.S., Li Y.K., Guo J., He P., Research on emergency DC power support coordinated control for hybrid multi-infeed HVDC system, Archives of Electrical Engineering, vol. 61, no. 1, pp. 5–21(2020).
[3] Liu T.Q., Tao Y., Li B.H., Critical problems of wind farm integration via MMC-MTDC system, Power System Technology, vol. 41, no. 10, pp. 3251–3260 (2017).
[4] Wu J.H., Ai Q., Research on multi-terminal VSC-HVDC system for wind-farms, Power System Technology, vol. 33, no. 4, pp. 22–27 (2009).
[5] Chen C., Du W.J., Wang H.F., Review on mechanism of sub-synchronous oscillations caused by gridconnected wind farms in power systems, Southern Power System Technology, vol. 12, no. 1, pp. 84–93 (2018).
[6] Amin M., Molinas M., Understanding the origin of oscillatory phenomena observed between wind farms and HVDC systems, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 5, no. 1, pp. 378–392 (2017).
[7] Wang W.S., Zhang C., He G.Q., Li G.H., Zhang J.Y., Wang H.J., Overview of research on subsynchronous oscillations in large-scale wind farm integrated system, Power System Technology, vol. 41, no. 4, pp. 1050–1060 (2017).
[8] Jiang Q.R., Wang L., Xie X.R., Study on oscillations of power-electronized power system and their mitigation schemes, High Voltage Engineering, vol. 43, no. 4, pp. 1057–1066 (2017).
[9] Xie X.R., Liu H.K., He J.B., Liu H., Liu W., On new oscillation issues of power system, Proceedings of the CSEE, vol. 38, no. 10, pp. 2821–2828+3133 (2018).
[10] Wang L., Yang Z.H., Lu X.Y., Prokhorow A.V., Stability analysis of a hybrid multi-infeed HVDC system connected between two offshore wind farms and two power grids, IEEE Transactions on Industry Applications, vol. 53, no. 3, pp. 1824–1833 (2017).
[11] Kunjumuhammed L.P., Pal B.C., Oates C., Dyke K.J., Electrical oscillations in wind farm systems: analysis and insight based on detailed modeling, IEEE Transactions on Sustainable Energy, vol. 7, no. 1, pp. 51–61 (2016).
[12] Sun K., Yao W., Wen J.Y., Mechanism and characteristics analysis of subsynchronous oscillation caused by DFIG-based wind farm integrated into grid through VSC-HVDC system, Proceedings of the CSEE, vol. 38, no. 22, pp. 6520–6533 (2018).
[13] Song S.H., Zhao S.Q., Analysis of sub-synchronous oscillation of DFIG-based Wind Farm integrated to grid through VSC-HVDC system based on torque method, Power System Technology, vol. 44, no. 2, pp. 630–636 (2020).
[14] Bian X.Y., Ding Y., Mai K., Zhou Q., Zhao Y., Tang L., Sub-Synchronous oscillation caused by grid-connection of offshore wind farm through VSC-HVDC and its mitigation, Automation of Electric Power Systems, vol. 42, no. 17, pp. 25–39 (2018).
[15] Lyu J., Dong P., Shi G., Cai X., Li X.L., Subsynchronous oscillation and its mitigation of MMC-based HVDC with large doubly-fed induction generator-based wind farm integration, Proceedings of the CSEE, vol. 35, no. 19, pp. 4852–4860 (2015).
[16] Lyu J., Cai X., Amin M., Molinas M., Sub-synchronous oscillation mechanism and its suppression in MMC-based HVDC connected wind farms, IET Generation, Transmission and Distribution, vol. 12, no. 4, pp. 1021–1029 (2018).
[17] Shao B.B., Zhao S.Q., Pei J.K., Li R., Subsynchronous oscillation characteristics analysis of gridconnected direct-drive wind farms via VSC-HVDC system, Power System Technology, vol. 43, no. 9, pp. 3344–3355 (2019).
[18] Chen B.P., Study on characteristics and suppression of sub/super-synchronous oscillation caused by power system with D-PMSG and VSC-HVDC, Wuhan University (2018).
[19] Guo X.S., Li Y.F., Xie X.T., Hou Y.L., Zhang D., Sub-synchronous oscillation characteristics caused by PMSG-based wind plant farm integrated via flexible HVDC system, Proceedings of the CSEE, vol. 40, no. 4, pp. 1149–1160+1407 (2020).
[20] Sun K., Mechanism and characteristics analysis of subsynchronous oscillation caused by DFIG-based wind farm integrated into grid through VSC-HVDC system, Huazhong University of Science and Technology (2018).
[21] He J., Li Q., Qin S.Y., Wang R.M., DFIG wind turbine modeling and validation for LVRT behavior, IEEE PES Innovative Smart Grid Technologies, Tianjin, pp. 1–5 (2012).
[22] Lu X.J., Lin W.X., Wen J.Y., Li Y.F., Wu Y.L., An T., Modularized small signal modeling method for DC grid, Proceedings of the CSEE, vol. 36, no. 11, pp. 2880–2889 (2016).
[23] Kalcon G.O., Adam G.P., Anaya-Lara O., Lo S., Uhlen K., Small-signal stability analysis of multiterminal VSC-based DC transmission systems, IEEE Transactions on Power Systems, vol. 27, no. 4, pp. 1818–1830 (2012).
[24] Zhou G.L., Shi X.C., Fu Ch.,Wei X.G., Zhu X.R., VSC-HVDC discrete model and its control strategy under unbalanced input voltage, Transactions of China Electrotechnical Society, vol. 23, no. 12, pp. 137–143+159 (2008).
[25] Gao B.F., Zhao C.Y., Xiao X.N., Yin W.Y., Guo C.L., Li Y.N., Design and implementation of SSDC for HVDC, High Voltage Engineering, vol. 36, no. 2, pp. 501–506 (2010).
[26] Jiang P., Hu T., Wu X., VSC-HVDC multi-channel additional damping control suppresses subsynchronous oscillation, Electric Power Automation Equipment, vol. 31, no. 9, pp. 27–31 (2011).
Go to article

Authors and Affiliations

Miaohong Su
1
ORCID: ORCID
Haiying Dong
1 2
Kaiqi Liu
1
Weiwei Zou
1

  1. School of Automatic and Electrical Engineering, Lanzhou Jiaotong University, China
  2. School of New Energy and Power Engineering, Lanzhou Jiaotong University, China

This page uses 'cookies'. Learn more