Search results

Filters

  • Journals
  • Authors
  • Contributor
  • Keywords
  • Date
  • Type

Search results

Number of results: 646
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The study presents the summary of the knowledge of energy-active segments of steel buildings adapted to obtain electrical energy (EE) and thermal energy (TE) from solar radiation, and to transport and store TE. The study shows a general concept of the design of energy-active segments, which are separated from conventional segments in the way that allows the equipment installation and replacement. Exemplary solutions for the design of energy-active segments, optimised with respect to the principle of minimum thermal strain and maximum structural capacity and reliability were given [34]. The following options of the building covers were considered: 1) regular structure, 2) reduced structure, 3) basket structure, 4) structure with a tie, high-pitched to allow snow sliding down the roof to enhance TE and EE obtainment. The essential task described in the study is the optimal adaptation of energy-active segments in large-volume buildings for extraction, transportation and storage of energy from solar radiation.

Go to article

Authors and Affiliations

Z. Kowal
M. Siedlecka
R. Piotrowski
K. Brzezińska
K. Otwinowska
A. Szychowski
Download PDF Download RIS Download Bibtex

Abstract

The study presents the results of theoretical investigations into lateral torsional buckling (LTB) of bi-symmetric I-beams, elastically restrained against warping at supports. Beam loading schemes commonly used in practice are taken into account. The whole range of stiffness of the support joints, from free warping to warping fully restrained, is considered. To determine the critical moment, the energy method is used. The function of the beam twist angle is described with power polynomials that have simple physical interpretation. Computer programs written in symbolic language for numerical analysis are developed. General approximation formulas are devised. Detailed calculations are performed for beams with end-plate joints. Critical moments determined with programs and approximation formulas are compared with the results obtained by other researchers and with those produced by FEM. Very good accuracy of results is obtained.

Go to article

Authors and Affiliations

R. Piotrowski
A. Szychowski
Download PDF Download RIS Download Bibtex

Abstract

The article raised issues related to the design and execution of low-energy objects in Polish conditions. Based on the designed single-family house, adapted to the requirements of the National Fund for Environmental Protection and Water Management ("NF40" standard), the tools to assist investment decisions by investors were shown. An economic analysis and a multi-criteria analysis were performed using AHP method which had provided an answer to the question whether it is worthwhile to bear higher investment costs in order to adjust to the standards of energy-efficient buildings that fulfil a minimal energy consumption's requirements contained in Polish law. In addition, the variant of object that had optimal characteristics due to the different preferences of investors was indicated. This paper includes analysis and observations on the attempts to unify that part of the building sector, which so far is considered to be personalized, and objects in accordance with the corresponding idea are designed as "custom-made".

Go to article

Authors and Affiliations

K. Tomczak
O. Kinash
Download PDF Download RIS Download Bibtex

Abstract

Finite fossil fuel resources, as well as the instability of renewable energy production, make the sustainable management of energy production and consumption some of the key challenges of the 21st century. It also involves threats to the state of the natural environment, among others due to the negative impact of energy on the climate. In such a situation, one of the methods of improving the efficiency of energy management – both on the micro (dispersed energy) and macro (power system) scale, may be innovative technological solutions that enable energy storage. Their effective implementation will allow it to be collected during periods of overproduction and to be used in situations of scarcity. These challenges cannot be overestimated - modern science has a challenge to solve various types of problems related to storage, including the technology used or the control/ /management of energy storage. Heat storage technologies, on which research works are carried out regarding both storage based on a medium such as water, as well as storage using thermochemical transformations or phase-change materials. They give a wide range of applications and improve the efficiency of energy systems on both the macro and micro scale. Of course, the technological properties and economic parameters have an impact on the application of the chosen technology. The article presents a comparison of storage parameters or heat storage methods based on different materials with specification of their work parameters or operating costs.

Go to article

Authors and Affiliations

Paweł Jastrzębski
Piotr W. Saługa
Download PDF Download RIS Download Bibtex

Abstract

Dr. Krzysztof Fic of the Poznań University of Technology discusses energy storage, aesthetic medicine’s quest for immortality, and how much time goes into being a scientist.

Go to article

Authors and Affiliations

Krzysztof Fic
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the article is to present perspectives for the development of offshore wind farms in the leading, in this respect, country in the EU and in the world – Great Britain. Wind power plays a remarkable role in the process of ensuring energy security for Europe since in 2016 the produced wind energy met 10.4% of the European electricity demand while in 2017 it was already around 11.6%. The article analyses the capacity of wind farms, support systems offered by this country and the criteria related to the location of offshore wind farms. The research has been based on the analysis of legal acts, regulations, literature on the subject, information from websites. The article shows that in recent years, the production of energy at sea has been developing very rapidly, and the leading, in this matter, British offshore energy sector is character-ised by strong governmental support.

Go to article

Authors and Affiliations

Leszek Dawid
Download PDF Download RIS Download Bibtex

Abstract

Article investigates the issue of terms of trade in energy products. The goal of this paper is to check how the terms of trade in energy fluctuate. The analysis is carried out on the example of Poland as a country which offers an interesting energy imports and exports structure. The time horizon covers the period from 2005–2015 and is extended to give the broader picture of the phenomenon wherever possible. In the research, the author uses the barter terms of trade concept. The paper has been organized in four sections. The study opens with introductory remarks presenting Polish energy situation, which is followed by a description of the terms of trade concept on the grounds of international economics. The results of the research are discussed in section three which ends with a summary and conclusions. The last part includes an additional description of study constraints and suggestions the next research steps. The statistical data used in the paper comes from national databases of the Polish Central Statistical Office and international sources such as the Organisation for Economic Cooperation and Development. Additional information on energy prices was derived from recognized branch sources such as BP Statistical Review of World Energy.
Go to article

Authors and Affiliations

Honorata Nyga-Łukaszewska
Download PDF Download RIS Download Bibtex

Abstract

Until the early 1990s, the domestic power industry was a natural monopoly. This was caused by the specificity of the operation of the electricity transmission and distribution sub sectors, technical challenges of coordinating the operation of generating units and transmission networks, requirements regarding long-term forecasting of the industry development, and returns to scale. In view of the above, the objective of the presented paper is to assess the economic situation of energy companies operating in a competitive electricity market. The article analyses the main areas of activity of the energy companies, i.e.: the areas of production, transmission, distribution, and sales. In addition, the market shares of the various energy companies, in terms of generating capacity and the amount of the energy produced, were analyzed. Furthermore, the technical and economic situation of enterprises operating in the power sector was also subjected to analysis. The mentioned analysis has revealed that the profit received from the main activity of the enterprises (i.e. the sale of electricity) has decreased in recent years. What is more, the energy sector must adapt to legal and regulatory changes related to the intensification of the decarbonization policy pursued by the European Commission. Therefore, national energy should focus on developing skills in the areas of innovation, such as: electro mobility, energy storage, energy management, etc.
Go to article

Authors and Affiliations

Krzysztof Zamasz
Download PDF Download RIS Download Bibtex

Abstract

Intensive modernization and reconstruction of the energy sector takes place throughout the

world. The EU climate and energy policy will have a huge impact on the development of the energy

sector in the coming years. The European Union has adopted ambitious goals of transforming

towards a low-carbon economy and the integration of the energy market. In June 2015, the G7 countries

announced that they will move away from coal fired energy generation. Germany, which

has adopted one of the most ambitious energy transformation programs among all industrialized

countries, is leading these transformations. The long-term strategy, which has been implemented

for many years, allowed for planning the fundamental transformation of the energy sector; after the

Fukushima Daiichi nuclear disaster, Germany opted for a total withdrawal from nuclear energy and

coal in favor of renewable energy. The German energy transformation is mainly based on wind and

solar energy. Germany is the fifth economic power in the world and the largest economy in Europe.

Therefore, the German energy policy affects the energy policy of the neighboring countries. The

article presents the main assumptions of the German energy policy (referred to as Energiewende).

It also presents the impact of changes in the German energy sector on the development of energy

systems in selected European countries.

Go to article

Authors and Affiliations

Radosław Szczerbowski
Download PDF Download RIS Download Bibtex

Abstract

The energy security of the European Union is still a concept, rather than the actual action. It was confirmed by legal regulations that give Member States the possibility of individual control of energy security. Furthermore, EU Member States can perform unilateral energy policy, which is often in the interest of the most powerful countries. The concept of energy solidarity, solidarity mechanisms of energy flows directly from the Treaty of Maastricht. This was intended to help to increase energy security, and above all, its construction at the EU level. The functioning of the European Communities and the European Union is showing that the goal of building energy security of the European Union is still in the process of creation and still remain a certain course of action. Following th energy crisis of 2009 we can observe discussion about the concept of energy union, as a way to build energy security of the European Union. Currently, its energy security is limited to the definition adopted by the European Commission and activities aimed at the development of energy infrastructure of Community interest, which contributes to improving EU energy security. The aim of this article is analyze the concept of energy union and attempt to answer the question whether it has a real chance of success, and whether the concept of the proposed shape will be effective and necessary. These questions are important because of we can observe discrepancies between the regulations, promotion of building a common energy security and the practical action of individual Member States of the European Union.

Go to article

Authors and Affiliations

Justyna Trubalska
Download PDF Download RIS Download Bibtex

Abstract

In spite of technological, logistic and economic difficulties, interest in renewable energy sources in the world is consistently increasing. This trend is also observed in Poland, mainly due to the urgent need to tackle the problem of climate change, which is caused by the increasing concentration of gaseous pollutants in the atmosphere. The paper presents a short script of the issue of estimating renewable energy resources in Poland in the context of creating local low carbon economy plans at the level of municipalities/counties where RES sources should be taken into account. The author proposed an individual approach to estimate the potential of RES, taking the local conditions and the short characteristics of the small and medium companies sector in Poland into account. These companies have a great application potential to increase the share of renewable energies and to improve energy efficiency in their business. The actions, which are taken by the Ministry of Energy in the field of civil energy development, enhancing local energy security and the sustainable development of renewable energy resources support the development of energy clusters covering one district or five municipalities. In the article, the author presents data on the number of companies possessing a concession for generating electricity in RES installations in the power range from 40 kW to 200 kW. These companies can largely be the nucleus for creating a local cluster in which microgrids will be a key element.

Go to article

Authors and Affiliations

Tomasz Mirowski
Download PDF Download RIS Download Bibtex

Abstract

In this paper, selected aspects of energy efficiency are shown. The European Union regulations in area of energy efficiency such as Directive 2012/27/EU, are discussed. The national legal regulations which describe energy efficiency such as the Energy Efficiency Act are presented. Principles concerning the obligation of energy savings and energy audits of enterprises are described. National, regional and local programs and measures concerning the improvement of energy efficiency are performed. These are horizontal measures and energy efficiency measures in: industry, transport, the buildings of public institutions and energy generation and supplies. National economy energy efficiency is shown. The energy intensity indicators (primary, final) and rate of their changes in last years are performed. Moreover, directions of undertakings connected with the possible future reduction in energy intensity of the national economy, are defined. An analysis of energy efficiency measures and solutions for the improvement of energy efficiency, especially in industry and households, is performed. The improvement of economy energy intensity indicators constitutes the most effective solution which brings significant economic, technical and environmental benefits such as an increase in economic innovation and its competitiveness, the improvement of the energy supply security level, a reduction in the consumption of natural resources and a reduction of air pollution and greenhouse gas emissions. The conclusions contain an analysis of the present level of energy efficiency in Poland and the perspectives of its increase in the future along with the benefits connected with it.

Go to article

Authors and Affiliations

Waldemar Dołęga
Download PDF Download RIS Download Bibtex

Abstract

The future and the development of power industry are the one of the major issues in the domestic and global policy. The impact of the power sector on the earth climate changes and the attention for sufficient funds of energy in the following years are the primary challenges which the power industry is facing. The article delineates the current state of the domestic sector of energy production. In the prospect of the next few years, it will draw on conventional power engineering nevertheless, with the growing involvement of renewable energy sources. However, it is important to develop the new energy strategy, which will point the direction of domestic energy production sector changes. What is more relevant, the new legal regulations connected with environmental protection will definitely restrict using fossil fuels in the power industry. In addition, the paper discusses the most important aspects involved in creating a country’s energy mix. The first aspect is the current state of the energy sector in Poland, i.e. the percentage of particular technologies in the present power and electrical energy balances, the technical state of the manufacturing sector’s infrastructure. Based on historical data of Polskie Sieci Elektroenergetyczne SA regarding the energy consumption and demand, a mathematical estimation for electricity demand and its consumption forecast was performed. The obtained forecasts were then used to conduct a simulation of power and energy demand fulfillment in the national power system. Finally, several possible scenarios were presented, taking different factors affecting the energy sector in Poland into consideration.

Go to article

Authors and Affiliations

Radosław Szczerbowski
Dominika Kornobis
Download PDF Download RIS Download Bibtex

Abstract

Portugal is a country on the Iberian Peninsula with a population of just over 10 million people. The country has no reserves of energy resources such as oil, natural gas, or coal and is therefore dependent on their imports. Nevertheless, it has no problems ensuring energy security. It imports oil from countries such as Brazil, Nigeria, Saudi Arabia and Angola, and gas from Algeria, Nigeria, the United States of America and Qatar. All imports of crude oil and most imports of petroleum products pass through the two main ports of Sines and Leixões, while gas is imported via the Sines LNG terminal and two cross-border gas pipelines at Campo Maior and Valença do Minho. Coal imports are no longer a problem following the closure of the last coal-fired power plant in 2021. As recently as 2019, fossil fuels accounted for as much as 76% of Portugal’s total primary energy supply, with oil accounting for 43%, but the majority of this demand was consumed by road transport (51%), followed by oil-based industries (16%) and household heating (5%). Now, however, the situation is changing. Hydropower and rapidly developing wind and solar energy account for a large share of electricity generation. By 2030, Portugal plans to commission between 600 and 900 MW of new solar capacity annually. Energy security in Portugal is the responsibility of the government and the relevant ministries. As in many other European countries, there is a clear drive towards decarbonization and measures are being taken to ensure that this process takes place as soon as possible, as is explicitly stated in Portuguese government documents. The analysis presented in this article shows that Portugal, despite lacking significant energy resources, can guarantee its energy security at a high level.
Go to article

Authors and Affiliations

Tadeusz Olkuski
1
ORCID: ORCID

  1. AGH University of Science and Technology, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of the research is to assess and discuss the diversity of energy production and consumption in European Union countries. The time scope covers the years 2007 and 2016. The diversity of EU countries was examined using the cluster analysis. The following diagnostic features were adopted for the analysis: energy dependency rate (in %), gross inland consumption of energy per 10,000 inhabitants (toe/10,000 inhabitants), primary production of energy (all products) per 10,000 inhabitants (toe/10,000 inhabitants), primary production of renewable energies per 10,000 inhabitants (toe/10,000 inhabitants), primary production of energy (without renewable energy) per 10,000 inhabitants (toe/10,000 inhabitants). Comparing the included indicators from 2016 to 2007 for all EU countries, an increase was recorded only for the primary production of renewable energies per 10,000 inhabitants,. Based on the cluster analysis, the examined countries were divided into six groups. According to the results of the research carried out, Northern and Eastern European countries are characterized by low energy dependence. However, according to the analysis carried out, this dependence is guaranteed based on various energy sources. The Scandinavian countries (Sweden, Finland) owe their high independence to the production of large amounts of energy from renewable sources. On the other hand, countries such as the Netherlands, Denmark, Estonia and the whole of Eastern Europe are based on primary energy sources such as: coal, oil and gas. Southern Europe countries (Greece, Spain, Italy, Portugal, Cyprus, Malta) are characterized by high energy dependence, as evidenced by low rates in the area of energy production, both in total and renewable and non-renewable energy production.

Go to article

Authors and Affiliations

Dorota Agnieszka Janiszewska
Download PDF Download RIS Download Bibtex

Abstract

The objective of the European Green Deal is to change Europe into the world’s first climate- -neutral continent by 2050. Therefore, European countries are developing technological solutions to increase the production of energy from renewable sources of energy. In order to universally implement energy production from renewable energy sources, it is necessary to solve the problem of energy storage. The authors discussed the issue of energy storage and renewable energy sources, reviewing applied thermal and mechanical energy storage solutions. They referred to the energy sector in Poland which is based mainly on mining activities. The method that was used in this paper is a review of thermal and mechanical energy storage solutions. In industrial practice, various solutions on energy storage are developed around the world. The authors reviewed those solutions and described the ones which currently function in practice. Hence, the authors presented the good practices of energy storage technology. Additionally, the authors conducted an analysis of statistical data on the energy sector in Poland. The authors presented data on prime energy production in Poland in 2004–2019. They described how the data has changed over time. Subsequently, they presented and interpreted data on renewable energy sources in Poland. They also showed the situation of Poland compared to other European countries in the context of the share of renewables in the final gross energy consumption.
Go to article

Bibliography

Abbas et al. 2020 – Abbas, Z., Chen, D., Li, Y., Yong, L. and Wang, R.Z. 2020. Experimental investigation of underground seasonal cold energy storage using borehole heat exchangers based on laboratory scale sandbox. Geothermics 87, 101837.
Agencja Rynku Energii SA 2020. Primary Energy Balance in 2004–2019 (Bilans Energii Pierwotnej w latach 2004–2019). Warszawa (in Polish).
Airly, 2020. Oddychaj Polsko. Raport o stanie powietrza. [Online] https://airly.org/pl/raport-jakosci-powietrza/ [Accessed: 2021-09-09].
Bartoszek et al. 2021 – Bartoszek, S., Stankiewicz, K., Kost, G., Ćwikła, G. and Dyczko, A. 2021. Research on Ultrasonic Transducers to Accurately Determine Distances in a Coal Mine Conditions. Energies 14(9), 2532.
Belu, R. 2019. Energy storage for electric grid and renewable energy application. In: Energy Storage, Grid Integration, Energy Economics, and the Environment. CRC Press Taylor & Francis Group, Boca Raton, FL, USA, pp. 29–33.
Cabała et al. 2020 – Cabała, J., Warchulski R., Rozmus, D., Środek, D. and Szełęg, E. 2020. Pb-rich slags, minerals, and pollution resulted from a medieval Ag-Pb smelting and mining operation in the Silesian-Cracovian region (southern Poland). Minerals 10, p. 28.
Cader et al. 2021a – Cader, J., Koneczna, R. and Olczak, P. 2021a. The Impact of Economic, Energy, and Environmental Factors on the Development of the Hydrogen Economy. Energies 14(16), p. 4811.
Cader et al. 2021b – Cader, J., Olczak, P. and Koneczna, R. 2021b. Regional dependencies of interest in the “My Electricity” photovoltaic subsidy program in Poland. Polityka Energetyczna – Energy Policy Journal 24(2), pp. 97–116.
Ciapała et al. 2021 – Ciapała, B., Jurasz, J., Janowski, M. and Kępińska, B. 2021. Climate factors influencing effective use of geothermal resources in SE Poland: the Lublin trough. Geotherm. Energy 9, p. 3. CSO 2020. Energy from renewable sources in 2019. Warsaw.
Davies, R. 2020. Peak performance: could mountains create long-term energy storage? Power Technol. [Online] https://power.nridigital.com/future_power_technology_feb20/peak_performance_could_mountains_ create_long-term_energy_storage [Accessed: 2021-04-20].
Dychkovskyi et al. 2019 – Dychkovskyi, R., Tabachenko, M., Zhadiaieva, K. and Cabana, E. 2019. Some aspects of modern vision for geoenergy usage. E3S Web Conf. 123, 01010.
Dyczko, A. and Malec, M. 2021. Innovative Concept of Production Support System for the {LW} Bogdanka Mine. {IOP} Conf. Ser. Mater. Sci. Eng. 1134, 12004.
Energy Instrat 2021. No Title. [Online] https://www.energy.instrat.pl [Accessed: 2021-03-23].
Euractive 2021. EU’s draft renewables law confirms 38–40% target for 2030. [Online] https://www.euractiv.com/section/energy/news/leak-eus-draft-renewables-law-confirms-38-40-target-for-2030/ [Accessed: 2021-05-18].
European Commission 2019. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. The European Green Deal. Brussels.
European Environmental Agency 2021. Share of energy consumption from renewable sources in Europe. EEA. [Online] https://www.eea.europa.eu/data-and-maps/indicators/renewable-gross-final-energyconsumption-5/assessment [Accessed: 2021-06-21].
Frankowski, J. 2020. Attention: Smog alert! Citizen engagement for clean air and its consequences for fuel poverty in Poland. Energy Build. 207, 109525.
Gawlik, L. ed. 2013. Coal for the Polish energy sector in the perspective of 2050 – scenario analyzes (Węgiel dla polskiej energetyki w perspektywie 2050 roku – analizy scenariuszowe). Katowice: Górnicza Izba Przemysłowo-Handlowa (in Polish).
Graboś, A. and Żymanowska-Kumon, S. 2014. Counteracting low emissions in dense residential areas (Przeciwdziałanie niskiej emisji na terenach zwartej zabudowy mieszkalnej) [ed.] R. Sadlok. Bochnia: HELIOS (in Polish).
Gravitricity 2020. Gravitricity. [Online] https://gravitricity.com/ [Accessed: 2021-07-27].
Holder, M. 2020. Gravitricity to pilot £1m gravity-based energy storage system in Edinburgh. Bus. Green. [Online] https://www.businessgreen.com/news/4015015/gravitricity-pilot-gbp-gravity-energy-storage-edinburgh [Accessed: 2021-07-22].
Hunt et al. 2020 – Hunt, J.D., Zakeri, B., Falchetta, G., Nascimento, A., Wada, Y. and Riahi, K. 2020. Mountain Gravity Energy Storage: A new solution for closing the gap between existing short- and longterm storage technologies. Energy 190, 116419.
Hussein et al. 2004 – Hussein, H.M.S., Ahmad, G.E. and El-Ghetany, H.H. 2004. Performance evaluation of photovoltaic modules at different tilt angles and orientations. Energy Convers. Manag. 45, pp. 2441–2452.
Kadar, P. 2014. Pros and Cons of the Renewable Energy Application. Acta Polytechnica Hungarica 11(4), pp. 211–224.
Kamiński, P. 2021a. A New Method of Regulation of Loads Acting on the Shaft Lining in Sections Located in the Salt Rock Mass. Energies 14(1), p. 0042.
Kamiński, P. 2021b. Development of New Mean of Individual Transport for Application in Underground Coal Mines. Energies 14(7), p. 2022.
Kamiński et al. 2021 – Kamiński, P., Dyczko, A. and Prostański, D. 2021. Virtual Simulations of a New Construction of the Artificial Shaft Bottom (Shaft Safety Platform) for Use in Mine Shafts. Energies 14(8), 2110.
Kaszyński et al. 2019 – Kaszyński, P., Komorowska, A. and Kamiński, J. 2019. Regional distribution of hard coal consumption in the power sector under selected forecasts of EUA prices. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 35(4), pp. 113–134.
Klojzy-Karczmarczyk, B. and Mazurek, J. 2009. Local government responsibilities in the process of reducing low emission (Zadania samorządów lokalnych w procesie likwidacji niskiej emisji). Polityka Energetyczna 12(2.2), pp. 277–284 (in Polish).
Komorowska et al. 2020 – Komorowska, A., Benalcazar, P., Kaszyński, P. and Kamiński, J. 2020. Economic consequences of a capacity market implementation: The case of Poland. Energy Policy 144, 111683.
Kopacz et al. 2020 – Kopacz, M., Kulpa, J., Galica, D. and Olczak, P. 2020. The influence of variability models for selected geological parameters on the resource base and economic efficiency measures – Example of coking coal deposit. Resour. Policy 68, 101711.
Koval et al. 2019 – Koval, V., Sribna, Y., Mykolenko, O. and Vdovenko, N. 2019. Environmentalconcept of energy security solutions of local communities based on energy logistics. [In:] 19th International Multidisciplinary Scientific GeoConference SGEM 2019, International Multidisciplinary Scientific GeoConference-SGEM. STEF92 Technology, 51 Alexander Malinov blvd, Sofia, 1712, Bulgaria, pp. 283–290.
Kryzia, D. and Pepłowska, M. 2019. The impact of measures aimed at reducing low-stack emission in Poland on the energy efficiency and household emission of pollutants. Polityka Energetyczna – Energy Policy Journal 22(2), pp. 121–132.
Kubiński, K. and Szabłowski, Ł. 2020. Dynamic model of solar heating plant with seasonal thermal energy storage. Renew. Energy 145, pp. 2025–2033.
Kwestarz, M. 2016. Thermal energy storage – types of energy storage (Magazynowanie ciepła – rodzaje magazynów). Czysta Energ. 12, pp. 29–35 (in Polish).
Mangold, D. and Deschaintre, L. 2016. Seasonal thermal energy storage. Report on state of the art and necessary further R+D. [Online] http://task45.iea-shc.org/data/sites/1/publications/IEA_SHC_Task45_ B_Report.pdf {accessed: 2021.09.09].
Matuszewska et al. 2017 – Matuszewska, D., Kuta, M. and Górski, J. 2017. Cogeneration – Development and prospect in Polish energy sector. E3S Web Conf. 14, p. 01021.
Matuszewska et al. 2020 – Matuszewska, D., Kuta, M. and Olczak, P. 2020. Techno-Economic Assessment of Mobilized Thermal Energy Storage System Using Geothermal Source in Polish Conditions. Energies 13(13), p. 3404.
Matuszewska, D. and Olczak, P. 2020. Evaluation of Using Gas Turbine to Increase Efficiency of the Organic Rankine Cycle (ORC). Energies 13(6), p. 1499.
Mikhno et al. 2021 – Mikhno, I., Koval, V., Shvets, G., Garmatiuk, O. and Tamosiuniene, R. 2021. Green Economy in Sustainable Development and Improvement of Resource Efficiency. Cent. Eur. Bus. Rev. 10, pp. 99–113.
Mirowski et al. 2020 – Mirowski, T., Jach-Nocoń, M., Jelonek, I. and Nocoń, A. 2020. The new meaning of solid fuels from lignocellulosic biomass used in low-emission automatic pellet boilers. Polityka Energetyczna – Energy Policy Journal 23(1), pp. 75–86.
Mokrzycki, E. and Gawlik, L. 2013. Strategy for the security of energy resources in Poland-renewable energy sources. [In:] Environmental Engineering IV.
Olczak, P. and Komorowska, A. 2021. An adjustable mounting rack or an additional PV panel? Cost and environmental analysis of a photovoltaic installation on a household: A case study in Poland. Sustain. Energy Technol. Assessments 47, 101496.
Olczak et al. 2020 – Olczak, P., Matuszewska, D. and Kryzia, D. 2020. ”Mój Prąd” as an example of the photovoltaic one off grant program in Poland. Polityka Energetyczna – Energy Policy Journal 23(2), pp. 123–138.
Olczak et al. 2021a – Olczak, P., Jaśko, P., Kryzia, D., Matuszewska, D., Fyk, M.I. and Dyczko, A. 2021a. Analyses of duck curve phenomena potential in polish PV prosumer households’ installations. Energy Reports 7, pp. 4609–4622.
Olczak et al. 2021b – Olczak, P., Kryzia, D., Matuszewska, D. and Kuta, M. 2021b. “My Electricity” Program Effectiveness Supporting the Development of PV Installation in Poland. Energies 14(1), p. 0231.
Olczak et al. 2021c – Olczak, P., Olek, M., Matuszewska, D., Dyczko, A. and Mania, T. 2021c. Monofacial and Bifacial Micro PV Installation as Element of Energy Transition – The Case of Poland. Energies 14(2), p. 0499.
Orzeł, B. 2020. Non-financial Value Creation Due to Non-financial Data Reporting Quality. Zesz. Nauk. Organ. i Zarządzanie 148, pp. 605–617.
Palka, D. and Stecuła, K. 2019. Concept of technology assessment in coal mining. IOP Conf. Ser. Earth Environ. Sci. 261, 012038.
Państwowy Instytut Geologiczny 2020. Balance of mineral deposits resources in Poland (Bilans zasobów złóż kopalin w Polsce). Warszawa: Państwowy Instytut Geologiczny (in Polish).
Paszkowski, W. and Loska, A. 2017. The use of data mining methods for the psychoacoustic assessment of noise in urban environment. Int. Multidiscip. Sci. GeoConference SGEM 17, pp. 1059–1066.
Pedchenko et al. 2018 – Pedchenko, M., Pedchenko, L., Nesterenko, T. and Dyczko, A. 2018. Technological Solutions for the Realization of NGH-Technology for Gas Transportation and Storage in Gas Hydrate Form. Solid State Phenom. 277, pp. 123–136.
Possemiers, M. 2014. Aquifer Thermal Energy Storage under different hydrochemical and hydrogeological conditions. [Online] https://limo.libis.be/primo-explore/fulldisplay?docid=LIRIAS1930575&context= L&vid=Lirias&search_scope=Lirias&tab=default_tab〈=en_US&fromSitemap=1 [Accessed: 2021-09-09].
Rafał, K. and Grabowski, P. 2021. Energy storage (Magazynowanie energii). Academia – Mag. Pol. Akad. Nauk, DOI: 10.24425/academiaPAN.2021.136844 34–40 (in Polish).
REHAU 2011. Underground Thermal Energy Storage. Improving efficiency through seasonal heat storage. Canada.
Schmidt et al. 2018 – Schmidt, T., Pauschinger, T., Sørensen, P.A., Snijders, A., Djebbar, R., Boulter, R. and Thornton, J. 2018. Design Aspects for Large-scale Pit and Aquifer Thermal Energy Storage for District Heating and Cooling. Energy Procedia 149, pp. 585–594.
Soliński, J. 2004. Energy sector – world and Poland. Development 1971–2000, prospects to 2030. Statistics Poland 2019. Energia ze źródeł odnawialnych w 2018 roku. Informacje sygnalne. Statistics Poland 2020a. Energy 2020. Warszawa.
Statistics Poland 2020b. Energia ze źródeł odnawialnych w 2019 roku. Informacje sygnalne.
Stecuła, K. 2018. Decision-making Dilemmas in Mining Enterprise and Environmental Issues, i. e. Green Thinking in Mining. 18th Int. Multidiscip. Sci. Geoconference SGEM 2018, pp. 357–364.
Stecuła, K. and Brodny, J. 2017a. Perspectives on renewable energy development as alternative to conventional energy in Poland. [In:] International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, pp. 717–724.
Stecuła, K. and Brodny, J. 2017b. Generating knowledge about the downtime of the machines in the example of mining enterprise. [In:] International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, pp. 359–366.
Stecuła, K. and Brodny, J. 2018a. Role and meaning of coal mining in Poland. [In:] International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM. pp. 801–808.
Stecuła, K. and Brodny, J. 2018b. Decision-making possibilities in the field of excavated material quality shaping in terms of environmental protection, I. E. how to be greener in mining. [In:] International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, pp. 243–250. Stecuła, K. and Tutak, M. 2018. Causes and effects of low-stack emission in selected regions of Poland. [In:] International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, pp. 357–364.
Steinmann et al. 2019 – Steinmann, W.-D., Bauer, D., Jockenhöfer, H. and Johnson, M. 2019. Pumped thermal energy storage (PTES) as smart sector-coupling technology for heat and electricity. Energy 183, pp. 185–190.
Woźniak, J. and Pactwa, K. 2018. Responsible Mining – The Impact of the Mining Industry in Poland on the Quality of Atmospheric Air. Sustainability 10, p. 1184.
Wróbel et al. 2019 – Wróbel, J., Sołtysik, M. and Rogus, R. 2019. Selected elements of the Neighborly Exchange of Energy – Profitability evaluation of the functional model. Polityka Energetyczna – Energy Policy Journal 22(4), pp. 53–64.
Wyrwicki, G. 2004. Thermogravimetric analysis – unappreciated method for determination of rock type and quality (Analiza termograwimetryczna – niedoceniana metoda określania rodzaju i jakości kopaliny). Górnictwo Odkryw. 46, pp.120–125 (in Polish).
Żelazna et al. 2020 – Żelazna, A., Gołębiowska, J., Zdyb, A. and Pawłowski, A. 2020. A hybrid vs. on-grid photovoltaic system: Multicriteria analysis of environmental, economic, and technical aspects in life cycle perspective. Energies 13(15), p. 3978.
Go to article

Authors and Affiliations

Artur Dyczko
1
ORCID: ORCID
Paweł Kamiński
2
Kinga Stceuła
3
Dariusz Prostański
4
Michał Kopacz
1
ORCID: ORCID
Daniel Kowol
4
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Kraków, Poland
  2. Faculty of Mining and Geoengineering, AGH University of Science and Technology, Kraków, Poland
  3. Przedsiębiorstwo Budowy Szybów SA, Tarnowskie Góry, Poland
  4. KOMAG Institute of Mining Technology, Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The issue of energy security was the subject of research in the 1970s when the oil crisis of 1973 significantly affected the economic stability of hundreds of companies and ordinary citizens in the United States and Western Europe. One of the first researchers of energy security was Mason Willrich who, considering the impact of energy on international politics, national security, the world economy, and the environment in the world, drew attention to the issues of “security of supply” and “security of demand” as fundamental to ensure energy security. The concept of “energy security” involves the comprehensive implementation of political, economic, environmental, technological, and social measures to strengthen the internal subjectivity of the state and limit opportunities for external influence. Subsequently, numerous researchers have expanded the understanding of energy security to environmental sustainability and energy efficiency). The presented scientific work is focused on the analysis of state management decisions for ensuring the energy security of Ukraine. The authors also trace vulnerabilities in various energy systems, including energy infrastructure, energy services, and renewable energy sources. The decline in energy demand due to the COVID-19 pandemic in Ukraine has created a dilemma: state support for renewable energy production (RES), which generates rising producer prices, or reduced energy intensity of GDP and stimulated production of cheap nuclear energy. A comprehensive scientific analysis of the solution to this dilemma is the purpose of the presented work.

Go to article

Authors and Affiliations

Andrii Kytaiev
Nina Chala
Yehor Androsov
Download PDF Download RIS Download Bibtex

Abstract

Economic development is strictly dependent on access to inexpensive and reliable energy sources based on diversified primary fuels. The strategic framework for the construction of the energy mix is defined in the Energy Policy of the State, the content of which, in terms of its mandatory elements, has been specified in the Energy Law. The task of the Energy Policy of the State is to create the shape of the future power sector, including designing the most advantageous regulatory, system and technical solutions guaranteeing the appropriate level of energy security of the country, monitoring of the system’s evolution and also designing and implementing changes aimed at the optimization of the functioning mechanisms. The vision of the development of the power system at the global level should also reflect changes in the formation of dispersed civil energy structures. Unfortunately, the results of the conducted analyses reveal existing imperfections of the data acquisition and information system, which should be used in the planning process. This issue is particularly important from the perspective of the dynamically developing concept of the energy self-sufficiency of communes and the emergence of energy clusters. The present paper describes the functioning of strategic planning in the field of the electric power system with an illustration of the improperly functioning mechanisms of information transfer in the context of the advancement of dispersed civil energy structures.

Go to article

Authors and Affiliations

Maciej Sołtysik
Sylwia Całus
Marcin Malec
Download PDF Download RIS Download Bibtex

Abstract

The article presents selected issues from the Polish Energy Policy draft until 2040. From many issues, the authors chose the ones they considered the most revolutionary. Firstly, the National Power System should be restructured to meet the challenges of a changing environment, be adapted to the growing demand for electricity, and at the same time have the least impact on the natural environment. These goals can be achieved through reforms to reduce the importance of coal in the energy mix and the development of renewable energy sources, especially offshore wind energy. The next tasks are the development of electromobility, enabling the reduction of pollution caused by transport, and, in the longer term, after 2030, the development of nuclear energy in place of the withdrawn coal power.

Go to article

Authors and Affiliations

Tadeusz Olkuski
Zbigniew Grudziński
Download PDF Download RIS Download Bibtex

Abstract

Polish energy security is currently one of the key elements affecting the national security system. Maintaining operational efficiency and the permanent modernization of both, power plants, as well as transformer stations and transmission networks is a starting point of ensuring energy security in our country. This is a significant challenge, taking into account the age of the energy critical infrastructure elements in Poland, as well as the permanent increase of the demand for electricity. This implies a systematic growth of the importance of the issue the country’s energy security. The numerous events and anomalies that accompany our everyday life, such as the storms that passed over Poland on the night of August 11–12, 2017, indicate the considerable sensitivity of the critical energy infrastructure on the impact of various negative factors. The security of Polish critical infrastructure connected with the distribution of electricity is particularly at risk. Therefore, it is desirable not only for current repairs and the modernization of the power system elements, but also for the work related to adapting the infrastructure to current and even forecasted needs, challenges and threats. In the face of the presented research results, the reconstruction of the Polish power system, as well as the implementation of innovative solutions in the production, transmission and distribution of energy seems to be unavoidable. Therefore interdisciplinary research and analyses are recommended, allowing the level security of the critical infrastructure to be increased through the best possible diagnosis of factors that may even slightly threaten this security.

Go to article

Authors and Affiliations

Paweł Szmitkowski
Agnieszka Gil-Świderska
Sylwia Zakrzewska
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an analysis of the influence of the energy generated from renewable sources on an improvement in the energy efficiency of public utility building and households. It also presents the current state of the technologies for the production of electricity from renewable sources, as well as their share in the national power supply system. The conducted analysis concerns both micro, as well as large systems generating electricity. Systems generating power from renewable sources are gaining in popularity. With an increasing awareness in the society of the beneficial influence that renewable power generating systems have on the environment, as well as the support in form of various programs offering subsidies for the construction of new systems, power generation from renewable sources is becoming increasingly popular and common. Although the renewable energy systems are still not widely considered to be a profitable solution, systems using renewable sources of energy are positively perceived and treated as a new trend in the construction of multi or single-family residential buildings. The increasing share of the renewable energy in the national power supply system significantly reduces the demand for energy produced from conventional sources. This obviously translates into a reduced consumption of primary energy, for example, fossil fuels, and, in turn, leads to the reduced exploitation of natural resources, thus contributing to the protection of the natural environment. A reduced consumption of fossil fuels also means a significant reduction in environmental pollution during their processing into electricity or heat. Actions aiming at improving energy efficiency and reducing final energy consumption are being undertaken by many countries all over the world, and by the European Union. In 2012, the European Parliament and the Council issued Directive 2012/27/EU obliging the Member States to initiate actions aiming at a reduction in the consumption of final energy by 1.5% a year. The paper presents the current status of generation of energy from renewable sources during the last 13 years. The ways for using energy from the renewable sources to improve the energy efficiency of facilities were also discussed.

Go to article

Authors and Affiliations

Sławomir Sowa
Download PDF Download RIS Download Bibtex

Abstract

Observing the situation in the power industry it is easy to see that there are very deep changes in it. They rely primarily on moving away from conventional energy to renewable energy. This is particularly the case for energy in the European Union. Europe strives to be a forerunner in renewable technologies and a leader in the fight against global warming. The mining industry is being abolished and coal-fired power stations are being displaced by renewable energy sources. This situation is not only a result of EU directives but also of grassroots social initiatives inspired by environmental groups. The new lignite openings are being blocked, due to the lack of public acceptance, and the construction of conventional power plants. They do not help economic arguments for the development of energy based on coal, lignite, fuel that is significantly cheaper than the other, or to provide potential investors with the creation of new jobs. Also, coal investments are suspended in other regions of the world. CoalSwarm coal research shows that 2016 saw a dramatic fall in the amount of coal investment in the world. Even in China and India, where most of the coal industry has developed in recent years, about 100 investments have been suspended. The situation in the US is unclear. Although Barack Obama signed the Paris Agreement, current United States President Donal Trump has spoken out about this agreement and in numerous speeches and is eager to return to the dominant role of coal in the American economy. Poland still maintains the carbon structure of the power industry, but the Minister of Energy has announced that the new block at the Ostrołęka power plant will be the last coal-fired power plant to be built in Poland. This statement allows us to believe that there may be a return to Poland’s energy policy in the nearest future, and the long-awaited document, Poland’s energy policy until 2050, will determine the direction of change for the coming years.

Go to article

Authors and Affiliations

Tadeusz Olkuski
Katarzyna Stala-Szlugaj
Download PDF Download RIS Download Bibtex

Abstract

The Energy Law of April 10, 1997 initiated changes in the energy market in Poland. Actions taken on the basis of this law were aimed at the modernization and development of the power sector. Organizational and legal changes causing the development of distributed generation, thus increasing the level of market competition have been introduced. The care for high quality of customer service, including the protection of vulnerable customers, environmental protection, growing share of renewable energy and emission reduction requirements have become a reality. It seems, therefore, that it is necessary for the Polish energy sector to undergo permanent modernization, to develop the production and industrial infrastructure and to develop modern conventional technologies by way of implementing innovations in the field of energy companies. The author of the paper argues that it is indispensable to make a broadly understood transfer of knowledge and technology to the energy sector on the basis of a knowledge-based economy. This also applies to energy clusters, which currently constitute a platform for cooperation: entrepreneurs, scientific-research units, and public authorities. The functioning of these entities is an important catalyst for the transfer of knowledge and technologies. Their regional nature boosts competitiveness of the involved enterprises, and is a natural way of transferring knowledge to the energy market.
Go to article

Authors and Affiliations

Radosław Miśkiewicz

This page uses 'cookies'. Learn more