Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The main aim of the below presented work was to investigate the possibility of using impedance spectroscopy in the unpasteurized beer microbial contamination degree assessment. Advantages of the impedance spectroscopy method, a negligible number of similar published results as well as their practical aspect make the research important. Four different types of beerswere investigated whichwere unfit for consumption due to improper storage and were heavily microbiologically contaminated. Their impedance was measured in the frequency range from 0.1 Hz to 1 kHz before and after centrifugation. Based on the measured values, an innovative electrical equivalent circuit was proposed and the parameters of the circuit elements were fitted. The obtained results show significant differences (23 up to 35%) in the values of resistance modelling the diffusion phenomenon. Such large changes, resulting from the removal of biomass from the samples, prove the validity of impedance spectroscopy in the study of the properties of unpasteurized beer. According to the authors, it would be possible to use the proposed methodology during the production of beer.With some limitations, it should aid in the early detection of microbial contamination.
Go to article

Authors and Affiliations

Łukasz Macioszek
1
ORCID: ORCID
Sylwia Andrzejczak-Grzadko
2
ORCID: ORCID
Olga Konkol
2
Ryszard Rybski
1
ORCID: ORCID

  1. University of Zielona Góra, Institute of Metrology, Electronics and Computer Science, ul. prof. Z. Szafrana 2, 65-246 Zielona Góra, Poland
  2. University of Zielona Góra, Institute of Biological Sciences, ul. prof. Z. Szafrana 1, 65-516 Zielona Góra, Poland
Download PDF Download RIS Download Bibtex

Abstract

Based on the electromechanical equivalent circuit theory, equations related to the resonance frequency and the magnifying coefficient of a quarter-wave vibrator and a quarter-wave taper transition horn were deduced, respectively. A series of 3D models of ultrasonic composite transducers with various conical section length was also established. To reveal the influences of the conical section length and the prestressed bolt on the dynamic characteristics (resonance frequency, amplitude, displacement node, and the maximum equivalent stress) of the models and the design accuracy, finite element (FE) analyses were carried out. The results show that the addition of prestressed bolt increases the resonance frequency and causes the displacement node on the center axis to move towards the small cylindrical section. As the conical section length rises, the increment of resonance frequency reduces and tends to a stable value of 360 Hz while the displacement of the node on the center axis becomes lager and gradually approaches 1.5 mm. Furthermore, the amplitude of the output terminal is stable at 16.18 μm under 220 V peak-topeak (77.8 VRMS) sinusoidal potential excitation. After that, a prototype was fabricated and validated experiments were conducted. The experimental results are consistent with that of theory and simulations. It provides theoretical basis for the design and optimization of small-size, large-amplitude, and high-power composite transducers.

Go to article

Authors and Affiliations

Tao Chen
Hongbo Lil
Qihan Wang
Junpeng Ye
Download PDF Download RIS Download Bibtex

Abstract

In this work, an approach to the design of broadband thickness-mode piezoelectric transducer is pre- sented. In this approach, simulation of discrete time model of the impulse response of matched and backed piezoelectric transducer is used to design high sensitivity, broad bandwidth, and short-duration impulse response transducers. The effect of matching the performance of transmitting and receiving air backed PZT-5A transducer working into water load is studied. The optimum acoustical characteristics of the quarter wavelength matching layers are determined by a compromise between sensitivity and pulse duration. The thickness of bonding layers is smaller than that of the quarter wavelength matching layers so that they do not change the resonance peak significantly. Our calculations show that the −3 dB air backed transducer bandwidth can be improved considerably by using quarter wavelength matching layers. The computer model developed in this work to predict the behavior of multilayer structures driven by a transient waveform agrees well with measured results. Furthermore, the advantage of this this model over other approaches is that the time signal for optimum set of matching layers can be predicted rapidly
Go to article

Authors and Affiliations

Mohamed G.S. Ali
Nour Z. Elsayed
Ebtsam A. Eid
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a new electromechanical amplifying device i.e., an electromechanical biological transistor. This device is located in the outer hair cell (OHC), and constitutes a part of the Cochlear amplifier. The physical principle of operation of this new amplifying device is based on the phenomenon of forward mechanoelectrical transduction that occurs in the OHC's stereocilia. Operation of this device is similar to that of classical electronic Field Effect Transistor (FET). In the considered electromechanical transistor the input signal is a mechanical (acoustic) signal. Whereas the output signal is an electric signal. It has been shown that the proposed electromechanical transistor can play a role of the active electromechanical controlled element that has the ability to amplify the power of input AC signals. The power required to amplify the input signals is extracted from a battery of DC voltage. In the considered electromechanical transistor, that operates in the amplifier circuit, mechanical input signal controls the flow of electric energy in the output circuit, from a battery of DC voltage to the load resistance. Small signal equivalent electrical circuit of the electromechanical transistor is developed. Numerical values of the electrical parameters of the equivalent circuit were evaluated. The range, which covers the levels of input signals (force and velocity) and output signals (voltage, current) was determined. The obtained data are consistent with physiological data. Exemplary numerical values of currents, voltages, forces, vibrational velocities and power gain (for the assumed input power levels below 1 picowatt (10-12 W)), were given. This new electromechanical active device (transistor) can be responsible for power amplification in the cochlear amplifier in the inner ear.

Go to article

Authors and Affiliations

Piotr Kiełczyński
Marek Szalewski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an identification procedure of electromagnetic parameters for an induction motor equivalent circuit including rotor deep bar effect. The presented proce- dure employs information obtained from measurement realised under the load curve test, described in the standard PN-EN 60034-28: 2013. In the article, the selected impedance frequency characteristics of the tested induction machines derived from measurement have been compared with the corresponding characteristics calculated with the use of the adopted equivalent circuit with electromagnetic parameters determined according to the presented procedure. Furthermore, the characteristics computed on the basis of the classical machine T-type equivalent circuit, whose electromagnetic parameters had been identified in line with the chosen methodologies reported in the standards PN-EN 60034-28: 2013 and IEEE Std 112TM-2004, have been included in the comparative analysis as well. Additional verification of correctness of identified electromagnetic parameters has been realised through comparison of the steady-state power factor-slip and torque-slip characteristics determined experimentally and through the machine operation simulations carried out with the use of the considered equivalent circuits. The studies concerning induction motors with two types of rotor construction – a conventional single cage rotor and a solid rotor manufactured from magnetic material – have been presented in the paper.
Go to article

Authors and Affiliations

Jarosław Rolek
Grzegorz Utrata
Download PDF Download RIS Download Bibtex

Abstract

Climate change is driving the transformation of energy systems from fossil to renewable energies. In industry, power supply systems and electro-mobility, the need for electrical energy storage is rising sharply. Lithium-based batteries are one of the most widely used technologies. Operating parameters must be determined to control the storage system within the approved operating limits. Operating outside the limits, i.e., exceeding or falling below the permitted cell voltage, can lead to faster aging or destruction of the cell. Accurate cell information is required for optimal and efficient system operation. The key is high-precision measurements, sufficiently accurate battery cell and system models, and efficient control algorithms. Increasing demands on the efficiency and dynamics of better systems require a high degree of accuracy in determining the state of health and state of charge (SOC). These scientific contributions to the above topics are divided into two parts. In the first part of the paper, a holistic overview of the main SOC assessment methods is given. Physical measurement methods, battery modeling, and the methodology of using the model as a digital twin of a battery are addressed and discussed. In addition, adaptive methods and artificial intelligence methods that are important for SOC calculation are presented. Part two of the paper presents examples of the application areas and discusses their accuracy.
Go to article

Authors and Affiliations

Marcel Hallmann
1
ORCID: ORCID
Christoph Wenge
2
ORCID: ORCID
Przemyslaw Komarnicki
1
ORCID: ORCID

  1. Magdeburg–Stendal University of Applied Sciences, Germany
  2. Fraunhofer IFF Magdeburg, Germany
Download PDF Download RIS Download Bibtex

Abstract

The use of lithium-ion battery energy storage (BES) has grown rapidly during the past year for both mobile and stationary applications. For mobile applications, BES units are used in the range of 10–120 kWh. Power grid applications of BES are characterized by much higher capacities (range of MWh) and this area particularly has great potential regarding the expected energy system transition in the next years. The optimal operation of BES by an energy storage management system is usually predictive and based strongly on the knowledge about the state of charge (SOC) of the battery. The SOC depends on many factors (e.g. material, electrical and thermal state of the battery), so that an accurate assessment of the battery SOC is complex. The SOC intermediate prediction methods are based on the battery models. The modeling of BES is divided into three types: fundamental (based on material issues), electrical equivalent circuit (based on electrical modeling) and balancing (based on a reservoir model). Each of these models requires parameterization based on measurements of input/output parameters. These models are used for SOC modelbased calculation and in battery system simulation for optimal battery sizing and planning. Empirical SOC assessment methods currently remain the most popular because they allow practical application, but the accuracy of the assessment, which is the key factor for optimal operation, must also be strongly considered. This scientific contribution is divided into two papers. Paper part I will present a holistic overview of the main methods of SOC assessment. Physical measurement methods, battery modeling and the methodology of using the model as a digital twin of a battery are addressed and discussed. Furthermore, adaptive methods and methods of artificial intelligence, which are important for the SOC calculation, are presented. In paper part II, examples of the application areas are presented and their accuracy is discussed.
Go to article

Bibliography

[1] Komarnicki P., Kranhold M., Styczynski Z., Sektorenkopplung. Energetisch-nachhaltige Wirtschaft der Zukunft, ISBN: 978-3-658-33559-5, Springer Verlag (2021), DOI: 10.1007/978-3-658-33559-5.

[2] Komarnicki P., Lombardi P., Styczynski Z., Elektrische Energiespeichersysteme - Flexibilitätsoptionen für Smart Gridshardcover, ISBN 978-3-662-62801-0, Springer Verlag (2021), DOI: 10.1007/978-3- 662-62802-7.

[3] Forschungsstelle für Energiewirtschaft e.V. (FfE), Abschlussbericht zum Projekt: Kurzstudie Elektromobilität Modellierung für die Szenarienentwicklung des Netzentwicklungsplan, München (2019).

[4] Dechent P., Epp A., Jöst D., Preger Y., Attia P., Li W., Sauer D.U., ENPOLITE: Comparing lithium-ion cells across energy, power, lifetime, and temperature, ACS Energy Letters, vol. 6, pp. 2351–2335 (2021), DOI: 10.1021/acsenergylett.1c00743.

[5] Sterner M., Stadler I., Handbook of energy storage. Demand, technologies, integration, Springer Verlag (2019), DOI: 10.1007/978-3-662-55504-0.

[6] Rudnicki T., Wojcicki S., Metody wyznaczania stanu naladowania akumulatorow stosowane w pojazdach elektrycznych, Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska (in Polish), vol. 3, ISSN 2083-0157 (2014), DOI: 10.5604/20830157.1121381.

[7] Hannam M.A., Lipu M.S.H., Hussain A., Mohamed A., A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations, Renewable and Sustainable Energy Review, vol. 78 pp. 834–854 (2017), DOI: 10.1016/j.rser.2017.05.001.

[8] Dai H., Jiang B., Hu X.-S., Lin X., Wei X., Pecht M., Advance battery management strategies for sustainable energy future: Multilayer design concept and research trends, Renewable and Sustainable Energy Review, vol. 138, p. 110480 (2021), DOI: 10.1016/j.rser.2020.110480.

[9] Waag W., Fleicher C., Sauer D.U., Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles, Journal of Power Sources, vol. 258, pp. 321–339 (2014), DOI: 10.1016/j.jpowsour.2014.02.064.

[10] Zhang Y.-J., Guo C., Liu Y.-G., Ding F., Chen Z., Hao W., A novel strategy for power sources management in connected plug-in hybrid electric vehicles based on mobile edge computation framework, Journal of Power Sources, vol. 477, p. 228650 (2020), DOI: 10.1016/j.jpowsour.2020.228650.

[11] Styczynski P., Lombardi P., Styczynski Z., Electric energy storage systems, Report CIGRE WG C6.15, ISBN: 978-2-85873-147-3, no. 458, CIGRE, Paris (2011), DOI: 10.1007/978-3-662-53275-1.

[12] Rancillo G., Pocha Pinto Lucas A., Kotsakis E., Fulli G., Merlo M., Delfanti M., Masera M., Modelling a large-scale battery energy storage system for power grid application analysis, Energies, vol. 12, no. 17, p. 3312 (2019), DOI: 10.3390/en12173312.

[13] Zeh A., Müller M., Naumann M., Hesse H.C., Jossen A., Witzmann R., Fundamentals of using battery energy storage systems to provide primary control reserves in Germany, Batteries, vol. 2, p. 49 (2016), DOI: 10.3390/batteries2030029.

[14] Komarnicki P., Energy storage systems: power grid and marked use cases, Archives of Electrical Engineering, vol. 65, no. 3, pp. 495–511 (2016), DOI: 10.1515/aee-2016-0036.

[15] Ceran B., A comparative analysis of energy storage technologies, Energy Policy Journal, vol. 21, no. 3, pp. 97–110 (2018), DOI: 10.24425/124498.

[16] Parol M., Rokicki L., Parol S., Towards optimal operation in rural low voltage microgrids, Bul- letin of Polish Academy of Sciences, Technical Sciences, vol. 67, no. 4, pp. 799–812 (2019), DOI: 10.24425/bpasts.2019.130189.

[17] Paliwal N.K., Singh A.K., Singh N.K., Short-term optimal energy management in stand-alone mi- crogrid with battery energy storage, Archives of Electrical Engineering, vol. 67, no. 3, pp. 499–513 (2017), DOI: 10.3390/en13061454.

[18] Kucevica D., Tepe B., Englberger S., Parlikar A., Mühlbauer M., Bohlen O., Jossen A., Hesse H., Standard battery energy storage system profiles: analysis of various applications for stationary energy storage systems using a holistic simulation framework, Journal of Energy Storage, vol. 28, no. 4, p. 101077 (2020), DOI: 10.1016/j.est.2019.101077.

[19] Ghazavidozein M., Gomis-Bellmunt O., Mancarella P., Simultaneous provision of dynamic active and reactive power response from utility-scale battery energy storage system in weak grids, IEEE Transactions on Power System (2021), DOI: 110.1109/TPWRS.2021.3076218.

[20] European Commission, Commission Regulation (EU) 2017/1485 of establishing a guideline on electricity transmission system operation, Official Journal of the European Union, vol. 220, pp. 1–120 (2017).

[21] Li X.-J., Yao L.-Z., Hui D., Optimal control and management of a large-scale battery energy storage system to mitigate fluctuation and intermittence of renewable generations, Journal of Modern Power Systems and Clean Energy, vol. 4, no. 4, pp. 593–603 (2016), DOI: 10.1007/s40565-016-0247-y.

[22] Podder S., Khan M.Z.R., Comparison of lead acid and Li-ion battery in solar home system of Bangladesh, 5th International Conference on Informatics, Electronics and Vision (ICIEV), pp. 434–438 (2016), DOI: 10.1109/ICIEV.2016.7760041.

[23] Hoppmann J., Volland J., Schmidt T.S., Hoffmann V.H., The economic viability of battery storage for residential solar photovoltaic systems – a review and a simulation model, Renewable and Sustainable Energy Reviews, vol. 39, pp. 1101–1118 (2014), DOI: 10.1016/j.rser.2014.07.068.

[24] Zhang R., Xia B., Li B., Cao L., Lai Y., Zheng W., Wang H., Wang W., State of the art of lithium-ion battery SOC estimation for electrical vehicles, Energies, vol. 11, no. 7, p. 1820 (2018), DOI: 10.3390/en11071820.

[25] Hallmann M., Wenge C., Komarnicki P., Evaluation methods for battery storage systems, IEEE 12th International Conference on Electrical Power Quality and Utilization (EPQU) (2020), DOI: 10.1109/EPQU50182.2020.9220321.

[26] Khandorin M.M., Estimation of the residual capacity of a lithium-ion battery in real time, (in Russian), in Khandorin M.M., Bukreev V.G. (eds.), Electrochemical power engineering (in Russian), pp. 65–693 (2014).

[27] May G.J., Standby batteries requirements for telecommunications power, Journal of Power Sources, vol. 158, no. 2, pp. 1117–1123 (2006), DOI: 10.1016/j.jpowsour.2006.02.083.


 [28] Wikipedia, Electrical System of the International Space Station, https://en.wikipedia.org/wiki/Elect rical_system_of_the_International_Space_Station, accessed April 2021.

[29] Heussen K., Koch S., Ubig A., Anderson G., Unified system-level modeling of intermittent renewable energy sources and energy storage for power system operation, IEEE System Journal, vol. 6, no. 1, pp. 140–151 (2011), DOI: 10.1109/JSYST.2011.2163020.

[30] Buchholz B., Frey H., Lewaldt N., Stephanblome T., Schwagerl C., Styczynski Z.A., Advanced planning and operation of dispersed generation ensuring power quality, security and efficiency in distribution systems, CIGRE 2004, Invited paper C6-206, CD-ROM, Paris (2004).

[31] Codeca F., Savaresi S.M., Manzoni V., The mix estimation algorithm for battery state-of-charge estimator: analysis of the sensitivity to measurement errors, Proceedings of the 48th IEEE Con- ference on Decision and Control, held jointly with 28th Chinese Control Conference (2009),  DOI: 10.1109/CDC.2009.5399759.

[32] Nejad S., Gladwin D.T., Stone D.A., Enhanced state-of-charge estimation for lithium-ion iron phosphate cells with flat open-circuit voltage curves, IECON2015-Yokohama, Japan (2015),  DOI: 10.1109/IECON.2015.7392591.

[33] Huria T., Ceraolo M., Gazzarri J., Jackey R., Simplified extended Kalman filter observer for SOC estimation of commercial power-oriented LFP lithium battery cells, SAE World Congress, Technical Paper Series (2013), DOI: 10.4271/2013-01-1544.

[34] Baccouche I., Jemmali S., Manai B., Omar N., Amara N., Improved OCV model of a li-ion NMC battery for online SOC estimation using the extended Kalman filter, Energies, vol. 10, no. 6, p. 764 (2017), DOI: 10.3390/en10060764.

[35] Zhang C., Jiang J., Zhang L., Liu S., Wang L., Loh P., A generalized SOC-OCV model for lithium- ion batteries and the SOC estimation for LNMCO battery, Energies, vol. 9, no. 11, p. 900 (2016), DOI: 10.3390/en9110900.

[36] Zheng Y., Ouyang M., Han X., Lu L., Li J., Investigating the error sources of the online state of charge estimation methods for lithium-ion batteries in electric vehicles, Journal of Power Sources, vol. 377, pp. 161–188 (2018), DOI: 10.1016/j.jpowsour.2017.11.094.

[37] Chen M., Rincon-Mora G.A., Accurate electrical battery model capable of predicting runtime and I–V performance, IEEE Transactions on Energy Conversion, vol. 21, no. 2, pp. 504–511 (2006), DOI: 10.1109/TEC.2006.874229.

[38] Thanagasundram S., Arunachala R., Makinejad K., Teutsch T., Jossen A., A cell level model for battery simulation, European Electric Vehicle Congress Brussels, Belgium (2012).

[39] Feng J.-H., Yang L., Zhao X.-W., Zhang H.-D., Qiang J., Online identification of lithium-ion bat- tery parameters based on an improved equivalent-circuit model and its implementation on battery state-of-power prediction, Journal of Power Sources, vol. 281, pp. 192–203 (2015), DOI: 10.1016/j.jpowsour.2015.01.154.

[40] Rivera-Barrera J., Muñoz-Galeano N., Sarmiento-Maldonado H., SoC Estimation for lithium-ion Bat- teries: review and future challenges, Electronics, vol. 6, no. 4, p. 102 (2017), DOI: 10.3390/electronics6040102.

[41] He H., Xiong R., Fan J., Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach, Energies, vol. 4, no. 4, pp. 582–598 (2011), DOI: 10.3390/en4040582.

[42] Li Z., Huang J., Kiaw B.Y., Zjhang J., On state of charge determination for lithium-ion batteries, Journal of Power Sources, vol. 348, pp. 281–301 (2017), DOI: 10.1016/j.jpowsour.2017.03.001.

<[43] Attanayaka A., Karunadasa J.P., Hemapala K., Estimation of state of charge for lithium-ion batteries – a review, AIMS Energy, vol. 7, no. 2, pp. 186–210 (2019), DOI: 10.3934/energy.2019.2.186.

[44] Fleicher C., Waag W., Hey H.-M., Sauer D.U., On-line adaptive impedance parameter and state estimation considering physical principles in reduced order equivalent circuit battery models: Part 2. Parameter and state estimation, Journal of Power Sources, vol. 262, pp. 457–482 (2014), DOI: 10.1016/j.jpowsour.2014.03.046.

[45] Zhang C., Allafi W., Dinh Q., Ascencio P., Marco J., Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique, Energy, vol. 142, pp. 678–688 (2018), DOI: 10.1016/j.energy.2017.10.043.

[46] Keil P., Jossen A., Aufbau und Parametrierung von Batteriemodellen. 19. DESIGN&ELEKTRONIK- Entwicklerforum Batterien & Ladekonzepte, München (2012), https://mediatum.ub.tum.de/doc/1162416/1162416.pdf, accessed April 2021.

[47] El Mejdoubi A., Oukaour A., Chaoui H., Gualous H., Sabor J., Slamani Y., State-of-charge and state-of- health lithium-ion batteries’ diagnosis according to surface temperature variation, IEEE Transactions on Industrial Electronics, vol. 63, no. 4, pp. 2391–2402 (2016), DOI: 10.1109/TIE.2015.2509916.

[48] Chang W.-Y., The state of charge estimating methods for battery: a review, ISRN Applied Mathematics, pp. 1–7 (2013), DOI: 10.1155/2013/953792.

[49] Kalman R.E., A new approach to linear filtering and prediction problems, Journal of Basic Engineering, vol. 82, no. 1, pp. 35–45 (1960), DOI: 10.1115/1.3662552.

[50] Meng J., Ricco M., Luo G., Swierczynski M., Stroe D.-I., Stroe A.-I., Teodorescu R., An overview and comparison of online implementable SOC estimation methods for lithium-ion battery, IEEE Transactions on Industry Applications, vol. 54, no. 2, pp. 1583–1591 (2018), DOI: 10.1109/TIA.2017.2775179.

[51] Duong V.H., Bastawrous H.A., Lim K.C., See K.W., Zhang P., Dou S.X., SOC estimation for LiFePO4 battery in EVs using recursive least-squares with multiple adaptive forgetting factors, 2014 International Conference on Connected Vehicles and Expo (ICCVE) (2014), DOI: 10.1109/IC-CVE.2014.7297603.

[52] Xia B., Huang R., Lao Z., Zhang R., Lai Y., Zheng W., Wang M., Online parameter identification of lithium-ion batteries using a novel multiple forgetting factor recursive least square algorithm, Energies, vol. 11, no. 11, p. 3180 (2018), DOI: 10.3390/en11113180.

[53] Sun X., Ji J., Ren B., Xie C., Yan D., Adaptive forgetting factor recursive least square algorithm for online identification of equivalent circuit model parameters of a lithium-ion battery, Energies, vol. 12, no. 12, p. 2242 (2019), DOI: 10.3390/en12122242.

[54] Chandra Shekar A., Anwar S., Real-time state-of-charge estimation via particle swarm optimization on a lithium-ion electrochemical cell model, Batteries, vol. 5, no. 1, p. 4 (2019), DOI: 10.3390/batteries5010004.

[55] Qays M.O., Buswig Y., Anyi M., Active cell balancing control method for series-connected lithium-ion battery, International Journal of Innovative Technology and Exploring Engineering (IJITEE) (2019), DOI: 10.35940/ijitee.i8905.078919.

[56] Zhang C.-W., Chen S.-R., Gao H.-B., Xu K.-J., Yang M.-Y., State of charge estimation of power battery using improved back propagation neural network, Batteries, vol. 4, no. 4, p. 69 (2018), DOI: 10.3390/batteries4040069.

[57] Jiménez-Bermejo D., Fraile-Ardanuy J., Castaño-Solis S., Merino J., Álvaro-Hermana R., Using dynamic neural networks for battery state of charge estimation in electric vehicles, Procedia Computer Science, vol. 130, pp. 533–540 (2018), DOI: 10.1016/j.procs.2018.04.077.

[58] Thirugnanam K., Ezhil Reena Joy T.P., Singh M., Kumar P., Mathematical modeling of li-ion battery using genetic algorithm approach for V2G applications, IEEE Transactions on Energy Conversion, vol. 29, no. 2, pp. 332–343 (2014), DOI: 10.1109/TEC.2014.2298460.

[59] Liu F., Ma J., Su W., Unscented particle filter for SOC estimation algorithm based on a dynamic parameter identification, Mathematical Problems in Engineering, no. 6, pp. 1–14 (2019), DOI: 10.1155/2019/7452079.

[60] Rozaqi L., Rijanto E., SOC estimation for li-ion battery using optimum RLS method based on genetic algorithm, 8th International Conference on Information Technology and Electrical Engineering (ICITEE) (2016), DOI: 10.1109/ICITEED.2016.7863224.

[61] Styczynski Z., Rudion K., Naumann A., Einführung in Expertensysteme, Springer Verlag (2018).

[62] Wei K., Wu J., Ma W., Li H., State of charge prediction for UAVs based on support vector machine, 7th International Symposium on Test Automation and Instrumentation (ISTAI) (2018), DOI: 10.1049/joe.2018.9201.

[63] Zhang W., Wang W., Lithium-ion battery SoC estimation based on online support vector regression, 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC) (2018), DOI: 10.1109/YAC.2018.8406438.

[64] Alvarez Anton J.C., Garcia Nieto P.J., Blanco Viejo C., Vilan Vilan J.A., Support vector machines used to estimate the battery state of charge, IEEE Transactions on Power Electronics, vol. 28, no. 12, pp. 5919–5926 (2013), DOI: 10.1109/TPEL.2013.2243918.

[65] Rupp S., Modellierung von Anlagen und Systemen Teil 1, DHBW, CAS 2017, www.srupp.de/ENT/ TM20305_1_Modellierung_von_Anlagen_und_Systemen.pdf+&cd=1&hl=en&ct=clnk&gl=de, ac- cessed July 2021,

[66] Wenge C., Pietracho R., Balischewski S., Arendarski B., Lombardi P., Komarnicki P., Kasprzyk L., Multi Usage Applications of Li-Ion Battery Storage in a Large Photovoltaic Plant: A Practical Experience, Energies, vol. 13, no. 18, 4590 (2020), DOI: 10.3390/en13184590.

[67] Dambrowski J., Methoden der Ladezustandsbestimmung – mit Blick auf LiFePO4=Li4Ti5O 12-Systeme.


Go to article

Authors and Affiliations

Marcel Hallmann
1
ORCID: ORCID
Christoph Wenge
2
ORCID: ORCID
Przemyslaw Komarnicki
1
ORCID: ORCID
Stephan Balischewski
2
ORCID: ORCID

  1. Magdeburg-Stendal University of Applied Sciences, Germany
  2. Fraunhofer IFF Magdeburg, Germany

This page uses 'cookies'. Learn more