Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 6
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

W artykule przedstawiono wybrane aspekty krajowego technicznego poziomu bezpieczeństwa dostaw energii elektrycznej. Przeprowadzono analizę i ocenę infrastruktury elektroenergetycznej w obszarze wytwarzania, przesyłu i dystrybucji w aspekcie bezpieczeństwa dostaw energii elektrycznej. Przedstawiono charakterystykę sektora wytwórczego oraz infrastruktury sieciowej w obszarze przesyłu i dystrybucji. Określono sytuację obecną i przyszłą w zakresie funkcjonowania wspomnianej infrastruktury elektroenergetycznej w ramach Krajowego Systemu Elektroenergetycznego w kontekście bezpieczeństwa dostaw energii elektrycznej. Oceniono poziom krajowego bezpieczeństwa dostaw energii elektrycznej w obszarze wytwarzania i infrastruktury sieciowej oraz określono zagrożenia i przedstawiono katalog niezbędnych działań w celu poprawy bezpieczeństwa dostaw energii elektrycznej. Stwierdzono, że w obszarze wytwarzania brak jest obecnie zagrożenia bezpieczeństwa dostaw energii elektrycznej w normalnych warunkach obciążenia, ale istnieje duże prawdopodobieństwo jego wystąpienia w przyszłości (po 2025 r.) w warunkach prognozowanego wzrostu zapotrzebowania na energię elektryczną i obowiązywania nowych zaostrzonych wymagań ochrony środowiska (dyrektywy IED, konkluzji BAT, Pakietu Zimowego). Określono, że infrastruktura sieciowa w obszarze przesyłu i dystrybucji jest wprawdzie przystosowana do występujących obecnie typowych warunków zapotrzebowania na energię elektryczną i realizacji wewnętrznych zadań w stanach normalnych, ale może stwarzać potencjalne zagrożenie dla bezpieczeństwa dostaw energii elektrycznej. Dodatkowo w kontekście prognozowanego wzrostu zapotrzebowania na energię elektryczną w przyszłości, niedostatecznej mocy źródeł wytwórczych w Krajowym Systemie Elektroenergetycznym i dostępnej poprzez połączenia międzysystemowe, nierównomiernego ich rozłożenia na obszarze kraju przy braku odpowiednich zdolności przesyłowych sieci, konieczności poprawy jakości i niezawodności dostawy energii do odbiorców końcowych oraz intensywnego rozwoju odnawialnych źródeł energii obecna infrastruktura sieciowa w obszarze przesyłu i dystrybucji będzie niewystarczająca.

Przejdź do artykułu

Autorzy i Afiliacje

Waldemar Dołęga

Abstrakt

This work focuses on the concept of operation and possibility of using a tuned inductor in electrical power systems with adaptive features. The idea presented here for the operation of the inductor is a new approach to the design of such devices. An example of a power adaptive system is a device for improving the quality of electricity. The negative impact of nonlinear loads on the operation of a power grid is a well-documented phenomenon. Hence, various types of “compensators” for reactive power, or for both reactive and distortion power, are used in electrical systems as a preventive measure. The concept of an inductor presented here offers wider possibilities for power compensation in power supply systems, compared to traditional solutions involving compensators based on fixed inductors. The use of the proposed solution in an adaptive compensator is only one example of its possible implementation in the area of power devices. In this work, we discuss the structure of the compensator, the basic aspects of the operation of the inductor, the results of simulation studies and the results of measurements obtained from a prototype.
Przejdź do artykułu

Autorzy i Afiliacje

Michał Gwóźdź
1
ORCID: ORCID
Rafał M. Wojciechowski
1
ORCID: ORCID

  1. Institute of Electrical Engineering and Electronics, Poznan University of Technology, Piotrowo 3A, 60-965 Poznan, Poland

Abstrakt

Samochody elektryczne (SE) są obecnie uważane za jeden z najlepszych sposobów obniżenia emisji zanieczyszczeń powietrza w transporcie drogowym, w tym CO2 i hałasu w miastach. Mogą również w wydatny sposób przyczynić się do zmniejszenia zależności transportu drogowego od importu ropy naftowej. Niemniej jednak zapotrzebowanie na energię elektryczną dużej ilości SE w drogowym transporcie nie jest bez znaczenia i ma wpływ na system elektroenergetyczny. W artykule przeanalizowano potencjalny wpływ SE na popyt, podaż, strukturę i koszty wytwarzania energii elektrycznej oraz emisję CO2 i zanieczyszczeń powietrza w wyniku wprowadzenia na polskie drogi 1 mln SE do 2025 r. oraz potrojenia tej liczby do 2035 r. Do obliczeń wykorzystano model konkurencyjnego rynku energii elektrycznej ORCED. Wyniki analizy wskazują, że niezależnie od strategii ładowania, popyt SE powoduje niewielki wzrost ogólnego zapotrzebowania na energię elektryczną w Polsce i w konsekwencji również niewielki wzrost kosztów wytwarzania. Nawet duży wzrost SE w transporcie drogowym będzie powodował raczej umiarkowane zapotrzebowanie na dodatkowe moce wytwórcze, zakładając że przedsiębiorstwa energetyczne będą miały pewną kontrolę nad trybem ładowana aut. Wprowadzenie SE nie spowoduje obniżenia emisji CO2 w stosunku do samochodów konwencjonalnych w 2025 r., wręcz przeciwnie – zwiększy je niezależnie od strategii ładowania, gdyż energia dla pokrycia popytu SE pochodzi prawie wyłącznie z elektrowni węglowych. W 2035 r. natomiast, wniosek zależy od scenariusza ładowania i możliwe jest obniżenie, jak i wzrost emisji. Pojazdy elektryczne spowodują wzrost emisji netto SO2, przyczynią się natomiast do spadku emisji netto cząstek stałych oraz NOx.

Przejdź do artykułu

Autorzy i Afiliacje

Uroš Radović

Abstrakt

Według definicji Międzynarodowej Agencji Energii bezpieczeństwo energetyczne to ciągłe dostawy energii po akceptowalnych cenach. Krajowa energetyka oparta jest w głównej mierze na własnych surowcach energetycznych takich jak węgiel kamienny i brunatny. Produkcja około 88% energii elektrycznej z tych kopalin daje nam pełną niezależność energetyczną, a koszty produkcji energii z tych surowców są najmniejsze w stosunku do innych technologii. Energia wyprodukowana z węgla brunatnego charakteryzuje się najniższym jednostkowym kosztem technicznym wytworzenia. Polska posiada zasoby tych kopalin na szereg dziesiątków lat, doświadczenie związane z ich wydobyciem i przeróbką, zaplecze naukowo-projektowe oraz fabryki zaplecza technicznego produkujące maszyny i urządzenia na własne potrzeby, a także na eksport. Węgiel jest, i winien pozostać, w Polsce przez najbliższe 25–50 lat istotnym źródłem zaopatrzenia w energię elektryczną i ciepło, gdyż stanowi jedno z najbardziej niezawodnych i przystępnych cenowo źródeł energii. Kontynuacja takiej polityki może być zachwiana w okresie następnych dekad, z powodu wyczerpywania się udostępnionych zasobów węgla tak brunatnego, jak i kamiennego. Uwarunkowania dla budowy nowych kopalń, a tym samym dla rozwoju górnictwa węgla w Polsce, są bardzo złożone zarówno pod względem prawnym, środowiskowym, ekonomicznym, jak i wizerunkowym. Z podobnymi problemami borykają się Niemcy. Pomimo iż wizerunkowo jest to kraj inwestujący w odnawialne źródła energii, uchodzący za pionierów produkcji energii z OZE, to w rzeczywistości podstawowymi nośnikami służącym do produkcji energii elektrycznej wciąż są węgiel, a przede wszystkim węgiel brunatny.

Przejdź do artykułu

Autorzy i Afiliacje

Zbigniew Kasztelewicz
Miranda Ptak
Mateusz Sikora

Abstrakt

This paper presents the resolution of the optimal reactive power dispatch (ORPD) problem and the control of voltages in an electrical energy system by using a hybrid algorithm based on the particle swarmoptimization (PSO) method and interior point method (IPM). The IPM is based on the logarithmic barrier (LB-IPM) technique while respecting the non-linear equality and inequality constraints. The particle swarmoptimization-logarithmic barrier-interior point method (PSO-LB-IPM) is used to adjust the control variables, namely the reactive powers, the generator voltages and the load controllers of the transformers, in order to ensure convergence towards a better solution with the probability of reaching the global optimum. The proposed method was first tested and validated on a two-variable mathematical function using MATLAB as a calculation and execution tool, and then it is applied to the ORPD problem to minimize the total active losses in an electrical energy network. To validate the method a testwas carried out on the IEEE electrical energy network of 57 buses.

Przejdź do artykułu

Autorzy i Afiliacje

Aissa Benchabira
Mounir Khiat

Abstrakt

The single-phase voltage loss is a common fault. Once the voltage-loss failure occurs, the amount of electrical energy will not be measured, but it is to be calculated so as to protect the interest of the power supplier. Two automatic calculation methods, the power substitution and the voltage substitution, are introduced in this paper. Considering the lack of quantitative analysis of the calculation error of the voltage substitution method, the grid traversal method and MATLAB tool are applied to solve the problem. The theoretical analysis indicates that the calculation error is closely related to the voltage unbalance factor and the power factor, and the maximum calculation error is about 6% when the power system operates normally. To verify the theoretical analysis, two three-phase electrical energy metering devices have been developed, and verification tests have been carried out in both the lab and field conditions. The lab testing results are consistent with the theoretical ones, and the field testing results show that the calculation errors are generally below 0.2%, that is correct in most cases.

Przejdź do artykułu

Autorzy i Afiliacje

Han-miao Cheng
Zhong-dong Wang
Qi-xin Cai
Xiao-quan Lu
Yu-xiang Gao
Rui-peng Song
Zheng-qi Tian
Xiao-xing Mu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji