Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This study investigated the quantity and distribution of extracellular polymeric substances (EPS) in aerobic granules. Results showed that EPS play an important role in the formation and stabilisation of granules. The content of EPS significantly increases during the first weeks of biogranulation. An analysis of EPS in the granules revealed that the protein level was 5 times higher than in polysaccharides. The increase of protein content correlated with the growth of cell hydrophobicity (r2 = 0.95). EPS and hydrophobicity are important factors in cell adhesion and formation of granules.

The aim of this work was also to determine the distribution of EPS in the granule structure. In situ EPS staining showed that EPS are located mostly in the center of granules and in the subsurface layer. The major components of the EPE matrix are proteins, nucleic acids and β-polysaccharides. These observations confirm the chemical extraction data and indicate that granule formation and stability are dependent on protein content.

Go to article

Authors and Affiliations

Korneliusz Miksch
Beata Kończak
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The main goal of the present study was to examine the operating characteristics and mechanisms of membrane fouling in integrated membrane bioreactors (IMBRs) at diff erent temperatures. Two IMBRs, each with identical dimensions and confi gurations, were used in the study using synthetic domestic sewage at a low temperature (10°C) and high temperature (25°C). The results indicated that the removal effi ciency of chemical oxygen demand reached 93–96%, but the membrane contribution rate of IMBR2 (10°C) was higher than that of IMBR1 (25°C). The separation burden of the membrane on organic compounds increased at low temperature, which may have sped up the rate of membrane biofouling. The absolute rate of trans-membrane pressure build-up was faster at low temperature, leading to shorter IMBR operating times. Soluble microbial products (SMPs) and extracellular polymeric substances (EPSs) in the IMBRs signifi cantly increased at low temperature. These substances intensifi ed defl occulation, with an accompanying reduction of fl oc size and the release of EPSs at low temperature, which facilitated the formation of cake foulants on the surface, covering the entire membrane area. The protein and polysaccharide concentrations of SMPs and EPSs in the IMBRs were correlated with the concentration of C8-HSL. It was demonstrated that temperature aff ected the concentration of C8-HSL, which controlled the excretion of EPSs and SMPs and thus the membrane biofouling process.

Go to article

Authors and Affiliations

Yaqin Yu
1

  1. Department of Civil Engineering, Yancheng Institute of Technology, China

This page uses 'cookies'. Learn more