Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 10
Wyników na stronie: 25 50 75
Sortuj wg:
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The purpose of this article is to investigate the problematic aspects of standardization of energy management systems in Russian enterprises. The main characteristics of energy management, existing standards in the field of energy management are given. To study the best practices and the effectiveness of the implementation of the energy management system in 2017, the Ministry of Energy of Russia, with the participation of the Federal State Budgetary Institution “Russian Energy Agency” the Ministry of Energy of Russia, carried out the monitoring of energy efficiency management and the implementation of energy management systems in the practice of Russian companies. The peculiarity of the introduction of energy management systems in the practice of managing Russian enterprises has been identified, which consists in the fact that it occurs based on the already implemented quality management system, environmental management, labor protection, when a lot of work has been done (document management, internal audit system, corrective actions, training, provisions providing feedback and the possibility of submitting proposals, etc.). Like any quality management system, the successful implementation of this standard depends on the involvement of all levels and functions of the organization’s management in this process, and especially on top management.
Przejdź do artykułu

Bibliografia

Antomoshkin, A.Yu. 2017. Experience in implementing an energy management system according to the UNIDO methodology in Russia. Cast and Metallurgy 4(89), pp. 143–147.
Babenko, K.Y. 2020. Management of territorial economic development: project approach. Scientific Bulletin of Mukachevo State University. Series “Economics” 1(13), pp. 135–139.
Federal Law No. 261-FZ “On energy saving and on increasing energy efficiency and on amending certain laws of the Russian Federation”. 2009. [Online] https://clck.ru/WGZc2 [Accessed: 2021-06-20].
Gorbunova, V.S. and Puzina, Ye.Yu. 2018. The effectiveness of the implementation of energy management systems in industrial companies in Russia. Transport Systems and Technologies 1, pp. 119–137.
GOST R 2008. GOST R 40.003-2008. Certification system GOST R. Register of quality systems. The procedure for certification of the quality management system for compliance with GOST R ISO 9001-2008 (ISO 9001: 2008). 2008. [Online] https://docs.cntd.ru/document/1200068716 [Accessed: 2021-06-20].
GOST R ISO 2019. GOST R ISO 19011-2003. Guidelines for auditing quality management systems and/or environmental management system. 2019. [Online] http://base.consultant.ru/cons/CGI/online.cgi?req=doc;base=EXP;n=335887 [Accessed: 2021-06-20].
Gurevich, V. and Primakova, I. 2013. Integration of energy management into the practice of managing the organization. Science and Innovation 12(26), pp. 5–7.
Ihnatyshyn, M.V. and Demian, Y.Yu. 2019. Business-consulting as a tool for balancing business resources and management decisions at enterprises. Scientific Bulletin of Mukachevo State University. Series “Economics” 2(12), pp. 62–66.
ISO 2014. ISO 50001: 2011 Energy Management Systems. Requirements and guidance for use. 2014. [Online] https://iso-management.com/wp-content/uploads/2018/09/ISO-50001-2011.pdf [Accessed: 2021-06-20].
ISO 2015. ISO 17021. Conformity assessment. Requirements for certification bodies of management systems. 2015. [Online] https://www.iso.org/obp/ui#iso:std:iso-iec:17021:-1:ed-1:v1:ru [Accessed: 2021- 06-20].
Kachynska et al. 2021 – Kachynska, N.F., Zemlyanska, O.V., Husiev, A.M., Demchuk, H.V. and Kovtun, A.I. 2021. Labour protection as a component of effective management of a modern enterprise. Scientific Bulletin of Mukachevo State University. Series “Economics” 8(1), pp. 77–85.
Kucher, L.R. and Zamrii, O.M. 2020. The role of the competitive personality of the manager in management. Scientific Bulletin of Mukachevo State University. Series “Economics” 1(13), pp. 32–37.
Li, F. and Strachan, N. 2019. Take me to your leader: using socio-technical energy transitions (STET) modelling to explore the role of actors in decarbonisation pathways. Energy Research & Social Science 51, pp. 67–81.
Lyalin, A.M. and Pfayfer, N.V. 2015. Energy management standardization in Russia. University Bulletin 9, pp. 197–202.
Pareschi et al. 2020 – Pareschi, G., Küng, L., Georges, G. and Boulouchos, K. 2020. Are travel surveys a good basis for EV models? Validation of simulated charging profiles against empirical data. Applied Energy 275, DOI: 10.1016/j.apenergy.2020.115318.
Pilipenko, N.V. and Gladskikh, D.A. 2014. Determination of the heat losses of buildings and structures by solving inverse heat conduction problems measurement techniques. Springer New York Consultants Bureau 2(57), pp. 181–186.
Redko, K.YU. and Furs, O.S. 2020. The current situation and world trends of green energy development. Scientific Bulletin of Mukachevo State University. Series “Economics” 1(13), pp. 55–60.
Somma et al. 2019 – Somma, M.D., Graditi, G. and Siano, P. 2019. Optimal bidding strategy for a DER aggregator in the day-ahead market in the presence of demand flexibility. IEEE Transactions on Industrial Electronics 66(2), pp. 1509–1519.
State information system in the field of energy conservation and energy efficiency. 2019. [Online] https://gisee.ru/law/international/47502/ [Accessed: 2021-06-20].
Weiss et al. 2019 – Weiss, O., Pareschi, G., Schwery, O., Bolla, M., Georges, G. and Boulouchos, K. 2019. Long-term scheduling model of Swiss hydropower. 16th International Conference on the European Energy Market (EEM) 1, DOI: 10.1109/EEM.2019.8916260.
Weiss et al. 2021 – Weiss, O., Pareschi, G., Georges, G. and Boulouchos, K. 2021. The Swiss energy transition: Policies to address the Energy Trilemma. Energy Policy 148, DOI: 10.1016/j.enpol.2020.111926.
Przejdź do artykułu

Autorzy i Afiliacje

Ramilya Savchuk
1
Alexandr Cherkasov
2
Pavel Kondratiev
1
Semen Matskepladze
1

  1. Department of Quality Management, Russian University of Transport, Russia
  2. Department of Transport Construction in Extreme Conditions, Russian University of Transport, Russia

Abstrakt

The article presents a case study on the effectiveness of photovoltaic farm and battery energy storage in one of the Polish foundries. In the study, we consider two investment options: stand-alone PV farm of 1MWp and the farm together with battery energy storage with a maximum capacity of 4MWh. The Payback Period and Net Present Value were used as measures of investment profitability. The paper provides a detailed presentation of the assumptions made, as well as the PV electricity production model of the farm and the optimization model that determines the operation cycle of the energy storage. The case study presented in the article shows that the PV farm is economically sensible and profitable, but the battery energy storage is too costly to give a positive economic effect. Energy storage is an important element that provides flexibility in the energy supply system, so it is necessary to find a technical solution that gives this flexibility. Such a solution could be a virtual power plant, which could include a foundry energy system with a RES installation inside.
Przejdź do artykułu

Autorzy i Afiliacje

A. Stawowy
1
ORCID: ORCID
R. Wrona
2
M. Sawczuk
2
D. Lasek
2

  1. AGH University of Science and Technology, Faculty of Management, Poland
  2. Modus Sp. z o.o., Poland

Abstrakt

Artykuł ma na celu przedstawienie istotnego komponentu zarządzania energią, jakim jest realizacja audytów efektywności energetycznej przedsiębiorstw. Z wykorzystaniem analizy typu case study przyjrzano się roli audytu energetycznego w kontekście poprawy efektowności energetycznej, w wybranych, dużych przedsiębiorstwach produkcyjnych. Przedstawiono zarys wymagań prawnych wynikających z implementacji znowelizowanej ustawy o efektywności energetycznej (Dz.U. 2016 poz. 831). Zaprezentowano w szczególności problemy i wyzwania odnoszące się do sposobu realizacji obowiązku audytowego w praktyce gospodarczej. Poruszono kwestię jakości oraz przydatności (w procesie decyzyjnym) wypracowanych raportów. Ustalono, że występują przesłanki do twierdzenia, iż obowiązkowy audyt energetyczny przedsiębiorstw nie zawsze jest optymalnie wykorzystywanym instrumentem poprawy efektywności energetycznej. Wina za ten stan rzeczy leży częściowo po stronie państwa, jednostek audytujących oraz samych zarządzających przedsiębiorstwem. Problemem jest nie tylko nieskuteczna komunikacja, ale także niewystarczający poziom wiedzy z zakresu zarządzana energią oraz pośpiech. Nowelizacja ustawy o efektywności energetycznej (w przeciągu zaledwie jednego roku) narzuciła konieczność przeprowadzenia audytu energetycznego określonej grupy przedsiębiorstw. W związku z tym, iż wszystkie objęte obowiązkiem podmioty musiały prowadzić działania w tym samym czasie, pojawiły się liczne problemy. Część zarządzających dowiedziała się o obowiązku przeprowadzenia audytu od firm, które same zgłaszały się z propozycją jego wykonania. Świadczy to o braku właściwego przepływu informacji między organami administracji państwowej a przedsiębiorstwami. Po raz kolejny okazało się, iż praktycy nie nadążają z realizacją działań będących konsekwencją nie do końca przemyślanych zmian w prawie. Pośpiech (w wywiązywaniu się z obowiązku ustawowego) wpłynął na bardzo dużą rozpiętość cenową zgłaszanych do przetargów ofert na przeprowadzenie audytu energetycznego przedsiębiorstwa. Utrudnieniem w prawidłowej realizacji zadań stały się m.in. biurokratyczne przepisy dotyczące przetargów. Sami przedsiębiorcy, nie mając jednoznacznych wytycznych „czego się spodziewać po wykonanym audycie energetycznym” oraz „jak ma wyglądać raport” i „co w szczególności ma zawierać”, niejednokrotnie wybierali „najtańszą ofertę” – nie zawsze zastanawiając się nad tym, jakie będą jakościowe konsekwencje takich decyzji. Niektóre jednostki certyfikujące – wykorzystując nadarzające się okazje i sploty okoliczności – oferowały wątpliwej jakości, nieprofesjonalne usługi audytowe. W zaprezentowanych warunkach trudno oczekiwać realnych, systemowych i pożądanych (ekonomicznie, ekologicznie i społecznie) rezultatów, w postaci poprawy efektywności energetycznej zarówno w skali mikro -, mezo- jak i makroekonomicznej. Warto rozważyć zmiany w ustawie o efektywności energetycznej i rozłożyć obowiązek wykonywania audytów na różne lata – według jasno zdefiniowanych kryteriów. Jeżeli stosowne działania nie zostaną przyjęte, za 4 lata powtórzy się sytuacja czasowego eldorado dla mało profesjonalnych jednostek zewnętrznych funkcjonujących na rynku audytów energetycznych. Konsekwencją znowu może stać się słaba jakość i wątpliwa przydatność raportów z audytów energetycznych przedsiębiorstw – zarówno na poziomie biznesowym, jak i ekologiczno-politycznym. Należy przeciwdziałać wszelkim formom nieuczciwej konkurencji wobec interdyscyplinarnych i specjalistycznych jednostek działających na rzecz poprawy efektywności energetycznej organizacji. Stworzenie odpowiednich warunków biznesowych korzystnie wpłynie na realną poprawę efektywności energetycznej organizacji zarówno sektora publicznego, jak i prywatnego. W tym kontekście konieczne jest podjęcie działań umożliwiających optymalizację zarówno procesu wdrożenia obligatoryjnych regulacji prawnych, jak i dobrowolnych norm i standardów (np. branżowych).

Przejdź do artykułu

Autorzy i Afiliacje

Marzena Hajduk-Stelmachowicz

Abstrakt

The paper presents a circuit structure that can be used for powering an IoT (Internet of Things) sensor node and that can use energy just from its surroundings. The main advantage of the presented solution is its very low cost that allows mass applicability e.g. in the IoT smart grids and ubiquitous sensors. It is intended for energy sources that can provide enough voltage but that can provide only low currents such as piezoelectric transducers or small photovoltaic panels (PV) under indoor light conditions. The circuit is able to accumulate energy in a capacitor until a certain level and then to pass it to the load. The presented circuit exhibits similar functionality to a commercially available EH300 energy harvester (EH). The paper compares electrical properties of the presented circuit and the EH300 device, their form factors and costs. The EH circuit’s performance is tested together with an LTC3531 buck-boost DC/DC converter which can provide constant voltage for the following electronics. The paper provides guidelines for selecting an optimal capacity of the storage capacitor. The functionality of the solution presented is demonstrated in a sensor node that periodically transmits measured data to the base station using just the power from the PV panel or the piezoelectric generator. The presented harvester and powering circuit are compact part of the sensor node’s electronics but they can be also realized as an external powering module to be added to existing solutions.

Przejdź do artykułu

Autorzy i Afiliacje

Adam Bouřa

Abstrakt

Growing energy demands are expected to render existing energy resources insufficient. Solar energy faces challenges in terms of providing continuous and reliable power supply to consumers. However, it has become increasingly important to implement renewable energy (RE) and energy management (EM) systems to increase the supply of power, improve efficiency, and maintain the stability of energy systems. As such, this present study integrated energy storage (ES) devices; namely, batteries and direct current (DC) to DC converters; into energy systems that support battery operation and effectively manage power flow, especially during peak load demands. The proposed system also addresses low solar irradiation and sudden load change scenarios by enabling the battery to operate in a discharge state to supply power to the load. Conversely, when the demand matches or exceeds the available solar energy, the battery is charged using solar power. The proposed system highlights the significance of RE systems and EM strategies in meeting growing energy demands and ensuring a reliable supply of power during solar variability and fluctuating loads. A MATLAB® Simulink model was used to evaluate the integration of a 200 kW photovoltaic (PV) array with a 380 V grid and 150 kW battery. The loads, consisting of a 100 kW and a 150 kW unit, were parallel connected. The results indicated that boost and three-phase (3Ph) inverters can be used to successfully integrate PV systems to the power grid to supply alternating current (AC) power. The inclusion of a battery also addressed power shortages during periods of insufficient power generation and to store surplus power.
Przejdź do artykułu

Autorzy i Afiliacje

Baqer Saleh Mahdi
1
Nasri Sulaiman
1
ORCID: ORCID
Mohanad Abd Shehab
2
Siti Lailatul Mohd Hassan
3
Suhaidi Shafie
1
ORCID: ORCID
Hashim Hizam
1
ORCID: ORCID

  1. Department of Electrical and Electronic Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
  2. Electrical Engineering Department, College of Engineering, Mustansiriyah University, Baghdad, Iraq
  3. School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

This paper proposes an advanced Internet of Things (IoT) system for measuring, monitoring, and recording some power quality (PQ) parameters. The proposed system is designed and developed for both hardware and software. For the hardware unit, three PZEM-004T modules with non-invasive current transformer (CT) sensors are used to measure the PQ parameters and an Arduino WeMos D1 R1 ESP8266 microcontroller is used to receive data from the sensors and send this data to the server via the internet. For the software unit, an algorithm using Matlab software is developed to send measurement data to the ThingSpeak cloud. The proposed system can monitor and analyse the PQ parameters including frequency, root mean square (RMS) voltage, RMS current, active power, and the power factor of a low-voltage load in real-time. These PQ parameters can be stored on the ThingSpeak cloud during the monitoring period; hence the standard deviation in statistics of the voltage and frequency is applied to analyse and evaluate PQ at the monitoring point. The experimental tests are carried out on low-voltage networks 380/220 V. The obtained results show that the proposed system can be usefully applied for monitoring and analysing chosen PQ parameters in micro-grid solutions.
Przejdź do artykułu

Bibliografia

[1] Luo A., Xu Q., Ma F., Chen., Overview of power quality analysis and control technology for the smart grid, Journal of Modern Power Systems and Clean Energy, vol. 4, no. 1, pp. 1–9 (2016).
[2] Szulborski M., Kolimas L., Łapczynski S., Szczęśniak P., Single phase UPS systems loaded with nonlinear circuits: analysis of topology in the context of electric power quality, Archives of Electrical Engineering, vol. 68, no. 4, pp. 787–802 (2019).
[3] Wenge C., Guo H., Roehrig C., Measurement-based harmonic current modeling of mobile storage for power quality study in the distribution system, Archives of Electrical Engineering, vol. 66, no. 4, pp. 801–814 (2017).
[4] Mendes T.M., Faria E.R.S., Perle L.A.V., Ribeiro E.G., Ferreira D.D., Barbosa B.H.G., Duque C.A., Detection of Power Quality Disturbance using a Multidimensional Approach in an Embedded System, IEEE Latin America Transactions, vol. 17, no. 7, pp. 1102–1108 (2019).
[5] Khoa N.M., Dai L.V., Detection and Classification of Power Quality Disturbances in Power System Using Modified-Combination between the Stockwell Transform and Decision Tree Methods, Energies, vol. 13, no. 14, 3623 (2020).
[6] Bagdadee A.H., Zhang L., A Review of the Smart Grid Concept for Electrical Power System, International Journal of Energy Optimization and Engineering, vol. 8, no. 4 (2019).
[7] Alavi S.A., Rahimian A., Mehran K., Ardestani J.M., An IoT-based data collection platform for situational awareness-centric microgrids, in 2018 IEEE Canadian conference on electrical and computer engineering, Quebec City, Canada, pp. 13–16 (2018).
[8] Bagdadee A.H., Zhang L., Remus Md.S.H., A Brief Review of the IoT-Based Energy Management System in the Smart Industry, Advances in Intelligent Systems and Computing, Springer (2020).
[9] Bagdadee A.H., Hoque Md.Z., Zhang L., IoT Based Wireless Sensor Network for Power Quality Control in Smart Grid, Procedia Computer Science, Procedia Computer Science, Elsevier, vol. 167, pp. 1148–1160 (2020).
[10] Henschke M.,Wei X., Zhang X., Data Visualization forWireless Sensor Networks Using Things Board, in 29th Wireless and Optical Communications Conference, Newark, NJ, USA (2020).
[11] Benzi F., Anglani N., Bassi E., Frosini L., Electricity Smart Meters Interfacing the Households, IEEE Transactions on Industrial Electronics, vol. 58, no. 10, pp. 4487–4494 (2011).
[12] Chooruang K., Meekul K., Design of an IoT Energy Monitoring System, in 2018 16th International Conference on ICT and Knowledge Engineering (ICT&KE), Bangkok, Thailand (2018).
[13] Luan H., Leng J., Design of energy monitoring system based on IoT, in 2016 Chinese Control and Decision Conference, Yinchuan, China (2016).
[14] Ku T.Y., Park W.K., Choi H., IoT Energy Management Platform for Micro-grid, in 2017 IEEE 7th International Conference on Power and Energy Systems, Toronto, Canada (2017).
[15] Marinakis V., Doukas H., An Advanced IoT-based System for Intelligent Energy Management in Buildings, Sensors, vol. 18, no. 1 (2018), DOI: 10.3390/s18020610.
[16] Kulkarni N., Lalitha S.V.N.L., Deokar S.A., Real time control and monitoring of grid power systems using cloud computing, International Journal of Electrical and Computer Engineering, vol. 9, no. 2, pp. 2088–8708 (2019).
[17] Priyadharshini S.G., Subramani C., Preetha Roselyn J., An IoT based smart metering development for energy management system, International Journal of Electrical and Computer Engineering, vol. 9, no. 4, pp. 3041–3050 (2019).
[18] Khoa N.M., Dai L.V., Tung D.D., Toan N.A., An IoT-Based Power Control and Monitoring System for Low-Voltage Distribution Networks, TNU Journal of Science and Technology, vol. 225, no. 13, pp. 51–58 (2020).
[19] Yang T.Y., Yang C.S., Sung T.W., An Intelligent Energy Management Scheme with Monitoring and Scheduling Approach for IoT Applications in Smart Home, in 2015 Third International Conference on Robot, Vision and Signal Processing, Kaohsiung, Taiwan, pp. 18–20 (2015).
[20] Dai L.V., Khoa N.M., Quyen L.C., An Innovatory Method Based on Continuation Power Flow to Analyze Power System Voltage Stability with Distributed Generation Penetration, Complexity, vol. 2020, p. 8037837 (2020).
[21] Mnati M.J., Bossche A.V., Chisab R.F., Smart Voltage and Current Monitoring System for Three Phase Inverters Using an Android Smartphone Application, Sensors, vol. 872, no. 16 (2017), DOI: 10.3390/s17040872.
[22] Han D.M., Lim J.H., Design and implementation of smart home energy management systems based on ZigBee, IEEE Transactions on Consumer Electronics, vol. 56, no. 3, pp. 1417–1425 (2010).
[23] Velazquez L.M., Troncoso R.J.R., Ruiz G.H., Sotelo D.M., Rios R.A.O., Smart sensor network for power quality monitoring in electrical installations, Measurement, vol. 103, pp. 133–142 (2017).
[24] Nallagownden P., Ramasamy H., Development of real-time industrial energy monitoring system with PQ analysis based on IoT, in 4th IET Clean Energy and Technology Conference, Kuala Lumpur, Malaysia (2016).
[25] Shamshiri M., Gan C.K., Baharin K.A., Azman M.A.M., IoT-based electricity energy monitoring system at Universiti Teknikal Malaysia Melaka, Bulletin of Electrical Engineering and Informatics, vol. 8, no. 2, pp. 683–689 (2019).
[26] Mroczka J., Szmajda M., Górecki K., Gabor Transform, SPWVD, Gabor-Wigner Transform and Wavelet Transform – Tools for Power Quality Monitoring, Metrology and Measurement Systems, vol. 17, no. 3, pp. 383–396 (2010).
[27] Ardeleanu A.S., Ramos P.M., Real Time PC Implementation of Power Quality Monitoring System Based on Multiharmonic Least-Squares Fitting, Metrology and Measurement Systems, vol. 18, no. 4, pp. 543–554 (2011).
[28] Khan M.A., Hayes B., PTP-based time synchronisation of smart meter data for state estimation in power distribution networks, IET Smart Grid (2020).
[29] Khwanrit R., Kittipiyakuly S., Kudtongngamz J., Fujita H., Accuracy Comparison of Present Lowcost Current Sensors for Building Energy Monitoring, 2018 International Conference on Embedded Systems and Intelligent Technology and International Conference on Information and Communication Technology for Embedded Systems (ICESIT-ICICTES), Khon Kaen, Thailand (2018).
[30] Olehs, Arduino communication library for peacefair pzem-004t energy monitor, https://github.com/ olehs/PZEM004T, accessed 2016.
[31] Legarreta A.E., Figueroa J.H., Bortolin J.A., An IEC 61000-4-30 class a – Power quality monitor: Development and performance analysis, in 11th International Conference on Electrical Power Quality and Utilisation, Lisbon, Portugal (2011).
[32] Markiewicz H., Klajn A., Voltage Disturbances: Standard EN 50160 – Voltage Characteristics in Public Distribution Systems, IEE Endorsed Provider (2004). [33] Hassani H., Ghodsi M., Howell G., A note on standard deviation and standard error, International Journal of the IMA: Teaching Mathematics and Its Applications, vol. 29, no. 2, pp. 108–112 (2010).
Przejdź do artykułu

Autorzy i Afiliacje

Ngo Minh Khoa
1
ORCID: ORCID
Le Van Dai
2
Doan Duc Tung
1
ORCID: ORCID
Nguyen An Toan
1
ORCID: ORCID

  1. Faculty of Engineering and Technology, Quy Nhon University, Vietnam
  2. Faculty of Electrical Engineering Technology, Industrial University of Ho Chi Minh City, Vietnam
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Due to the coexistence of continuity and discreteness, energy management of a multi-mode power split hybrid electric vehicle (HEV) can be considered a typical hybrid system. Therefore, the hybrid system theory is applied to investigate the optimum energy distribution strategy of a power split multi-mode HEV. In order to obtain a unified description of the continuous/discrete dynamics, including both the steady power distribution process and mode switching behaviors, mixed logical dynamical (MLD) modeling is adopted to build the control-oriented model. Moreover, linear piecewise affine (PWA) technology is applied to deal with nonlinear characteristics in MLD modeling. The MLD model is finally obtained through a high level modeling language, i.e. HYSDEL. Based on the MLD model, hybrid model predictive control (HMPC) strategy is proposed, where a mixed integer quadratic programming (MIQP) problem is constructed for optimum power distribution. Simulation studies under different driving cycles demonstrate that the proposed control strategy can have a superior control effect as compared with the rule-based control strategy.
Przejdź do artykułu

Bibliografia

  1.  J.J. Hu, B. Mei, H. Peng, and X.Y. Jiang, “Optimization design and analysis for a single motor hybrid powertrain configuration with dual planetary gears”, Appl. Sci. 9(4), 707 (2019).
  2.  S.H. Wang, S. Zhang, D.H. Shi, X.Q. Sun, and J.Q. He, “Research on instantaneous optimal control of the hybrid electric vehicle with planetary gear sets”, J. Braz. Soc. Mech. Sci. Eng. 41(1), 51 (2019).
  3.  J. Kim, J. Kang, Y. Kim, T. Kim, B. Min, and H. Kim, “Design of power split transmission: design of dual mode power split transmission”, Int. J. Automot. Technol. 11(4), 565‒571 (2010).
  4.  F. Wang, J. Zhang, X. Xu, Y.F. Cai, Z.G. Zhou, and X.Q. Sun, “New method for power allocation of multi-power sources considering speed-up transient vibration of planetary power-split HEVs driveline system”, Mech. Syst. Sig. Process. 128, 1‒18 (2019).
  5.  J.M. Miller, “Hybrid electric vehicle propulsion system architectures of the E-CVT type”, IEEE Trans. Power Electron. 21(3), 756‒767 (2006).
  6.  D.H. Shi, S.H. Wang, P. Pisu, L. Chen, R.C. Wang, and R.G. Wang, “Modeling and optimal energy management of a power split hybrid electric vehicle”, Sci. China Technol. Sci. 60(5), 1‒13 (2017).
  7.  J.D. Wishart, L. Zhou, and Z. Dong, “Review, modelling and simulation of two-mode hybrid vehicle architecture”, Proceedings of the ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Nevada, USA, 2007, pp. 1091‒1112.
  8.  L. Chen, F.T. Zhu, M.M. Zhang, Y. Huo, C.L. Yin, and H. Peng, “Design and analysis of an electrical variable transmission for a series– parallel hybrid electric vehicle”, IEEE Trans. Veh. Technol. 60(5), 2354‒2363 (2011).
  9.  P. Aishwarya and O.B. Hari, “A review of optimal energy management strategies for hybrid electric vehicle”, Int. J. Veh. Tech. 160510 (2014).
  10.  B.L.C. Cezar and O. Alexandru, “A dynamic programming control strategy for HEV”, Appl. Mech. Mater. 263, 541‒544 (2013).
  11.  J. Park, “Development of equivalent fuel consumption minimization strategy for hybrid electric vehicles”, Int. J. Automot. Technol. 13(5), 835‒843 (2012).
  12.  D.H. Shi, P. Pisu, and L. Chen, “Control design and fuel economy investigation of power split HEV with energy regeneration of suspension”, Appl. Energy. 182, 576‒589 (2016).
  13.  T. Tarczewski, M. Skiwski, L.J. Niewiara, and L.M. Grzesiak, “High-performance PMSM servo-drive with constrained state feedback position controller”, Bull. Pol. Acad. Sci. Tech. Sci. 66(1), 49‒58 (2018).
  14.  H. Borhan, A. Vahidi, A.M. Phillips, M.L. Kuang, I.V. Kolmanovsky, and S.D. Cairano, “MPC-based energy management of a power-split hybrid electric vehicle”, IEEE Trans. Control Syst. Technol. 20(3), 593‒603 (2012).
  15.  A. Babiarz, A. Czornik, J. Klamka, and M. Niezabitowski, “The selected problems of controllability of discrete-time switched linear systems with constrained switching rule”, Bull. Pol. Acad. Sci. Tech. Sci. 63(3), 657‒666 (2015).
  16. [6]  S.G. Olsen and G.M. Bone, “Model-based control of three degrees of freedom robotic bulldozing”, J. Dyn. Syst. Meas. Control. 136(136), 729‒736 (2014).
  17.  X.Q. Sun, Y.F. Cai, S.H. Wang, X. Xu, and L. Chen, “Optimal control of intelligent vehicle longitudinal dynamics via hybrid model predictive control”, Rob. Auton. Syst. 112, 190‒200 (2019).
  18.  S.G. Olsen and G.M. Bone, “Development of a hybrid dynamic model and experimental identification of robotic bulldozing”, J. Dyn. Syst. Meas. Control. 135(2), 450‒472 (2013).
  19.  F.T. Zhu, L. Chen, and C.L. Yin, “Design and analysis of a novel multimode transmission for a hev using a single electric machine”, IEEE Trans. Veh. Technol. 62(3), 1097‒1110 (2013).
  20.  R.J. Zhang and Y.B. Chen, “Control of hybrid dynamical systems for electric vehicles”, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148), Arlington, VA, USA, 2001, pp. 2884‒2889.
  21.  J. Lygeros, S. Sastry, and C. Tomlin, Hybrid Systems: foundations, advanced topics and applications, University of California, Berkeley, 2012.
  22.  X.Q. Sun, Y.F. Cai, S.H. Wang, X.Xu, and L. Chen, “Piecewise affine identification of tire longitudinal properties for autonomous driving control based on data-driven”, IEEE Access 6, 47424‒47432 (2018).
  23.  A. Bemporad, A. Garulli, S. Paoletti, and A. Vicino, “A bounded-error approach to piecewise affine system identification”, IEEE Trans. Autom. Control. 50(10), 1567‒1580 (2005).
  24.  G. Ferrari-Trecate, M. Muselli, and D. Liberati, “A clustering technique for the identification of piecewise affine systems”, Automatica. 39(2), 205‒217 (2003).
  25.  F.D. Torrisi and A. Bemporad, “Hysdel-a tool for generating computational hybrid models for analysis and synthesis problems”, IEEE Trans. Control Syst. Technol. 12(2), 235‒249 (2004).
  26.  M. Abdullah and M. Idres, “Constrained model predictive control of proton exchange membrane fuel cell”, J. Mech. Sci. Technol. 28(9), 3855‒3862 (2014).
  27.  D. Jolevski and O. Bego, “Model predictive control of gantry/bridge crane with anti-sway algorithm”, J. Mech. Sci. Technol. 29(2), 827‒834 (2015).
  28.  G. Ripaccioli, A. Bemporad, F. Assadian, C. Dextreit, S.D. Cairano, and I.V. Kolmanovsky, “Hybrid modeling, identification, and predictive control: An application to hybrid electric vehicle energy management”, International conference on hybrid systems computation and control(HSCC), San Francisco, CA, USA, 2009, pp. 321‒335.
  29.  A. Bemporad and D. Mignone, “Miqp.m: a matlab function for solving mixed integer quadratic programs version 1.02 user guide”, ETH–Swiss Federal Institute of Technology, ETHZ–ETL, (2000).
  30.  M. Tutuianu et al., “Development of the World-wide harmonized Light duty Test Cycle (WLTC) and a possible pathway for its introduction in the European legislation”, Transp. Res. Part D Transp. Environ. 40, 61‒75 (2015).
  31.  N. Kim, S.W. Cha, and H. Peng, “Optimal equivalent fuel consumption for hybrid electric vehicles”, IEEE Trans. Control Syst. Technol. 20(3), 817‒825 (2011).
Przejdź do artykułu

Autorzy i Afiliacje

Shaohua Wang
1
Sheng Zhang
1
Dehua Shi
1 2 3
Xiaoqiang Sun
1
Tao Yang
3
ORCID: ORCID

  1. Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China
  2. Vehicle Measurement, Control and Safety Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
  3. Jiangsu Chunlan Clean Energy Research Institute Co., Ltd., Taizhou 225300, China

Abstrakt

The consumption of various forms of primary and secondary energy is one of the main sources of greenhouse gas emissions to the atmosphere. Also, the increase in the prices of energy resources is an important factor affecting the economic profitability of running a business organization. Legal requirements in the European Union also affect the need to implement appropriate solutions aimed at increasing energy efficiency, which translates into the need of implementing Energy Management Systems, based the ISO 50001 standard, in many enterprises.. In the case study presented in the article, which is based on a company from the energy industry in Poland, the most important Energy Performance Indexes and the impact of the quality of their information on the results obtained were reviewed. In the analyzed example, the main process used only 28% of the total energy consumption in the organization. Insufficient attention to auxiliary processes led to an undercut of Energy Performance by nearly 11% in the first year of operation. It is partic-ularly important to properly collect data on auxiliary processes, which are very often omitted or treated in general in companies, and as shown may constitute a significant share in the total amount of energy consumed.
Przejdź do artykułu

Autorzy i Afiliacje

Łukasz Grudzień
1
ORCID: ORCID
Filip Osiński
1
ORCID: ORCID

  1. Poznan University of Technology, Faculty of Mechanical Engineering, Poland

Abstrakt

Energy storage systems (ESS) are indispensable in daily life and have two types that can offer high energy and high power density. Hybrid energy storage systems (HESS) are obtained by combining two or more energy storage units to benefit both types. Energy management systems (EMS) are essential in ensuring HESS's reliability, high performance, and efficiency. One of the most critical parameters for EMS is the battery state of health (SoH). Continuous monitoring of the SoH provides essential information regarding the system's status, detects unusual performance degradations and enables planned maintenance, prevents system failures, helps keep efficiency at a consistently high level, and helps ensure energy security by reducing downtime. The SoH parameter depends on parameters such as Depth of Discharge (DoD), charge and discharge rate (C-Rate), and temperature. Optimal values of these parameters directly affect the lifetime and operating performance of the battery. The proposed Adaptive Energy Management System (AEMS) uses the SoH parameter of the battery as the control input. It provides optimal control by dynamically updating the C-Rate and DoD parameters. In addition, the supercapacitor integrated into the system with filter-based power separation prevents deep discharge of the batteries. Under the proposed AEMS control, HESS has been observed to generate 6.31% more energy than a system relying solely on batteries. This beneficial relationship between supercapacitors and batteries efficiently managed by AEMS opens new possibilities for advanced energy management in applications ranging from electric vehicles to renewable energy storage systems.
Przejdź do artykułu

Autorzy i Afiliacje

Gökhan YÜKSEK
Alkan ALKAYA

Abstrakt

The paper presents a theoretical analysis of thermal energy storage filled with phase change material (PCM) that is aimed at optimization of an adsorption chiller performance in an air-conditioning system. The equations describing a lumped parameter model were used to analyze internal heat transfer in the cooling installation. Those equations result from the energy balances of the chiller, PCM thermal storage unit and heat load. The influence of the control of the heat transfer fluid flow rate and heat capacity of the system components on the whole system operation was investigated. The model was used to validate the selection of Rubitherm RT62HC as a PCM for thermal storage. It also allowed us to assess the temperature levels that are likely to appear during the operation of the system before it will be constructed.
Przejdź do artykułu

Autorzy i Afiliacje

Jarosław Karwacki
1
Roman Kwidziński
1
Piotr Leputa
1 2

  1. The Szewalski Institute of Fluid Flow Machinery, Polish Academy of Sciences, Heat Transfer Department, Fiszera 14, 80-231 Gdansk, Poland
  2. ENERGA Ciepło Ostrołeka Sp. z o.o., Celna 13, 07-410 Ostrołeka, Poland

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji