Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 21
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

An intelligent boundary switch is a three-phase outdoor power distribution device equipped with a controller. It is installed at the boundary point on the medium voltage overhead distribution lines. It can automatically remove the single-phase-to-ground fault and isolation phase-to-phase short-circuit fault. Firstly, the structure of an intelligent boundary switch is studied, and then the fault detection principle is also investigated. The single-phase-to-ground fault and phase-to-phase short-circuit fault are studied respectively. A method using overcurrent to judge the short-circuit fault is presented. The characteristics of the single-phase-to-ground fault on an ungrounded distribution system and compositional grounded distribution system are analyzed. Based on these characteristics, a method using zero sequence current to detect the single-phase-to-ground fault is proposed. The research results of this paper give a reference for the specification and use of intelligent boundary switches.

Go to article

Authors and Affiliations

Ling Liu
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

This paper focuses on testing the monitoring system of the Direct Current motor. This system gives the possibility of diagnosing various types of failures by means of analysis of acoustic signals. The applied method is based on a study of acoustic signals generated by the DC motor. A study plan of the DC motor’s acoustic signal was proposed. Studies were conducted for a faultless DC motor and Direct Current motor with 3 shorted rotor coils. Coiflet wavelet transform and K-Nnearest neighbor classifier with Euclidean distance were used to identify the incipient fault. This approach keeps the motor operating in acceptable condition for a long time and is also inexpensive.
Go to article

Authors and Affiliations

Adam Glowacz
Download PDF Download RIS Download Bibtex

Abstract

Minimum Entropy Deconvolution (MED) has been recently introduced to the machine condition monitoring field to enhance fault detection in rolling element bearings and gears. MED proved to be an excellent aid to the extraction of these impulses and diagnosing their origin, i.e. the defective component of the bearing. In this paper, MED is revisited and re-introduced with further insights into its application to fault detection and diagnosis in rolling element bearings. The MED parameter selection as well as its combination with pre-whitening is discussed. Two main cases are presented to illustrate the benefits of the MED technique. The first one was taken from a fan bladed test rig. The second case was taken from a wind turbine with an inner race fault. The usage of the MED technique has shown a strong enhancement for both fault detection and diagnosis. The paper contributes to the knowledge of fault detection of rolling element bearings through providing an insight into the usage of MED in rolling element bearings diagnostic. This provides a guide for the user to select optimum parameters for the MED filter and illustrates these on new interesting cases both from a lab environment and an actual case.

Go to article

Authors and Affiliations

Tomasz Barszcz
Nader Sawalhi
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the influence of impact damage to the induction motors on the zero-sequence voltage and its spectrum is presented. The signals detecting the damages result from a detailed analysis of the formula describing this voltage component which is induced in the stator windings due to core magnetic saturation and the discrete displacement of windings. Its course is affected by the operation of both the stator and the rotor. Other fault detection methods, are known and widely applied by analysing the spectrum of stator currents. The presented method may be a complement to other methods because of the ease of measurements of the zero voltage for star connected motors. Additionally, for converter fed motors the zero sequence voltage eliminates higher time harmonics displaced by 120 degrees. The results of the method application are presented through measurements and explained by the use of a mathematical model of the slip-ring induction motor.
Go to article

Authors and Affiliations

Piotr Drozdowski
Arkadiusz Duda
Download PDF Download RIS Download Bibtex

Abstract

As it is found in the related published literatures, the transfer function (TF) evaluation method is the most feasible method for detection of winding mechanical faults in transformers. Therefore, investigation of an accurate method for evaluation of the TFs is very important. This paper presents three new indices to compare the transformer TFs and consequently to detect the winding mechanical faults. These indices are based on estimated rational functions. To develop the method, the necessary measurements are carried out on a 1.3 MVA transformer winding, under intact condition, as well as different fault conditions (axial displacement of winding). The obtained results demonstrate the high potential of proposed method in comparison with two other well-known indices. Additionally, two important methods for describing TFs by rational functions are studied and compared in this paper.

Go to article

Authors and Affiliations

Mehdi Bigdeli
Mehdi Vakilian
Ebrahim Rahimpour
Download PDF Download RIS Download Bibtex

Abstract

Wind turbines are nowadays one of the most promising energy sources. Every year, the amount of energy produced from the wind grows steadily. Investors demand turbine manufacturers to produce bigger, more efficient and robust units. These requirements resulted in fast development of condition-monitoring methods. However, significant sizes and varying operational conditions can make diagnostics of the wind turbines very challenging.

The paper shows the case study of a wind turbine that had suffered a serious rolling element bearing (REB) fault. The authors compare several methods for early detection of symptoms of the failure. The paper compares standard methods based on spectral analysis and a number of novel methods based on narrowband envelope analysis, kurtosis and cyclostationarity approach.

The very important problem of proper configuration of the methods is addressed as well. It is well known that every method requires setting of several parameters. In the industrial practice, configuration should be as standard and simple as possible. The paper discusses configuration parameters of investigated methods and their sensitivity to configuration uncertainties

Go to article

Authors and Affiliations

Jacek Urbanek
Tomasz Barszcz
Tadeusz Uhl
Download PDF Download RIS Download Bibtex

Abstract

Turbines and generators operating in the power generation industry are a major source of electrical energy worldwide. These are critical machines and their malfunctions should be detected in advance in order to avoid catastrophic failures and unplanned shutdowns. A maintenance strategy which enables to detect malfunctions at early stages of their existence plays a crucial role in facilities using such types of machinery. The best source of data applied for assessment of the technical condition are the transient data measured during start-ups and coast-downs. Most of the proposed methods using signal decomposition are applied to small machines with a rolling element bearing in steady-state operation with a shaft considered as a rigid body. The machines examined in the authors’ research operate above their first critical rotational speed interval and thus their shafts are considered to be flexible and are equipped with a hydrodynamic sliding bearing. Such an arrangement introduces significant complexity to the analysis of the machine behavior, and consequently, analyzing such data requires a highly skilled human expert. The main novelty proposed in the paper is the decomposition of transient vibration data into components responsible for particular failure modes. The method is automated and can be used for identification of turbogenerator malfunctions. Each parameter of a particular decomposed function has its physical representation and can help the maintenance staff to operate the machine properly. The parameters can also be used by the managing personnel to plan overhauls more precisely. The method has been validated on real-life data originating from a 200 MW class turbine. The real-life field data, along with the data generated by means of the commercial software utilized in GE’s engineering department for this particular class of machines, was used as the reference data set for an unbalanced response during the transients in question.
Go to article

Authors and Affiliations

Tomasz Barszcz
1
Mateusz Zabaryłło
2

  1. AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
  2. GE Power, ul. Stoczniowa 2, 82-300 Elblag, Poland
Download PDF Download RIS Download Bibtex

Abstract

This study offers two Support Vector Machine (SVM) models for fault detection and fault classification, respectively. Different short circuit events were generated using a 154 kV transmission line modeled in MATLAB/Simulink software. Discrete Wavelet Transform (DWT) is performed to the measured single terminal current signals before fault detection stage. Three level wavelet energies obtained for each of three-phase currents were used as input features for the detector. After fault detection, half cycle (10 ms) of three-phase current signals was recorded by 20 kHz sampling rate. The recorded currents signals were used as input parameters for the multi class SVM classifier. The results of the validation tests have demonstrated that a quite reliable, fault detection and classification system can be developed using SVM. Generated faults were used to training and testing of the SVM classifiers. SVM based classification and detection model was fully implemented in MATLAB software. These models were comprehensively tested under different conditions. The effects of the fault impedance, fault inception angle, mother wavelet, and fault location were investigated. Finally, simulation results verify that the offered study can be used for fault detection and classification on the transmission line.
Go to article

Bibliography

  1.  M.M. Saha, J. Izykowski, and E. Rosolowski, Fault location on power networks. London: Springer, 2010.
  2.  M.B. Chatterjee and S. Debnath, “Cross correlation aided fuzzy based relaying scheme for fault classification in transmission lines,” Eng. Sci. Technol. Int J., vol. 23, no. 3, pp. 534–543, 2020, doi: 10.1016/j.jestch.2019.07.002.
  3.  A. Mukherjee, P.K. Kundu, and A. Das, “Classification and localization of transmission line faults using curve fitting technique with Principal component analysis features,” Electr. Eng., 2021, doi: 10.1007/s00202-021-01285-7.
  4.  R. Godse and S. Bhat, “Mathematical Morphology-Based Feature-Extraction Technique for Detection and Classification of Faults on Power Transmission Line,” IEEE Access, vol. 8, pp. 38459–38471, 2020, doi: 10.1109/access.2020.2975431.
  5.  Y. Liu, Y. Zhu, and K.Wu, “CNN-Based Fault Phase Identification Method of Double Circuit Transmission Lines,” Electr. Power Compon. Syst., vol. 48, no. 8, pp. 833–843, 2020, doi: 10.1080/15325008.2020.1821836.
  6.  M. Paul and S. Debnath, “Fault Detection and Classification Scheme for Transmission Lines Connecting Windfarm Using Single end Impedance,” IETE J. Res., pp. 1–13, 2021, doi: 10.1080/03772063.2021.1886601.
  7.  Y. Aslan and Y. E. Yağan, “Artificial neural-networkbased fault location for power distribution lines using the frequency spectra of fault data,” Electr. Eng., vol. 99, no. 1, pp. 301–311, 2016, doi: 10.1007/s00202-016-0428-8.
  8.  S. Ekici, “Support Vector Machines for classification and locating faults on transmission lines,” Appl. Soft Comput., vol. 12, no. 6,pp. 1650– 1658, 2012, doi: 10.1016/j.asoc.2012.02.011.
  9.  S.R. Samantaray, “A systematic fuzzy rule based approach for fault classification in transmission lines,” Appl. Soft Comput., vol. 13, no. 2, pp. 928–938, 2013, doi: 10.1016/j.asoc.2012.09.010.
  10.  S.R. Samantaray, P.K. Dash, and G. Panda, “Fault classification and location using HS-transform and radial basis function neural network,” Electr. Power Syst. Res., vol. 76, no. 9‒10, pp. 897–905, 2006, doi: 10.1016/j.epsr.2005.11.003.
  11.  A.A. Girgis and E.B. Makram, “Application of adaptive Kalman filtering in fault classification, distance protection, and fault location using microprocessors,” IEEE Trans. Power Syst., vol. 3, no. 1, pp. 301–309, 1988, doi: 10.1109/59.43215.
  12.  N. Ramesh Babu and B. Jagan Mohan, “Fault classification in power systems using EMD and SVM,” Ain Shams Eng. J., vol. 8, no. 2, pp. 103–111, 2017, doi: 10.1016/j.asej.2015.08.005.
  13.  F. Martin and J.A. Aguado, “Wavelet-based ann approach for transmission line protection,” IEEE Trans. Power Deliv., vol. 18, no. 4, pp. 1572–1574, 2003, doi: 10.1109/tpwrd.2003.817523.
  14.  O.A.S. Youssef, “Combined Fuzzy-Logic Wavelet-Based Fault Classification Technique for Power System Relaying,” IEEE Trans. Power Deliv., vol. 19, no. 2, pp. 582–589, 2004, doi: 10.1109/tpwrd.2004.826386.
  15.  A. Yadav and Y. Dash, “An Overview of Transmission Line Protection by Artificial Neural Network: Fault Detection, Fault Classification, Fault Location, and Fault Direction Discrimination,” Adv. Artif. Neural Syst., vol. 2014, pp. 1–20, 2014, doi: 10.1155/2014/230382.
  16.  M. Fikri and M.A.H. El-Sayed, “New algorithm for distance protection of high voltage transmission lines,” IEE Proc. C Gener. Transm. Distrib., vol. 135, no. 5, p. 436, 1988, doi: 10.1049/ip-c.1988.0056.
  17.  S. Mallat, “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation,” Fundamental Papers in Wavelet Theory, 2009, pp. 494–513, doi: 10.1109/34.192463.
  18.  R. Salat and S. Osowski, “Accurate Fault Location in the Power Transmission Line Using Support Vector Machine Approach,” IEEE Trans. Power Syst., vol. 19, no. 2, pp. 979–986, 2004, doi: 10.1109/tpwrs.2004.825883.
  19.  P.K. Dash, S.R. Samantaray, and G. Panda, “Fault Classification and Section Identification of an Advanced Series-Compensated Transmission Line Using Support Vector Machine,” IEEE Trans. Power Deliv., vol. 22, no. 1, pp. 67–73, 2007, doi: 10.1109/tpwrd.2006. 876695.
  20.  V. Vapnik, “The Support Vector Method of Function Estimation,” Nonlinear Modeling, 1998, pp. 55–85, doi: 10.1007/978-1-4615-5703- 6_3.
  21.  Chih-Wei Hsu and Chih-Jen Lin, “A comparison of methods for multiclass support vector machines,” IEEE Trans. Neural Netw., vol. 13, no. 2, pp. 415–425, 2002, doi: 10.1109/72.991427.
  22.  S. Knerr, L. Personnaz, and G. Dreyfus, “Single-layer learning revisited: a stepwise procedure for building and training a neural network,” Neurocomputing, pp. 41–50, 1990, doi: 10.1007/978-3-642-76153-9_5.
  23.  J. Manit and P. Youngkong, Neighborhood components analysis in sEMG signal dimensionality reduction for gait phase pattern recognition. 7th Int. Conf. on Broadband Communications and Biomedical Applications, 2011, doi: 10.1109/IB2Com.2011.6217897.
  24.  M. Akdag and S. Rustemli, “Transmission line fault location: Simulation of real faults using wavelet transform based travelling wave methods,” Bitlis Eren Univ. J. Sci. Technol., vol. 9, no. 2, pp. 88–98, 2019, doi: 10.17678/beuscitech.653273.
  25.  N. Perera and A.D. Rajapakse, “Recognition of Fault Transients Using a Probabilistic Neural-Network Classifier,” IEEE Trans. Power Deliv., vol. 26, no. 1, pp. 410–419, 2011, doi: 10.1109/tpwrd.2010.2060214.
  26.  D. Gogolewski and W. Makiela, “Problems of Selecting the Wavelet Transform Parameters in the Aspect of Surface Texture Analysis,” TEH VJESN, vol. 28, no. 1, 2021, doi: 10.17559/tv-20190312141348.
  27.  J. Ypsilantis et al., “Adaptive, rule based fault diagnostician for power distribution networks,” IEE Proc. C Gener. Transm. Distrib., vol. 139, no. 6, p. 461, 1992, doi: 10.1049/ip-c.1992.0064.
  28.  F.B. Costa, “Fault-Induced Transient Detection Based on Real-Time Analysis of the Wavelet Coefficient Energy,” IEEE Trans. Power Deliv., vol. 29, no. 1, pp. 140–153, 2014, doi: 10.1109/tpwrd.2013.2278272.
  29.  P. Kapler, “An application of continuous wavelet transform and wavelet coherence for residential power consumer load profiles analysis,” Bull. Pol. Acad Sci. Tech. Sci., vol. 69, no. 1, 2021, doi: 10.24425/bpasts.2020.136216.
  30.  Y.Q. Chen, O. Fink, and G. Sansavini, “Combined Fault Location and Classification for Power Transmission Lines Fault Diagnosis With Integrated Feature Extraction,” IEEE Trans. Ind. Electron., vol. 65, no. 1, pp. 561–569, 2018, doi: 10.1109/TIE.2017.2721922.
  31.  G. Revati and B. Sunil, “Combined morphology and SVM-based fault feature extraction technique for detection and classification of transmission line faults,” Turk. J. Electr. Eng. Comput. Sci., vol. 28, no. 5, pp. 2768–2788, 2020, doi: 10.3906/elk-1912-7.
  32.  B.Y. Vyas, R.P. Maheshwari, and B. Das, “Versatile relaying algorithm for detection and classification of fault on transmission line,” Electr. Power Syst. Res., vol. 192, p. 106913, 2021, doi: 10.1016/j.epsr.2020.106913.
Go to article

Authors and Affiliations

Melih Coban
1 2
ORCID: ORCID
Suleyman S. Tezcan
2
ORCID: ORCID

  1. Bolu Abant Izzet Baysal University, Bolu, Turkey
  2. Gazi University, Ankara, Turkey
Download PDF Download RIS Download Bibtex

Abstract

This article discusses a system of recognition of acoustic signals of loaded synchronous motor. This software can recognize various types of incipient failures by means of analysis of the acoustic signals. Proposed approach uses the acoustic signals generated by loaded synchronous motor. A plan of study of the acoustic signals of loaded synchronous motor is proposed. Studies include following states: healthy loaded synchronous motor, loaded synchronous motor with shorted stator coil, loaded synchronous motor with shorted stator coil and broken coil, loaded synchronous motor with shorted stator coil and two broken coils. The methods such as FFT, method of selection of amplitudes of frequencies (MSAF-5), Linear Support Vector Machine were used to identify specific state of the motor. The proposed approach can keep high recognition rate and reduce the maintenance cost of synchronous motors.
Go to article

Authors and Affiliations

Adam Glowacz
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a methodology for parametric fault clustering in analog electronic circuits with the use of a self-organizing artificial neural network. The method proposed here allows fast and efficient circuit diagnosis on the basis of time and/or frequency response which may lead to higher production yield. A self-organizing map (SOM) has been applied in order to cluster all circuit states into possible separate groups. So, it works as a feature selector and classifier. SOM can be fed by raw data (data comes from the time or frequency response) or some pre-processing is done at first. The author proposes conversion of a circuit response with the use of e.g. gradient and differentiation. The main goal of the SOM is to distribute all single faults on a two-dimensional map without state overlapping. The method is aimed for the development stage because the tolerances of elements are not taken into account, however single but parametric faults are considered. Efficiency analyses of fault clustering have been made on several examples e.g. a Sallen-Key BPF and an ECG amplifier. Testing procedure is performed in time and frequency domains for the Sallen-Key BPF with limited number of test points i.e. it is assumed that only input and output pins are available. A similar procedure has been applied to a real ECG amplifier in the frequency domain. Results prove a high efficiency in acceptable time which makes the method very convenient (easy and quick) as a first test in the development stage.

Go to article

Authors and Affiliations

Damian Grzechca
Download PDF Download RIS Download Bibtex

Abstract

A comprehensive characterization of four selected fault distinguishability methods is presented herein. All considered methods are derived from structural residual approaches referring to model-based diagnostics. In particular, these methods are based on a binary diagnostic matrix, fault isolation system, sequences of symptoms, and their combinations. Fault distinguishability issues are discussed based on an example of four pressure vessel system. Substantial benefits are shown in fault distinguishability figures obtained by utilising extended knowledge regarding fault-symptom relation. Finally, the values of three fault distinguishability metrics are calculated for each method. For the case study, the highest score is achieved using the multivalued fault isolation method combined with a diagnosis utilising information regarding the antecedence of symptoms.

Go to article

Authors and Affiliations

J.M. Kościelny
M. Bartyś
K. Rostek
Download PDF Download RIS Download Bibtex

Abstract

The paper focuses on the problem of robust fault detection using analytical methods and soft computing. Taking into account the model-based approach to Fault Detection and Isolation (FDI), possible applications of analytical models, and first of all observers with unknown inputs, are considered. The main objective is to show how to employ the bounded-error approach to determine the uncertainty of soft computing models (neural networks and neuro-fuzzy networks). It is shown that based on soft computing models uncertainty defined as a confidence range for the model output, adaptive thresholds can be described. The paper contains a numerical example that illustrates the effectiveness of the proposed approach for increasing the reliability of fault detection. A comprehensive simulation study regarding the DAMADICS benchmark problem is performed in the final part.

Go to article

Authors and Affiliations

J. Korbicz
Download PDF Download RIS Download Bibtex

Abstract

This article presents combined approach to analog electronic circuits testing by means of evolutionary methods (genetic algorithms) and using some aspects of information theory utilisation and wavelet transformation. Purpose is to find optimal excitation signal, which maximises probability of fault detection and location. This paper focuses on most difficult case where very few (usually only input and output) nodes of integrated circuit under test are available.

Go to article

Authors and Affiliations

Ł. Chruszczyk
D. Grzechca
J. Rutkowski
Download PDF Download RIS Download Bibtex

Abstract

One of the most important issues that power companies face when trying to reduce time and cost maintenance is condition monitoring. In electricity market worldwide, a significant amount of electrical energy is produced by synchronous machines. One type of these machines is brushless synchronous generators in which the rectifier bridge is mounted on rotating shafts. Since bridge terminals are not accessible in this type of generators, it is difficult to detect the possible faults on the rectifier bridge. Therefore, in this paper, a method is proposed to facilitate the rectifier fault detection. The proposed method is then evaluated by applying two conventional kinds of faults on rectifier bridges including one diode open-circuit and two diode open-circuit (one phase open-circuit of the armature winding in the auxiliary generator in experimental set). To extract suitable features for fault detection, the wavelet transform has been used on recorded audio signals. For classifying faulty and healthy states, K-Nearest Neighbours (KNN) supervised classification method was used. The results show a good accuracy of the proposed method.

Go to article

Authors and Affiliations

Mehdi Rahnama
Abolfazl Vahedi
Download PDF Download RIS Download Bibtex

Abstract

The smart grid concept is predicated upon the pervasive use of advanced digital communication, information techniques, and artificial intelligence for the current power system, to be more characteristics of the real-time monitoring and controlling of the supply/demand. Microgrids are modern types of power systems used for distributed energy resource (DER) integration. However, the microgrid energy management, the control, and protection of microgrid components (energy sources, loads, and local storage units) is an important challenge. In this paper, the distributed energy management algorithm and control strategy of a smart microgrid is proposed using an intelligent multi-agent system (MAS) approach to achieve multiple objectives in real-time. The MAS proposed is developed with co-simulation tools, which the microgrid model, simulated using MATLAB/Simulink, and the MAS algorithm implemented in JADE through a middleware MACSimJX. The main study is to develop a new approach, able to communicate a multi-task environment such as MAS inside the S-function block of Simulink, to achieve the optimal energy management objectives.

Go to article

Authors and Affiliations

Mohamed Azeroual
Tijani Lamhamdi
Hassan El Moussaoui
Hassane El Markhi
Download PDF Download RIS Download Bibtex

Abstract

The development in industrial systems leads to the augmentation in the consumption of the power. Therefore, this development makes use of multiphase machines. The use of multiphase machines caused several problems and defects. Electrical energy is mainly distributed in a three-phase system to provide the electrical power necessary for the electrical engineering equipment and materials. The sinusoidal aspect of the required original voltage primarily preserves its essential qualities for transmitting useful power to terminal equipment. When the voltage waveform is no longer sinusoidal, perturbations are encountered, which generate malfunctions and overheating of the receivers and the equipment connected to the same electrical supply network. The main disturbing phenomena are harmonics, voltage fluctuations, voltage unbalances, electromagnetic fields, and electrostatic discharges. This present work aims to study the effects of harmonic pollution and voltage unbalance on the five-phase permanent magnet synchronous machine using spectrum current analysis and wavelet transform.
Go to article

Authors and Affiliations

Ahmed Amine Kebir
1
ORCID: ORCID
Mouloud Ayad
1
ORCID: ORCID
Saoudi Kamel
1
ORCID: ORCID

  1. LPM3E Laboratory, Faculty of Sciences and Applied Sciences, University of Bouira, Algeria
Download PDF Download RIS Download Bibtex

Abstract

Shaft-stator rub and cracks on rotors, which have devastating effects on the industrial equipment, cause nonlinear and in some cases chaotic lateral vibrations. On the other hand, vibrations caused by machinery faults can be torsional in cases such as rub. Therefore, a combined analysis of lateral and torsional vibrations and extraction of chaotic features from these vibrations is an effective approach for rotor vibration monitoring. In this study, lateral and torsional vibrations of rotors have been examined for detecting cracks and rub. For this purpose, by preparing a laboratory model, the lateral vibrations of a system with crack and rub have been acquired. After that, a practical method for measuring the torsional vibrations of the system is introduced. By designing and installing this measurement system, practical test data were acquired on the laboratory setup. Then, the method of phase space reconstruction was used to examine the effect of faults on the chaotic behaviour of the system. In order to diagnose the faults based on the chaotic behaviour of the system, largest Lyapunov exponent (LLE), approximate entropy (ApEn) and correlation dimension were calculated for a healthy system and also for a system with rub and a crack. Finally, by applying these parameters, the chaotic feature space is introduced in order to diagnose the intentionally created faults. The results show that in this space, the distinction between the various defects in the system can be clearly identified, which enables to use this method in fault diagnosis of rotating machinery.

Go to article

Authors and Affiliations

Ali Hajnayeb
Kourosh Heidari Shirazi
Reza Aghaamiri
Download PDF Download RIS Download Bibtex

Abstract

This paper proposes data-based fault detection methods for an electromechanical actuator (EMA) with a brushed DC motor. The jam and winding short faults are considered in the study as the most prominent EMA faults. The fault detection is based on evaluating the properties of the motor current, considering the basic electromechanical parameters of EMAs. The main advantages are a non-intrusive approach utilising a commonly accessible motor current measurement, simple configurability, and the ability to detect faults under varying operation modes of EMA, including changes of speed, load, or movement profiles. The proposed methods have been evaluated with a custom testing system, and the results have proven the performance of the proposed approach to detect faults under varying operating conditions in industrial applications.
Go to article

Authors and Affiliations

Ondřej Hanuš
1
Radislav Smid
1

  1. Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Measurement, Technicka 2,166 27 Prague, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

To improve power system reliability, a protection mechanism is highly needed. Early detection can be used to prevent failures in the power transmission line (TL). A classification system method is widely used to protect against false detection as well as assist the decision analysis. Each TL signal has a continuous pattern in which it can be detected and classified by the conventional methods, i.e., wavelet feature extraction and artificial neural network (ANN). However, the accuracy resulting from these mentioned models is relatively low. To overcome this issue, we propose a machine learning-based on Convolutional Neural Network (CNN) for the transmission line faults (TLFs) application. CNN is more suitable for pattern recognition compared to conventional ANN and ANN with Discrete Wavelet Transform (DWT) feature extraction. In this work, we first simulate our proposed model by using Simulink® and Matlab®. This simulation generates a fault signal dataset, which is divided into 45.738 data training and 4.752 data tests. Later, we design the number of machine learning classifiers. Each model classifier is trained by exposing it to the same dataset. The CNN design, with raw input, is determined as an optimal output model from the training process with 100% accuracy.

Go to article

Authors and Affiliations

S. Fuada
H.A. Shiddieqy
T. Adiono
Download PDF Download RIS Download Bibtex

Abstract

For fault detection of doubly-fed induction generator (DFIG), in this paper, a method of sliding mode observer (SMO) based on a new reaching law (NRL) is proposed. The SMO based on the NRL (NRL- SMO) theoretically eliminates system chatter caused by the reaching law and can be switched in time with system interference in terms of robustness and smoothness. In addition, the sliding mode control law is used as the index of fault detection. Firstly, this paper gives the NRL with the theoretically analyzes. Secondly, according to the mathematical model of DFIG, NRL-SMO is designed, and its analysis of stability and robustness are carried out. Then this paper describes how to choose the optimal parameters of the NRL-SMO. Finally, three common wind turbine system faults are given, which are DFIG inter-turn stator fault, grid voltage drop fault, and rotor current sensor fault. The simulation models of the DFIG under different faults is established. The simulation results prove that the superiority of the method of NRL-SMO in state tracking and the feasibility of fault detection.
Go to article

Bibliography

  1.  Z. Hameed, Y.S. Hong, Y.M. Cho, S.H. Ahn, and C.K. Song. “Condition monitoring and fault detection of wind turbines and related algorithms: A review”, Renew. Sust. Energ. Rev. 13(1), 1‒39 (2009).
  2.  A. Stefani, A. Yazidi, C. Rossi, F. Filippetti, D. Casadei, and G.A. Capolino, “Doubly fed induction machines diagnosis based on signature analysis of rotor modulating signals”, IEEE Trans. Ind. Appl. 44(6), 1711‒1721(2008).
  3.  D. Shah, S. Nandi, and P. Neti, “Stator-interturn-fault detection of doubly fed induction generators using rotor-current and search-coil- voltage signature analysis”, IEEE Trans. Ind. Appl. 45(5), 1831‒1842 (2009).
  4.  G. Stojčić, K. Pašanbegović, and T.M. Wolbank, “Detecting faults in doubly fed induction generator by rotor side transient current measurement”, IEEE Trans. Ind. App. 50(5), 3494‒3502 (2014).
  5.  R. Roshanfekr and A. Jalilian, “Wavelet-based index to discriminate between minor inter-turn short-circuit and resistive asymmetrical faults in stator windings of doubly fed induction generators, a simulation study”, IET Gener. Transm. Distrib. 10(2), 374‒381 (2016).
  6.  M.B. Abadi et al., “Detection of stator and rotor faults in a DFIG based on the stator reactive power analysis”, in IECON 2014‒40th Annual Conference of the IEEE Industrial Electronics Society 2014 pp. 2037‒2043.
  7.  S. He, X. Shen, and Z. Jiang, “Detection and Location of Stator Winding Interturn Fault at Different Slots of DFIG”, IEEE Access 7, 89342‒89353 (2019).
  8.  I. Erlich, C. Feltes, and F. Shewarega, “Enhanced voltage drop control by VSC–HVDC systems for improving wind farm fault ridethrough capability”, IEEE Trans. Power Deliv. 29(1), 378‒385 (2013).
  9.  Ö. Göksu, R. Teodorescu, C.L. Bak, F. Iov, and P.C. Kjær, “Instability of wind turbine converters during current injection to low voltage grid faults and PLL frequency based stability solution”, IEEE Trans. Power Syst. 29(4), 1683‒1691 (2014).
  10.  Z. Fan, G. Song, X. Kang, J. Tang, and X. Wang, “Three-phase fault direction identification method for outgoing transmission line of DFIG-based wind farms”, J. Mod. Power Syst. 7(5), 1155‒1164 (2019).
  11.  L.G. Meegahapola, T. Littler, and D. Flynn, “Decoupled-DFIG fault ride-through strategy for enhanced stability performance during grid faults”, IEEE Trans. Sustain. Energy 1(3), 152‒162 (2010).
  12.  F. Aguilera, P.M. De la Barrera, C.H. De Angelo, and D.E. Trejo, “Current-sensor fault detection and isolation for induction-motor drives using a geometric approach”, Control Eng. Pract. 53, 35‒46 (2016).
  13.  S. Abdelmalek, S. Rezazi, and A.T. Azar, “Sensor faults detection and estimation for a DFIG equipped wind turbine”, Energy Procedia 139, 3‒9 (2017).
  14.  M. Liu and P. Shi, “Sensor fault estimation and tolerant control for Itô stochastic systems with a descriptor sliding mode approach”, Automatica 49(5), 1242‒1250 (2013).
  15.  Y.J. Kim, N. Jeon, and H. Lee, “Model based fault detection and isolation for driving motors of a ground vehicle”, Sens. Transducers 199(4), 67 (2016).
  16.  K. Xiahou, Y. Liu, L. Wang, M.S. Li, and Q.H. Wu, “Switching fault-tolerant control for DFIG-based wind turbines with rotor and stator current sensor faults”, IEEE Access 7, 103390‒103403 (2019).
  17.  K.S. Xiahou, Y. Liu, M.S. Li, and Q.H. Wu, “Sensor fault-tolerant control of DFIG based wind energy conversion systems”, Int. J. Electr. Power Energy Syst. 117, 105563 (2020).
  18.  Z.Y. Xue, K.S. Xiahou, M.S. Li, T.Y. Ji, and Q.H. Wu, “Diagnosis of multiple open-circuit switch faults based on long short-term memory network for DFIG-based wind turbine systems”, IEEE J. Emerg. Sel. Top. Power Electron. 8(3), 2600‒2610 (2019).
  19.  L. Jing, M. Zhao, P. Li, and X. Xu, “A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox”, Measurement 111, 1‒10 (2017).
  20.  W. Teng, H. Cheng, X. Ding, Y. Liu, Z. Ma, and H. Mu, “DNN-based approach for fault detection in a direct drive wind turbine”, IET Renew. Power Gener. 12(10), 1164‒1171 (2018).
  21.  M.N. Akram and S. Lotfifard, “Modeling and health monitoring of DC side of photovoltaic array”, IEEE Trans. Sustain. Energy 6(4), 1245‒1253 (2015).
  22.  W. Gao and J.C. Hung, “Variable structure control of nonlinear systems, A new approach”, IEEE Trans. Ind. Electron. 40(1), 45‒55 (1993).
  23.  C.J. Fallaha, M. Saad, H.Y. Kanaan, and K. Al-Haddad, “Sliding-mode robot control with exponential reaching law”, IEEE Trans. Ind. Electron. 58(2), 600‒610 (2010).
  24.  Y. Liu, Z. Wang, L. Xiong, J. Wang, X. Jiang, G. Bai, R. Li, S. Liu, “DFIG wind turbine sliding mode control with exponential reaching law under variable wind speed”, Int. J. Electr. Power Energy Syst. 96, 253‒260 (2018).
  25.  Z. Lan, L. Li, C. Deng, Y. Zhang, W. Yu, and P. Wong, “A novel stator current observer for fault tolerant control of stator current sensor in DFIG”, in 2018 IEEE Energy Conversion Congress and Exposition (ECCE), 2018, pp. 790‒797.
Go to article

Authors and Affiliations

RuiQi Li
1 2
Wenxin Yu
1 2
JunNian Wang
3 2
Yang Lu
1 2
Dan Jiang
1 2
GuoLiang Zhong
1 2
ZuanBo Zhou
1 2

  1. School of Information and Electrical Engineering, Hunan University of Science and Technology, Hunan Pro., Xiangtan,411201, China
  2. Key Laboratory of Knowledge Processing Networked Manufacturing, Hunan University of Science and Technology, Hunan Pro., Xiangtan,411201, China
  3. School of Physics and Electronics, Hunan University of Science and Technology, Hunan Pro., Xiangtan,411201, China
Download PDF Download RIS Download Bibtex

Abstract

Together with the dynamic development of modern computer systems, the possibilities of applying refined methods of nonparametric estimation to control engineering tasks have grown just as fast. This broad and complex theme is presented in this paper for the case of estimation of density of a random variable distribution. Nonparametric methods allow here the useful characterization of probability distributions without arbitrary assumptions regarding their membership to a fixed class. Following an illustratory description of the fundamental procedures used to this end, results will be generalized and synthetically presented of research on the application of kernel estimators, dominant here, in problems of Bayes parameter estimation with asymmetrical polynomial loss function, as well as for fault detection in dynamical systems as objects of automatic control, in the scope of detection, diagnosis and prognosis of malfunctions. To this aim the basics of data analysis and exploration tasks - recognition of outliers, clustering and classification - solved using uniform mathematical apparatus based on the kernel estimators methodology were also investigated

Go to article

Authors and Affiliations

P. Kulczycki

This page uses 'cookies'. Learn more