Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The objective of this work is to evaluate the safety of adult and child passengers exposed to a radio frequency (RF) source, i.e., a leaky coaxial cable (LCX) on the subway platform. An adult model, a child model, and an LCX model have been numerically designed in COMSOL Multiphysics software. The distributions of the induced electric field (E-field), specific absorption rate (SAR), magnetic field ( H-field) and the head temperature increase in adult and child passenger models were calculated at 900 MHz. The induced fields in the passengers were compared with that without screen doors. The results show that the E-field, SAR and H-field in the whole body of the child are 2.00 × 10 -2 V/m, 1.07 × 10 -7 W/kg, and 2.94 × 10 -4 A/m, respectively. The E-field, SAR and H-field in the central nervous system of the child are 1.00e × 10 -2 V/m, 2.44 × 10 -8 W/kg, and 2.41 × 10 -4 A/m, respectively. The maximum values of the E-field, SAR and H-field in the adult passenger are 1.49–2.34 times higher than those of the child. The E-field, SAR, and H-field in the passenger models without a screen door are larger than those with a screen door. The screen door has a partial shielding effect on the RF electromagnetic field. The values of the maximum temperature that increases in adult and child head tissue are 0.2114 and 0.2111℃ after waiting 6 minutes exposure, respectively. All calculated results are well below the International Commission on Non-Ionizing Radiation Protection (ICNIRP) limits for general public exposure, indicating that RF electromagnetic exposure caused by the LCX on the subway platform is not a threat to passenger’s health.
Go to article

Bibliography

[1] https://www.163.com/dy/article/H08UC3PI051481OF.html, accessed February 2022.
[2] Verbeek J., Oftedal G., Feychting M., Rongen E., Prioritizing health outcomes when assessing the effects of exposure to radiofrequency electromagnetic fields: A survey among experts, Environment International, vol. 146, no. 1, pp. 1–6 (2020), DOI: 10.1016/j.envint.2020.106300.
[3] Ju H.K., Lee J.K., Kim H.G., Possible Effects of Radiofrequency Electromagnetic Field Exposure on Central Nerve System, Biomolecules and Therapeutics, vol. 27, no. 3, pp. 265–275 (2019), DOI: 10.4062/biomolther.2018.152.
[4] Jiang D.P., Li J.H., Zhang J., Long-term electromagnetic pulse exposure induces Abeta deposition and cognitive dysfunction through oxidative stress and overexpression of APP and BACE1, Brain Research, vol. 1642, no. 1, pp. 10–19 (2016), DOI: 10.1016/j.brainres.2016.02.053.
[5] Hinrikus H., Bachmann M., Lass J., Understanding physical mechanism of low-level microwave radiation effect, International Journal of Radiation Biology, vol. 94, no. 10, pp. 877–882 (2018), DOI: 10.1080/09553002.2018.1478158.
[6] Baan R., Grosse Y., Lauby-Secretan B., El Ghissassi F., Carcinogenicity of radiofrequency electromagnetic fields, Lancet Oncology, vol. 12, no. 7, pp. 624–626 (2011), DOI: 10.1016/S1470-2045(11)70147-4.
[7] Qi X.Z., Lu M., Study on the distribution of SAR and temperature in human brain during radiofrequency cosmetic treatment, Archives of Electrical Engineering, vol. 70, no. 1, pp. 115–127 (2021), DOI: 10.24425/aee.2021.136056.
[8] Tian R., Lu M., Safety assessment of electromagnetic exposure in high-speed train carriage with full passengers, Annals of Work Exposures and Health, vol. 64, no. 8, pp. 838–851 (2020), DOI: 10.1093/annweh/wxaa048.
[9] Gas P., Wyszkowska J., Influence of multi-tine electrode configuration in realistic hepatic RF ablative heating, Archives of Electrical Engineering, vol. 68, no. 3, pp. 521–533 (2019), DOI: 10.24425/aee.2019.129339.
[10] Stankovi V., Jovanovi D., Krsti D., Temperature distribution and Specific Absorption Rate inside a child’s head, International Journal of Heat and Mass Transfer, vol. 104, no. 1, pp. 559–565 (2017), DOI: 10.1016/j.ijheatmasstransfer.2016.08.094.
[11] Peyman A., Rezazadeh A.A., Gabriel C., Changes in the dielectric properties of rat tissue as a function of age at microwave frequencies, Physics in Medicine and Biology, vol. 46, no. 12, pp. 1617–1629 (2001), DOI: 10.1088/0031-9155/55/15/N02.
[12] Peyman A., Gabriel C., Grant E.H., Variation of the dielectric properties of tissues with age: the effect on the values of SAR in children when exposed to walkie-talkie devices, Physics in Medicine and Biology, vol. 54, no. 1, pp. 227–241 (2009), DOI: 10.1088/0031-9155/54/2/004.
[13] Foster K.R., Chou C.K., Are Children More Exposed to Radio Frequency Energy from Mobile Phones Than Adults?, IEEE Access, vol. 2014, no. 2, pp. 1497–1509 (2014), DOI: 10.1109/ACCESS.2014.2380355.
[14] Gandhi O.P., Yes the children are more exposed to radiofrequency energy from mobile telephones than adults, IEEE Access, vol. 2015, no. 3, pp. 985–988 (2015), DOI: 10.1109/ACCESS.2015.2438782.
[15] Morris R.D., Morgan L.L., Davis D., Children Absorb Higher Doses of Radio Frequency Electromagnetic Radiation from Mobile Phones Than Adults, IEEE Access, vol. 2015, no. 3, pp. 2379–2387 (2015), DOI: 10.1109/ACCESS.2015.2478701.
[16] Stankovi V., Jovanovi D., Krsti D., Markovi V., Cvetkovi N., Temperature distribution and specific absorption rate inside a child’s head, International Journal of Heat and Mass Transfer, vol. 104, no. 1, pp. 559–565 (2017), DOI: 10.1016/j.ijheatmasstransfer.2016.08.094.
[17] ICNIRP, Guidelines for Limiting Exposure to Electromagnetic Fields (100 kHz to 300 GHz), Health Physics, vol. 118, no. 5, pp. 483–524 (2020), DOI: 10.1097/HP.0000000000001210.
[18] Hardell L., World Health Organization, radiofrequency radiation and health - a hard nut to crack (Review), International Journal of Oncology, vol. 51, no. 2, pp. 405–413 (2017), DOI: 10.3892/ijo.2017.4046.
[19] Tsa B., Db B., Arm B., Biological effects of non-ionizing electromagnetic fields: Two sides of a coin, Progress in Biophysics and Molecular Biology, vol. 141, no. 1, pp. 25–36 (2019), DOI: 10.1016/j.pbiomolbio.2018.07.009.
[20] Ayugi G., Kisolo A., Ireeta T.W., Temporal variation of radiofrequency electromagnetic field exposure from mobile phone base stations in sensitive environments, IOSR Journal of Applied Physics, vol. 9, no. 5, pp. 9–15 (2020), DOI: 10.9790/4861-0905010915.
[21] Carlberg M., Hedendahl L., Koppel T., High ambient radiofrequency radiation in Stockholm city, Sweden, Oncology letters, vol. 17, no. 2, pp. 1777–1783 (2018), DOI: 10.3892/ol.2018.9789.
[22] Hardell L., Koppel T., Carlberg M., Radiofrequency radiation at Stockholm Central Railway Station in Sweden and some medical aspects on public exposure to RF fields, International Journal of Oncology, vol. 49, no. 2, pp. 1315–1324 (2016), DOI: 10.3892/ijo.2016.3657.
[23] Gryz K., Karpowicz J., Radiofrequency electromagnetic radiation exposure inside the metro tube infrastructure in Warszawa, Electromagnetic Biology and Medicine, vol. 34, no. 3, pp. 265–273 (2015), DOI: 10.3109/15368378.2015.1076447.
[24] Zhang B., Zhong Z., He R., Multi-User channels with large-scale antenna arrays in a subway environment: characterization and modeling, IEEE Access, vol. 5, no. 1, pp. 23613–23625 (2017), DOI: 10.1109/ACCESS.2017.2764621.
[25] Yang C.Q., Lu M., Safety evaluation for a high signal operator with electric field exposure induced by contact wires, Archives of Electrical Engineering, vol. 70, no. 2, pp. 431–444 (2021), DOI: 10.24425/aee.2021.136994.
[26] Jalilian H.,Najafi K., Monazzam M.R., Occupational Exposure of Train Drivers to Static and Extremely Low Frequency Magnetic Fields in Tehran Subway, Jundishapur Journal of Health Sciences, vol. 9, no. 4, pp. 1–8 (2017), DOI: 10.5812/jjhs.14329.
[27] Wang J.H., Mei K.K., Design of leaky coaxial cables with periodic slots, Radio Science, vol. 37, no. 5, pp. 1–10 (2002), DOI: 10.1029/2000RS002534.
[28] Standardization Administration of China, Human dimensions of Chinese minors, GB/T 26158-2010 (2011).
[29] Rush S., Current distribution in the brain from surface electrodes, Anesthesia & Analgesia, vol. 47, no. 6, pp. 717–723 (1968).
[30] Gandhi O.P., Lazzi G., Furse C.M., Electromagnetic absorption in the human head and neck for mobile telephones at 835 and 1900 MHz, IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 10, pp. 1884–1897 (1996), DOI: 10.1109/22.539947.
[31] Gabriel C., Gabriel S., Corthout E., The dielectric properties of biological tissues: I. Literature survey, Phys. Med. Biol., vol. 41, no. 11, pp. 2231–49 (1996).
[32] Wang J., Fujiwara O., Watanabe S., Approximation of aging effect on dielectric tissue properties for SAR assessment of mobile telephones, IEEE Transactions on Electromagnetic Compatibility, vol. 48, no. 2, pp. 408–413 (2006), DOI: 10.1109/TEMC.2006.874085.
[33] Bhargava D., Leeprechanon N., Rattanadecho P., Specific absorption rate and temperature elevation in the human head due to overexposure to mobile phone radiation with different usage patterns, International Journal of Heat and Mass Transfer, vol. 130, no. 3, pp. 1178–1188 (2019), DOI: 10.1016/j.ijheatmasstransfer.2018.11.031.
[34] Pintos V.P., Ovide B.A., Munoz C., EMC measurements in Buenos Aires metro system, IEEE International Symposium on Electromagnetic Compatibility, Turkey, vol. 2003, no. 1, pp. 40–43 (2003), DOI: 10.1109/ICSMC2.2003.1428187.
[35] Lv H.G., Network spectrum measurement technique, Beijing: Tsinghua University Press, pp. 23–36 (2000).
[36] Spiegel R.J., A review of numerical models for predicting the energy deposition and resultant thermal response of humans exposed to electromagnetic fields, IEEE Transactions on Microwave Theory and Techniques, vol. 32, no. 8, pp. 730–746 (1984), DOI: 10.1109/TMTT.1984.1132767.
[37] Pennes H.H., Analysis of tissue and arterial blood temperatures in the resting human forearm, Journal of Applied Physiology, vol. 85, no. 1, pp. 5–34 (1998), DOI: 10.1152/jappl.1998.85.1.5.
[38] Yang D., Converse M.C., Mahvi D.M., Expanding the bioheat equation to include tissue internal water evaporation during heating, IEEE Transactions on Biomedical Engineering, vol. 54, no. 8, pp. 1382–1388 (2007), DOI: 10.1109/TBME.2007.890740.
Go to article

Authors and Affiliations

Jin Li
1
ORCID: ORCID
Mai Lu
1
ORCID: ORCID

  1. Key Laboratory of Opto-Electronic Technology and Intelligent Control of Ministry of Education, Lanzhou Jiaotong University, Gansu Province, China
Download PDF Download RIS Download Bibtex

Abstract

This paper established a radio-frequency electrode model and human head model used in RF cosmetic instruments. The distribution of electric field strength, a specific absorption rate (SAR), and temperature distribution in the human brain at 1 MHz and 6 MHz were studied and the results compared with the International Commission on Nonionizing Radiation Protection (ICNIRP) guidelines. The results showed that under those two frequencies the maximum value of electric field strength in the human brain was 1.52 V/m and it was about 5.4% of the ICNIRP basic restrictions, the maximum SAR in human brain was about 2:21 ? 10??3 W/kg, which was far less than 2 W/kg of ICNIRP basic restrictions, the maximum temperature of the human brainwas 37:6? located in thewounded skin, which was the same as the normal temperature 37?. Since all the results were within the ICNIRP basic restrictions, the electromagnetic exposure generated by the RF cosmetic electrode will not pose a threat to the human health.
Go to article

Bibliography

[1] Bidi M., Biological risk assessment of high-voltage transmission lines on worker’s health of electric society, Archives of Electrical Engineering, vol. 69, no. 1, pp. 57–68 (2020).
[2] Deltuva R., Lukocius R., Electric and magnetic field of different transpositions of overhead power line, Archives of Electrical Engineering, vol. 66, no. 3, pp. 595–605 (2017).
[3] Alam M., Levy R., Pajvani U., Ramierez A., Guitart J., Veen H., Gladstone B., Safety of radiofrequency treatment over human skin previously injected with medium-term injectable soft-tissue augmentation materials: a controlled pilot trial, Lasers in Surgery and Medicine, vol. 39, no. 5, pp. 468–468 (2007).
[4] Suh D.H., Byun J.E., Lee J.S., Song Y.K., Kim S.H., Clinical efficacy and safety evaluation of a novel fractional unipolar radiofrequency device on facial tightening: A preliminary report, Journal of Cosmetic Dermatology, vol. 16, no. 2, pp. 199–204 (2017).
[5] Lee S.H., Lee D.H., Won C.H., Chang H.W., Kwon H.H., Kim K.H., Chung J.H., Fractional rejuvenation using a novel bipolar radiofrequency system in Asian skin, Dermatol Surgery, vol. 37, no. 11, pp. 1611–1619 (2011).
[6] International Commission on Non-ionizing Radiation Protection Guidelines for limiting exposure to time-varying electric and magnetic fields (up to 300GHz), Health Physics, vol. 74, no. 4, pp. 494–522 (1998).
[7] Alhalabi S.M., Agha O.Q., Hantash B.M., Nonablative radiofrequency for skin rejuvenation: a review of the literature, Expert Review of Dermatology, vol. 7, no. 7, pp. 589–599 (2012).
[8] Sadick N., Tissue tightening technologies: Fact or fiction, Aesthetic Surgery Journal, vol. 28, no. 2, pp. 180–188 (2008).
[9] Nelson A., Beynet D., Lask G., A novel non-invasive radiofrequency dermal heating device for skin tightening of the face and neck, Journal of Cosmetic and Laser Therapy, vol. 17, no. 6, pp. 1–6 (2015).
[10] Friedman J., Gilead L., The Use of Hybrid Radiofrequency Device for the Treatment of Rhytids and Lax Skin, Dermatologic Surgery, vol. 33, no. 5, pp. 547–551 (2007).
[11] Brightman L., Goldman MP., Taub A.F., Sublative Rejuvenation: Experience with a New Fractional Radiofrequency System for Skin Rejuvenation and Repair, Journal of Drugs in Dermatology, vol. 8, no. 11, pp. 9–13 (2009).
[12] Hsu T.S., Kaminer M.S., The use of nonablative radiofrequency technology to tighten the lower face and neck, Seminars in Cutaneous Medicine and Surgery, vol. 22, no. 2, pp. 1–123 (2003).
[13] Rush S., Driscoll D.A., EEG electrode sensitivity–an application of reciprocity, IEEE Transactions on Biomedical Engineering, vol. 16, no. 1, pp. 15–22 (1968).
[14] Huclova S., Baumann D., Talary M., Frohlich J., Sensitivity and specificity analysis of fringing-field dielectric spectroscopy applied to a multi-layer system modelling the human skin, Physics in Medicine and Biology, vol. 56, no. 24, pp. 7777–7793 (2011).
[15] Gabriel C., Bentall R., Grant E.H., Comparison of the dielectric properties of normal and wounded human skin material, Bioelectromagnetics, vol. 8, no. 1, pp. 23–27 (1987).
[16] Huclova S., Erni D., Frohlich J., Modelling and validation of dielectric properties of human skin in the MHz region focusing on skin layer morphology and material composition, Journal of Physics D Applied Physics, vol. 45, no. 45 (2012), DOI: 10.1088/0022-3727/45/2/025301.
[17] Cole K., Cole R., Dispersion and absorption in dielectrics: I. Alternating current characteristics, Journal of Chemical Physics, vol. 9, no. 4, pp. 341–351 (1941).
[18] http://www.itis.ethz.ch/database.pl, accessed January 2020.
[19] http://cn.comsol.com/pl, accessed January 2020.
[20] Rush S., Driscoll D.A., Current distribution in the brain from surface electrodes, Anesthesia and Analgesia, vol. 47, no. 6, pp. 717–723 (1968).
[21] Tamnes K., Ostby Y., Fjell A.M., Westlye L.T., Due P., Walhovd K., Brain maturation in adolescence and young adulthood: regional age-related changes in cortical thickness and white matter volume and microstructure, Cerebral Cortex, vol. 20, no. 3, pp. 534–548 (2010).
[22] Gabriel S., Lau W., Gabriel C., The dielectric properties of biological tissues: III parametric models for the dielectric spectrum of tissues, Physics in Medicine and Biology, vol. 41, no. 11, pp. 2271–2293 (1996).
[23] Hruza G., Taub F., Collier S., Mulholland R., Skin rejuvenation and wrinkle reduction using a fractional radiofrequency system, Journal of Drugs in Dermatology, vol. 8, no. 3, pp. 259–265 (2009).









Go to article

Authors and Affiliations

Xinzhe Qi
1
Mai Lu
1
ORCID: ORCID

  1. Key Laboratory of Opt-Electronic Technology and Intelligent Control of Ministry of Education, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu Province, P.R. China

This page uses 'cookies'. Learn more