Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 69
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents an approach based on NURBS (non-uniform rational B-splines) to achieve a seismic response surface (SRS) from a group of points obtained by using an analytical model of RC joints. NURBS based on the genetic algorithm is an important mathematical tool and consists of generalizations of Bezier curves and surfaces and B-splines. Generally, the accuracy of the design process of joints depends on the number of control points that are captured in the results of experimental research on real specimens. The values obtained from the specimens are the best tools to use in seismic analysis, though more expensive when compared to values simulated by SRSs. The SRS proposed in this paper can be applied to obtain surfaces that show site effect results on destructions of beam-column joint, taking into account different site conditions for a specific earthquake. The efficiency of this approach is demonstrated by the retrieval of simulated-versus-analytical results.

Go to article

Authors and Affiliations

R. Tabatabaei Mirhosseini
Download PDF Download RIS Download Bibtex

Abstract

A substantial quantity of research on muffler design has been restricted to a low frequency range using the plane wave theory. Based on this theory, which is a one-dimensional wave, no higher order wave has been considered. This has resulted in underestimating acoustical performances at higher frequencies when doing muffler analysis via the plane wave model. To overcome the above drawbacks, researchers have assessed a three-dimensional wave propagating for a simple expansion chamber muffler. Therefore, the acoustic effect of a higher order wave (a high frequency wave) is considered here. Unfortunately, there has been scant research on expansion chamber mufflers equipped with baffle plates that enhance noise elimination using a higher-order-mode analysis. Also, space-constrained conditions of industrial muffler designs have never been properly addressed. So, in order to improve the acoustical performance of an expansion chamber muffler within a constrained space, the optimization of an expansion chamber muffler hybridized with multiple baffle plates will be assessed. In this paper, the acoustical model of the expansion chamber muffler will be established by assuming that it is a rigid rectangular tube driven by a piston along the tube wall. Using an eigenfunction (higher-order-mode analysis), a four-pole system matrix for evaluating acoustic performance (STL) is derived. To improve the acoustic performance of the expansion chamber muffler, three kinds of expansion chamber mufflers (KA-KC) with different acoustic mechanisms are introduced and optimized for a targeted tone using a genetic algorithm (GA). Before the optimization process is performed, the higher-order-mode mathematical models of three expansion chamber mufflers (A-C) with various allocations of inlets/outlets and various chambers are also confirmed for accuracy. Results reveal that the STL of the expansion chamber mufflers at the targeted tone has been largely improved and the acoustic performance of a reverse expansion chamber muffler is more efficient than that of a straight expansion chamber muffler. Moreover, the STL of the expansion chamber mufflers will increase as the number of the chambers that separate with baffles increases.
Go to article

Authors and Affiliations

Min-Chie Chiu
Ying-Chun Chang
Download PDF Download RIS Download Bibtex

Abstract

Scheduling of multiobjective problems has gained the interest of the researchers. Past many

decades, various classical techniques have been developed to address the multiobjective problems,

but evolutionary optimizations such as genetic algorithm, particle swarm, tabu search

method and many more are being successfully used. Researchers have reported that hybrid

of these algorithms has increased the efficiency and effectiveness of the solution. Genetic

algorithms in conjunction with Pareto optimization are used to find the best solution for

bi-criteria objectives. Numbers of applications involve many objective functions, and application

of the Pareto front method may have a large number of potential solutions. Selecting

a feasible solution from such a large set is difficult to arrive the right solution for the decision

maker. In this paper Pareto front ranking method is proposed to select the best parents for

producing offspring’s necessary to generate the new populations sets in genetic algorithms.

The bi-criteria objectives minimizing the machine idleness and penalty cost for scheduling

process is solved using genetic algorithm based Pareto front ranking method. The algorithm

is coded in Matlab, and simulations were carried out for the crossover probability of 0.6,

0.7, 0.8, and 0.9. The results obtained from the simulations are encouraging and consistent

for a crossover probability of 0.6.

Go to article

Authors and Affiliations

B.V. Raghavendra
Download PDF Download RIS Download Bibtex

Abstract

The formation of optimal crop rotations is virtually unsolvable from the standpoint of the classical methodology of experimental research. Here, we deal with a mathematical model based on expert estimates of “predecessor-crop” pairs’ efficiency created for the conditions of irrigation in the forest-steppe of Ukraine. Solving the problem of incorporating uncertainty assessments into this model, we present new models of crop rotations’ economic efficiency taking into account irrigation, application of fertilisers, and the negative environmental effect of nitrogen fertilisers’ introduction into the soil. For the considered models we pose an optimisation problem and present an algorithm for its solution that combines a gradient method and a genetic algorithm. Using the proposed mathematical tools, for several possible scenarios of water, fertilisers, and purchase price variability, the efficiency of growing corn as a monoculture in Ukraine is simulated. The proposed models show a reduction of the profitability of such a practice when the purchase price of corn decreases below 0.81 EUR∙kg –1 and the price of irrigation water increases above 0.32 EUR∙m –3 and propose more flexible crop rotations. Mathematical tools developed in the paper can form a basis for the creation of decision support systems that recommend optimal crop rotation variations to farmers and help to achieve sustainable, profitable, and ecologically safe agricultural production. However, future works on the actualisation of the values of its parameters need to be performed to increase the accuracy.
Go to article

Authors and Affiliations

Mykhailo Romashchenko
1
ORCID: ORCID
Vsevolod Bohaienko
2
ORCID: ORCID
Andrij Shatkovskyi
1
ORCID: ORCID
Roman Saidak
3
ORCID: ORCID
Tetiana Matiash
4
ORCID: ORCID
Volodymyr Kovalchuk
4
ORCID: ORCID

  1. Institute of Water Problems and Land Reclamation of NAAS, Kyiv, Ukraine
  2. V.M. Glushkov Institute of Cybernetics of the NAS of Ukraine, Laboratory of Methods of Mathematical Modeling of Ecology and Energy Processes, Glushkov Ave, 40, 03187, Kyiv, Ukraine
  3. Institute of Water Problems and Land Reclamation of NAAS, Department of Using of Agroresource Potential, Kyiv, Ukraine
  4. Institute of Water Problems and Land Reclamation of NAAS, Department of Information Technology and Marketing Innovation, Kyiv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The frictional resistance coefficient of ventilation of a roadway in a coal mine is a very important technical parameter in the design and renovation of mine ventilation. Calculations based on empirical formulae and field tests to calculate the resistance coefficient have limitations. An inversion method to calculate the mine ventilation resistance coefficient by using a few representative data of air flows and node pressures is proposed in this study. The mathematical model of the inversion method is developed based on the principle of least squares. The measured pressure and the calculated pressure deviation along with the measured flow and the calculated flow deviation are considered while defining the objective function, which also includes the node pressure, the air flow, and the ventilation resistance coefficient range constraints. The ventilation resistance coefficient inversion problem was converted to a nonlinear optimisation problem through the development of the model. A genetic algorithm (GA) was adopted to solve the ventilation resistance coefficient inversion problem. The GA was improved to enhance the global and the local search abilities of the algorithm for the ventilation resistance coefficient inversion problem.

Go to article

Authors and Affiliations

Ke Gao
ORCID: ORCID
Lijun Deng
Jian Liu
Liangxiu Wen
Dong Wong
Zeyi Liu
Download PDF Download RIS Download Bibtex

Abstract

In this study, emulsified kerosene was investigated to improve the flotation performance of ultrafine coal. For this purpose, NP-10 surfactant was used to form the emulsified kerosene. Results showed that the emulsified kerosene increased the recovery of ultrafine coal compared to kerosene. This study also revealed the effect of independent variables (emulsified collector dosage (ECD), frother dosage (FD) and impeller speed (IS)) on the responses (concentrate yield (γC %), concentrate ash content ( %) and combustible matter recovery (ε %)) based on Random Forest (RF) model and Genetic Algorithm (GA). The proposed models for γC %, % and ε% showed satisfactory results with R2. The optimal values of three test variables were computed as ECD = 330.39 g/t, FD = 75.50 g/t and IS = 1644 rpm by using GA. Responses at these experimental optimal conditions were γC % = 58.51%,  % = 21.7% and ε % = 82.83%. The results indicated that GA was a beneficial method to obtain the best values of the operating parameters. According to results obtained from optimal flotation conditions, kerosene consumption was reduced at the rate of about 20% with using the emulsified kerosene.

Go to article

Authors and Affiliations

Ozcan Oney
Download PDF Download RIS Download Bibtex

Abstract

Recently, there has been research on high frequency dissipative mufflers. However, research on shape optimization of hybrid mufflers that reduce broadband noise within a constrained space is sparse. In this paper, a hybrid muffler composed of a dissipative muffler and a reactive muffler within a constrained space is assessed. Using the eigenvalues and eigenfunctions, a coupling wave equation for the perforated dissipative chamber is simplified into a four-pole matrix form. To efficiently find the optimal shape within a constrained space, a four-pole matrix system used to evaluate the acoustical performance of the sound transmission loss (STL) is evaluated using a genetic algorithm (GA).

A numerical case for eliminating a broadband venting noise is also introduced. To verify the reliability of a GA optimization, optimal noise abatements for two pure tones (500 Hz and 800 Hz) are exemplified. Before the GA operation can be carried out, the accuracy of the mathematical models has been checked using experimental data. Results indicate that the maximal STL is precisely located at the desired target tone. The optimal result of case studies for eliminating broadband noise also reveals that the overall sound power level (SWL) of the hybrid muffler can be reduced from 138.9 dB(A) to 84.5 dB(A), which is superior to other mufflers (a one-chamber dissipative and a one-chamber reactive muffler). Consequently, a successful approach used for the optimal design of the hybrid mufflers within a constrained space has been demonstrated.

Go to article

Authors and Affiliations

Min-Chie Chiu
Download PDF Download RIS Download Bibtex

Abstract

The growth in the system load accompanied by an increase of power loss in the distribution system. Distributed generation (DG) is an important identity in the electric power sector that substantially overcomes power loss and voltage drop problems when it is coordinated with a location and size properly. In this study, the DG integration into the network is optimally distributed by considering the load conditions in different load models used to surmount the impact of load growth. There are five load models tested namely constant, residential, industrial, commercial and mixed loads. The growth of the electrical load is modeled for the base year up to the fifth year as a short-term plan. Minimization of system power loss is taken as the main objective function considering voltage limits. Determination of the location and size of DG is optimally done by using the breeder genetic algorithm (BGA). The proposed studies were applied to the IEEE 30 radial distribution system with single and multiple placement DG scenarios. The results indicated that installing an optimal location and size DG could have a strong potential to reduce power loss and to secure future energy demand of load models. Also, commercial load requires the largest DG active injection power to maintain the voltage value within tolerable limits up to five years.

Go to article

Authors and Affiliations

Yuli Asmi Rahman
Salama Manjang
Yusran
Amil Ahmad Ilham
Download PDF Download RIS Download Bibtex

Abstract

In the last decade a growing interest was observed in low-cost adsorbents for heavy metal ions. Clinoptilolite is a mineral sorbent extracted in Poland that is used to remove heavy metal ions from diluted solutions. The experiments in this study were carried out in a laboratory column for multicomponent water solutions of heavy metal ions, i.e. Cu(II), Zn(II) and Ni(II). A mathematical model to calculate the metals' concentration of water solution at the column outlet and the concentration of adsorbed substances in the adsorbent was proposed. It enables determination of breakthrough curves for different process conditions and column dimensions. The model of process dynamics in the column took into account the specificity of sorption described by the Elovich equation (for chemical sorption and ion exchange). Identification of the column dynamics consisted in finding model coefficients β, KE and Deff and comparing the calculated values with experimental data. Searching for coefficients which identify the column operation can involve the use of optimisation methods to find the area of feasible solutions in order to obtain a global extremum. For that purpose our own procedure of genetic algorithm is applied in the study.

Go to article

Authors and Affiliations

Elwira Tomczak
Władysław Kamiński
Download PDF Download RIS Download Bibtex

Abstract

In most cases, road machines emit both acoustic and vibration energy into the fluids or structures surrounding the machinery. This is dangerous for the construction strength of the machinery, and is harmful for human health. There are two general classes of tools used to assess and optimize acoustic performance of a vehicle: test based methods, and Computer-Aided Engineering based methods. The second one is discussed in this paper.

Go to article

Authors and Affiliations

Zinovij Stosko
Bohdan Diveyev
Oleh Ljubas
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a model of an articulated vehicle with a flexible frame of a semi-trailer. The rigid finite element method in a modified formulation is used for discretisation of the frame. In order to carry out effective numerical simulation, a reduced model with a considerably smaller number of degrees of freedom is proposed. The parameters of the reduced model are chosen in an optimization process by using a genetic algorithm. To this end, it is assumed that the full and reduced model have to be similar in the range of static deflections and frequencies of free vibrations. Numerical simulations are concerned with the influence of the flexibility of the frame on the motion of the articulated vehicle during an overtaking maneuver. Results are presented and discussed.

Go to article

Authors and Affiliations

Kornel Warwas
Iwona Adamiec-Wójcik
Download PDF Download RIS Download Bibtex

Abstract

An important operational task for thermal turbines during run-up and run-down is to keep the stresses in the structural elements at a right level. This applies not only to their instantaneous values, but also to the impact of them on the engine lifetime. The turbine shaft is a particularly important element. The distribution of stresses depends on geometric characteristics of the shaft and its specific locations. This means a groove manufactured for fixing the rotor blades. The extreme stresses in this place occur during the start-up and the shaft heating to normal operating temperature. The process needs optimisation. Optimization tasks are multidisciplinary issues and can be carried out using different methods. In recent years, particular attention in optimisation has been paid to the use of artificial intelligence methods. Among them, a special role is assigned to genetic algorithms. The paper presents a genetic algorithm method to optimise the steam turbine shaft heating process during its start-up phase. The presented optimization task of this algorithm is to carry out the process of the shaft heating as soon as possible at the conditions of not exceeding the stresses at critical locations at any heating phase.

Go to article

Authors and Affiliations

Krzysztof Dominiczak
Marta Drosińska-Komor
Romuald Rzadkowski
Jerzy Głuch
Download PDF Download RIS Download Bibtex

Abstract

The multi-phase permanent-magnet machines with a fractional-slot concentrated-winding (FSCW) are a suitable choice for certain purposes like aircraft, marine, and electric vehicles, because of the fault tolerance and high power density capability. The paper aims to design, optimize and prototype a five-phase fractional-slot concentrated-winding surface-mounted permanent-magnet motor. To optimize the designed multi-phase motor a multi-objective optimization technique based on the genetic algorithm method is applied. The machine design objectives are to maximize torque density of the motor and maximize efficiency then to determine the best choice of the designed machine parameters. Then, the two-dimensional Finite Element Method (2D-FEM) is employed to verify the performance of the optimized machine. Finally, the optimized machine is prototyped. The paper found that the results of the prototyped machine validate the results of theatrical analyses of the machine and accurate consideration of the parameters improved the acting of the machine.

Go to article

Authors and Affiliations

Amir Nekoubin
Jafar Soltani
Milad Dowlatshah
Download PDF Download RIS Download Bibtex

Abstract

One of the least expensive and safest diagnostic modalities routinely used is ultrasound imaging. An attractive development in this field is a two-dimensional (2D) matrix probe with three-dimensional (3D) imaging. The main problems to implement this probe come from a large number of elements they need to use. When the number of elements is reduced the side lobes arising from the transducer change along with the grating lobes that are linked to the periodic disposition of the elements. The grating lobes are reduced by placing the elements without any consideration of the grid. In this study, the Binary Bat Algorithm (BBA) is used to optimize the number of active elements in order to lower the side lobe level. The results are compared to other optimization methods to validate the proposed algorithm.

Go to article

Authors and Affiliations

Dina Mohamed Tantawy
Mohamed Eladawy
Mohamed Alimaher Hassan
Roaa Mubarak
Download PDF Download RIS Download Bibtex

Abstract

Under conditions of gravity flow, the performance of a distribution pipe network for drinking water supply can be measured by investment cost and the difference in real and target pressures at each node to ensure fairness of the service. Therefore, the objective function for the optimization in the design of a complex gravity flow pipe network is a multi-purpose equation system set up to minimize the above-mentioned two parameters. This article presents a new model as an alternative solution to solving the optimization equation system by combining the Newton–Raphson and genetic algorithm (GA) methods into a single unit so that the resulting model can work effectively. The Newton–Raphson method is used to solve the hydraulic equation system in pipelines and the GA is used to find the optimal pipe diameter combination in a net-work. Among application models in a complex pipe network consisting of 12 elements and 10 nodes, this model is able to show satisfactory performance. Considering variations in the value of the weighting factor in the objective function, opti-mal conditions can be achieved at the investment cost factor (ω1) = 0.75 and the relative energy equalization factor at the service node (ω2) = 0.25. With relevant GA input parameters, optimal conditions are achieved at the best fitness value of 1.016 which is equivalent to the investment cost of USD 56.67 thous. with an average relative energy deviation of 1.925 m.
Go to article

Bibliography

ABEBE A.J., SOLOMATINE D.P. 1998. Application of global optimization to the design of pipe networks. Proc. 3rd International Conference on Hydroinformatics. Copenhagen, August 1998. Balkema. Rotterdam p. 1–8.
AFSHAR M.H. 2006. Application of ant algorithm to pipe network optimization. Iranian Journal of Science & Technology. Transaction B, Engineering. Vol. 31. No. B5 p. 487–500.
AKLOG D., HOSOI Y. 2017. All-in-one model for designing optimal water distribution pipe networks. Journal of Engineering Drinking Water Engineering and Science. DOI 10.5194/dwes-10-33-2017.
ALI M.M., STOREY C. 1994. Modified controlled random search algorithms. International Journal of Computer Mathematics. Vol. 53. Iss. 3–4 p. 229–235.
BELLO A.D., WAHEED A., ALAYANDE, JOHNSON A.O., ISMAIL A, LAWAN U.F. 2015. Optimization of the designed water distribution system using MATLAB. International Journal of Hydraulic Engineering. Vol. 4(2) p. 37–44. DOI 10.5923/j.ijhe. 20150402.03.
GOLDBERG D.E. 1989. Genetic algorithms in search, optimization & machine learning. Addison-Wesley Publishing Co., Reading. ISBN 0201157675 pp. 432.
KADU M.S., GUPTA R., BHAVE P.R. 2008. Optimal design of water networks using a Modified Genetic Algorithm with reduction in search space. Journal of Water Resources Planning and Management. Vol. 134(2) p. 147–159.
KUMAR D., SUDHEER C.H., MATHUR S., ADAMOWSKI J. 2015. Multi-objective optimization of in-situ bioremediation of groundwater using a hybrid metaheuristic technique based on differential evolution, genetic algorithms and simulated annealing. Journal of Water and Land Development. No. 27 p. 29–40. DOI 10.1515/jwld-2015-0022.
MEMON K.K., NARUKLAR S.N. 2016. Review of pipe sizing optimization by Genetic Algorithm. IJIRST – International Journal for Innovative Research in Science & Technology. Vol. 3. Iss. 06 p. 138–141.
MOOSAVIAN N., JAEFARZADEH R. 2014. Hydraulic analysis of water supply networks using a modified Hardy Cross method. International Journal of Engineering, Transactions B: Applications. Vol. 27. No. 9 p. 1331–1338. DOI 10.5829/idosi. ije.2014.27.09c.02.
MTOLERA I., HAIBIN L., YE L., FENG S.B., XUE D., YI M. 2014. Optimization of tree pipe networks layout and size using Particle Swam Optimization. WSEAS Transactions on Computers. Vol. 13 p. 219–230.
PRICE W.L. 1983. Global optimization by controlled random search. Journal of Optimization Theory & Applications. Vol. 40 p. 333–348. DOI 10.1007/BF00933504.
RAJABPOUR R., TALEBBEYDOKHTI N. 2014. Simultaneous layout and pipe size optimization of pressurized irrigation networks. Basic Research Journal of Agricultural Science and Review. Vol. 3(12) p. 131–145.
SALEH C., SULIANTO 2011. Optimization diameter of pipe at fresh water network system. Journal of Academic Research International. Vol. 01. Iss. 02. No. 2 p. 103–109.
SÂRBU I. 2010. Optimization of water distribution networks. Proceeding of the Romanian Academy. Ser. A. Vol. 11. No. 4 p. 330–339.
SÂRBU I. 2011. Nodal analysis models of looped water distribution networks. ARPN Journal of Engineering and Applied Sciences. Vol. 6. No. 8 p. 115–125.
SHIVATAVA M., PRASAD V., KHARE R. 2015. Multi-objective optimization of water distribution system using particle swarm optimization. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE). Vol. 12. Iss. 6. Ver. I p. 21–28.
SOETOPO W., SUHARDJONO, ANDAWAYANTI U., SAYEKTI R.W., ISMOYO J. 2018. The comparison study for the models of reservoir release rule for irrigation. Case study: Sutami reservoir. Journal of Water and Land Development. No. 36 p. 153–160. DOI 10.2478/jwld-2018-0015.
SOLOMATINE D.P. 1998. Genetic and other global optimization algorithms – compareson and use in calibration problems. Proc. 3rd Intern. Conference on Hydroinformatics Copenhagen, August 1998. Balkema, Rotterdam p. 1021–1028.
SOMAIDA M., ELZAHAR M., SHARAAN M. 2011. A suggestion of optimization process for water pipe networks design. International Conference on Environment and BioScience IPCBEE. Vol. 21 p. 68–73.
SULIANTO 2015a. Programasi linier untuk pencarian diameter pipa optimal pada sistem jaringan pipa distribusi air bersih [Linear programming for search optimum diameter pipe in network pipe open in water supply system]. Journal of Media Teknik Sipil. Vol. 13. No. 1 p. 91–98.
SULIANTO 2015b. Pencarian diameter optimum pada sistim jaringan pipa terbuka dengan algoritma genetik. Di: Prosiding Seminar Nasional Teknik Sipil [The search optimum diameter on open network pipe system using GA. In: Proceeding National Conference Civil Engineering]. Program Studi Pasca Sarjana Teknik Sipil dan Perencanaan XI 2015 p. 191–204.
SULIANTO, BISRI M., LIMANTARA L.M., SISINGGIH D. 2018. Automatic calibration and sensitivity analysis of DISPRIN model parameters: A case study on Lesti watershed in East Java, Indonesia. Journal of Water and Land Development. No. 37 p. 141–152. DOI 10.2478/jwld-2018-0033.

Go to article

Authors and Affiliations

Sulianto
1
ORCID: ORCID
Ernawan Setiono
1
ORCID: ORCID
I Wayan Yasa
2
ORCID: ORCID

  1. University of Muhammadiyah Malang, Faculty of Engineering, Jl. Raya Tlogomas No. 246, 65114, Malang, Indonesia
  2. Mataram University, Faculty of Engineering, Mataram, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

Waste lubricating oil (WLO) is the most significant liquid hazardouswaste, and indiscriminate disposal of waste lubricating oil creates a high risk to the environment and ecology. Present investigation emphasizes the re-refining of used automobile engine oil using the extraction-flocculation approach to reduce environmental hazards and convert the waste to energy. The extraction-flocculation process was modeled and optimized using response surface methodology (RSM), artificial neural network (ANN), and genetic algorithm (GA). The present study assessed parametric effects of refining time, refining temperature, solvent to waste oil ratio, and flocculant dosage. Experimental findings showed that the percentage of yield of recovered oil is to the tune of 86.13%. With the Central Composite Design approach, the maximum percentage of extracted oil is 85.95%, evaluated with 80 minutes of refining time, 50.17 °C refining temperature, 7:1 solvent to waste oil ratio and flocculant dosage of 3 g/kg of solvent and 86.71% with 79.97 minutes refining time, 55.53 °C refining temperature, 4.89:1 g/g solvent to waste oil ratio, 2.99 g/kg of flocculant concentration with Artificial Neural Network. A comparison shows that the ANN gives better results than the CCD approach. Physico-chemical properties of the recovered lube oil are comparable with the properties of fresh lubricating oil.
Go to article

Authors and Affiliations

Sayantan Sakar
1
Deepshikha Datta
2
Somnath Chowdhury
1
Bimal Das
1

  1. National Institute of Technology, Department of Chemical Engineering, Durgapur-713209, India
  2. Brainware University, Department of Chemistry, Barasat, Kolkata, West Bengal 700125
Download PDF Download RIS Download Bibtex

Abstract

Turbines and generators operating in the power generation industry are a major source of electrical energy worldwide. These are critical machines and their malfunctions should be detected in advance in order to avoid catastrophic failures and unplanned shutdowns. A maintenance strategy which enables to detect malfunctions at early stages of their existence plays a crucial role in facilities using such types of machinery. The best source of data applied for assessment of the technical condition are the transient data measured during start-ups and coast-downs. Most of the proposed methods using signal decomposition are applied to small machines with a rolling element bearing in steady-state operation with a shaft considered as a rigid body. The machines examined in the authors’ research operate above their first critical rotational speed interval and thus their shafts are considered to be flexible and are equipped with a hydrodynamic sliding bearing. Such an arrangement introduces significant complexity to the analysis of the machine behavior, and consequently, analyzing such data requires a highly skilled human expert. The main novelty proposed in the paper is the decomposition of transient vibration data into components responsible for particular failure modes. The method is automated and can be used for identification of turbogenerator malfunctions. Each parameter of a particular decomposed function has its physical representation and can help the maintenance staff to operate the machine properly. The parameters can also be used by the managing personnel to plan overhauls more precisely. The method has been validated on real-life data originating from a 200 MW class turbine. The real-life field data, along with the data generated by means of the commercial software utilized in GE’s engineering department for this particular class of machines, was used as the reference data set for an unbalanced response during the transients in question.
Go to article

Authors and Affiliations

Tomasz Barszcz
1
Mateusz Zabaryłło
2

  1. AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
  2. GE Power, ul. Stoczniowa 2, 82-300 Elblag, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a novel heuristic procedure (further called the AH Method) to investigate function shape in the direct vicinity of the found optimum solution. The survey is conducted using only the space sampling collected during the optimization process with an evolutionary algorithm. For this purpose the finite model of point-set is considered. The statistical analysis of the sampling quality based upon the coverage of the points in question over the entire attraction region is exploited. The tolerance boundaries of the parameters are determined for the user-specified increase of the objective function value above the found minimum. The presented test-case data prove that the proposed approach is comparable to other optimum neighborhood examination algorithms. Also, the AH Method requires noticeably shorter computational time than its counterparts. This is achieved by a repeated, second use of points from optimization without additional objective function calls, as well as significant repository size reduction during preprocessing.
Go to article

Authors and Affiliations

Daniel Andrzej Piętak
1
Piotr Bilski
1
ORCID: ORCID
Paweł Jan Napiórkowski
2

  1. Institute of Radioelectronics and Multimedia Technology, Warsaw University of Technology, Poland
  2. Heavy Ion Laboratory, University of Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The embryonic architecture, which draws inspiration from the biological process of ontogeny, has built-in mechanisms for self-repair. The entire genome is stored in the embryonic cells, allowing the data to be replicated in healthy cells in the event of a single cell failure in the embryonic fabric. A specially designed genetic algorithm (GA) is used to evolve the configuration information for embryonic cells. Any failed embryonic cell must be indicated via the proposed Built-in Selftest (BIST) the module of the embryonic fabric. This paper recommends an effective centralized BIST design for a novel embryonic fabric. Every embryonic cell is scanned by the proposed BIST in case the self-test mode is activated. The centralized BIST design uses less hardware than if it were integrated into each embryonic cell. To reduce the size of the data, the genome or configuration data of each embryonic cell is decoded using Cartesian Genetic Programming (CGP). The GA is tested for the 1-bit adder and 2-bit comparator circuits that are implemented in the embryonic cell. Fault detection is possible at every function of the cell due to the BIST module’s design. The CGP format can also offer gate-level fault detection. Customized GA and BIST are combined with the novel embryonic architecture. In the embryonic cell, self-repair is accomplished via data scrubbing for transient errors.
Go to article

Authors and Affiliations

Gayatri Malhotra
1 2
Punithavathi Duraiswamy
2
J.K. Kishore
1

  1. U R Rao Satellite Centre, India
  2. M S Ramaiah University of Applied Science, India
Download PDF Download RIS Download Bibtex

Abstract

In the work, multi-criteria optimization of phononic structures was performed to minimize the transmission in the frequency range of acoustic waves, eliminate high transmission peaks with a small half-width inside of the band gap, and what was the most important part of the work – to minimize the number of layers in the structure. Two types of the genetic algorithm were compared in the study. The first one was characterized by a constant number of layers (GACL) of the phononic structure of each individual in each population. Then, the algorithm was run for a different number of layers, as a result of which the structures with the best value of the objective function were determined. In the second version of the algorithm, individuals in populations had a variable number of layers (GAVL) which required a different type of target function and crossover procedure. The transmission for quasi-one-dimensional phononic structures was determined with the use of the transfer matrix method algorithm. Based on the research, it can be concluded that the developed GAVL algorithm with an appropriately selected objective function achieved optimal solutions in a much smaller number of iterations than the GACL algorithm, and the value of the k parameter below 1 leads to faster achievement of the optimal structure.
Go to article

Bibliography

  1.  Y. Pennec, B. Djafari-Rouhani, H. Larabi, J. Vasseur, and A.-C. Hladky-Hennion, “Phononic crystals and manipulation of sound”, Phys. Status Solidi C, vol. 6, no. 9, pp. 2080–2085, Sep. 2009, doi: 10.1002/pssc.200881760.
  2.  Y.F. Li, F. Meng, S. Li, B. Jia, S. Zhou, and X. Huang, “Designing broad phononic band gaps for in-plane modes”, Phys. Lett. A, vol. 382, no. 10, pp. 679–684, Mar. 2018, doi: 10.1016/j.physleta.2017.12.050.
  3.  W. Elmadih, W.P. Syam, I. Maskery, D. Chronopoulos, and Leach, “Multidimensional Phononic Bandgaps in ThreeDimensional Lattices for Additive Manufacturing”, Materials, vol. 12, no. 11, p. 1878, Jun. 2019, doi: 10.3390/ma12111878.
  4.  S. Garus and W. Sochacki, “High-performance quasi onedimensional mirrors of mechanical waves built of periodic and aperiodic structures”, J. Appl. Math. Comput. Mech., vol. 17, no. 4, pp. 19–24, Dec. 2018, doi: 10.17512/jamcm.2018.4.03.
  5.  Z. Zhang, X.K. Han, and G.M. Ji, “Mechanism for controlling the band gap and the flat band in three-component phononic crystals”, J. Phys. Chem. Solids, vol. 123, pp. 235–241, Dec. 2018, doi: 10.1016/j.jpcs.2018.08.012.
  6.  Y. Sun et al., “Band gap and experimental study in phononic crystals with super-cell structure”, Results Phys., vol. 13, p. 102200, Jun. 2019, doi: 10.1016/j.rinp.2019.102200.
  7.  A.H. Safavi-Naeini, J.T. Hill, S. Meenehan, J. Chan, S. Gröblacher, and O. Painter, “Two-Dimensional Phononic-Photonic Band Gap Optomechanical Crystal Cavity”, Phys. Rev. Lett., vol. 112, no. 15, p. 153603, Apr. 2014, doi: 10.1103/PhysRevLett.112.153603.
  8.  W. Sochacki, “Transmission Properties of Phononical Dodecagonal Filter”, Acta Phys. Pol. A, vol. 138, no. 2, pp. 328–331, Aug. 2020, doi: 10.12693/APhysPolA.138.328.
  9.  H. Fan, B. Xia, L. Tong, S. Zheng, and D. Yu, “Elastic Higher-Order Topological Insulator with Topologically Protected Corner States”, Phys. Rev. Lett., vol. 122, no. 20, p. 204301, May 2019, doi: 10.1103/PhysRevLett.122.204301.
  10.  M. P. Bendsøe and O. Sigmund, Topology Optimization. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.
  11.  O. Sigmund and J. Søndergaard Jensen, “Systematic design of phononic band–gap materials and structures by topology optimization”, Philos. Trans. R. Soc. London, Ser. A, vol. 361, no. 1806, pp. 1001–1019, May 2003, doi: 10.1098/rsta.2003.1177.
  12.  L. Xie, B. Xia, J. Liu, G. Huang, and J. Lei, “An improved fast plane wave expansion method for topology optimization of phononic crystals”, Int. J. Mech. Sci., vol. 120, pp. 171–181, Jan. 2017, doi: 10.1016/j.ijmecsci.2016.11.023.
  13.  Zhong Hui-Lin, Wu Fu-Gen, and Yao Li-Ning, “Application of genetic algorithm in optimization of band gap of twodimensional phononic crystals”, Acta. Phys. Sin., vol. 55, no. 1, p. 275, 2006, doi: 10.7498/aps.55.275
  14.  Z. Liu, B. Wu, and C. He, “Band-gap optimization of twodimensional phononic crystals based on genetic algorithm and FPWE”, Waves Random Complex Media, vol. 24, no. 3, pp. 286–305, Jul. 2014, doi: 10.1080/17455030.2014.901582.
  15.  X. Huang and Y.M. Xie, “Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials”, Comput. Mech., vol. 43, no. 3, pp. 393–401, Feb. 2009, doi: 10.1007/s00466-008-0312-0.
  16.  H.-W. Dong, X.-X. Su, Y.-S. Wang, and C. Zhang, “Topological optimization of two-dimensional phononic crystals based on the finite element method and genetic algorithm”, Struct. Multidisc. Optim., vol. 50, no. 4, pp. 593–604, Oct. 2014, doi: 10.1007/s00158-014-1070-6.
  17.  Y. Li, X. Huang, and S. Zhou, “Topological Design of Cellular Phononic Band Gap Crystals”, Materials, vol. 9, no. 3, p. 186, Mar. 2016, doi: 10.3390/ma9030186.
  18.  G.A. Gazonas, D.S. Weile, R. Wildman, and A. Mohan, “Genetic algorithm optimization of phononic bandgap structures”, Int. J. Solids Struct., vol. 43, no. 18–19, pp. 5851–5866, Sep. 2006, doi: 10.1016/j.ijsolstr.2005.12.002.
  19.  M.I. Hussein, K. Hamza, G.M. Hulbert, R.A. Scott, and K. Saitou, “Multiobjective evolutionary optimization of periodic layered materials for desired wave dispersion characteristics”, Struct. Multidisc. Optim., vol. 31, no. 1, pp. 60–75, Jan. 2006, doi: 10.1007/s00158-005-0555-8.
  20.  K.L. Manktelow, M.J. Leamy, and M. Ruzzene, “Topology design and optimization of nonlinear periodic materials”, J. Mech. Phys. Solids, vol. 61, no. 12, pp. 2433–2453, Dec. 2013, doi: 10.1016/j.jmps.2013.07.009.
  21.  S. Hedayatrasa, M. Kersemans, K. Abhary, M. Uddin, J.K. Guest, and W. Van Paepegem, “Maximizing bandgap width and in-plane stiffness of porous phononic plates for tailoring flexural guided waves: Topology optimization and experimental validation”, Mech. Mater., vol. 105, pp. 188–203, Feb. 2017, doi: 10.1016/j.mechmat.2016.12.003.
  22.  L. Chen, Y. Guo, and H. Yi, “Optimization study of bandgaps properties for two-dimensional chiral phononic crystals base on lightweight design”, Phys. Lett. A, vol. 388, p. 127054, Feb. 2021, doi: 10.1016/j.physleta.2020.127054.
  23.  X.K. Han and Z. Zhang, “Bandgap design of three-phase phononic crystal by topological optimization”, Wave Motion, vol. 93, p. 102496, Mar. 2020, doi: 10.1016/j.wavemoti.2019. 102496.
  24.  S. Garus and W. Sochacki, “Structure optimization of quasi onedimensional acoustic filters with the use of a genetic algorithm”, Wave Motion, vol. 98, p. 102645, Nov. 2020, doi: 10.1016/j.wavemoti.2020.102645.
  25.  Y. Chen, F. Meng, G. Sun, G. Li, and X. Huang, “Topological design of phononic crystals for unidirectional acoustic transmission”, J. Sound Vib., vol. 410, pp. 103–123, Dec. 2017, doi: 10.1016/j.jsv.2017.08.015.
  26.  X.K. Han and Z. Zhang, “Topological Optimization of Phononic Crystal Thin Plate by a Genetic Algorithm”, Sci. Rep., vol. 9, no. 1, p. 8331, Dec. 2019, doi: 10.1038/s41598-019-44850-8.
  27.  Ł. Chruszczyk, “Genetic minimisation of peak-to-peak level of a complex multi-tone signal”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 3, pp. 621–629, 2019, doi: 10.24425/BPASTS.2019.129660.
  28.  M. Beniyel, M. Sivapragash, S.C. Vettivel, P. Senthil Kumar, K.K. Ajith Kumar, and K. Niranjan, “Optimization of tribology parameters of AZ91D magnesium alloy in dry sliding condition using response surface methodology and genetic algorithm”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 1, p. e135835, 2021, doi: 10.24425/BPASTS.2021.135835.
  29.  O. Dazel, J.-P. Groby, B. Brouard, and C. Potel, “A stable method to model the acoustic response of multilayered structures”, J. Appl. Phys., vol. 113, no. 8, p. 083506, Feb. 2013, doi: 10.1063/1.4790629.
  30.  S. Garus, W. Sochacki, and M. Bold, “Comparison of phononic structures with piezoelectric 0.62Pb(Mg1/3Nb1/3)O30.38PbTiO3 defect layers”, in Proc. Engineering Mechanics 2018, Svratka, Czech Republic, May 2018, pp. 229–232, doi: 10.21495/91-8-229.
  31.  M.M. Sigalas and C.M. Soukoulis, “Elastic-wave propagation through disordered and/or absorptive layered systems”, Phys. Rev. B, vol. 51, no. 5, pp. 2780–2789, Feb. 1995, doi: 10.1103/PhysRevB.51.2780.
  32.  P.-G. Luan and Z. Ye, “Acoustic wave propagation in a onedimensional layered system”, Phys. Rev. E, vol. 63, no. 6, p. 066611, May 2001, doi: 10.1103/PhysRevE.63.066611.
  33.  M.-I. Pop and N. Cretu, “Intrinsic transfer matrix method and split quaternion formalism for multilayer media”, Wave Motion, vol. 65, pp. 105–111, Sep. 2016, doi: 10.1016/j.wavemoti.2016.04.011.
  34.  S. Yang, W.-D. Yu, and N. Pan, “Band structure in two-dimensional fiber–air photonic crystals”, Physica B, vol. 406, no. 4, pp. 963–966, Feb. 2011, doi: 10.1016/j.physb.2010.12.039.
  35.  M. Fukuhara, X. Wang, and A. Inoue, “Acoustic analysis of the amorphous phase of annealed Zr55Cu30Ni5Al10 glassy alloy, using diffracted SH ultrasonic waves”, J. Non-Cryst. Solids, vol. 356, no. 33–34, pp. 1707–1710, Jul. 2010, doi: 10.1016/j.jnoncrysol.2010.06.025.
Go to article

Authors and Affiliations

Sebastian Garus
1
ORCID: ORCID
Wojciech Sochacki
1
ORCID: ORCID
Mariusz Kubanek
2
ORCID: ORCID
Marcin Nabiałek
3
ORCID: ORCID

  1. Faculty of Mechanical Engineering and Computer Science, Department of Mechanics and Fundamentals of Machinery Design, Czestochowa University of Technology, Dąbrowskiego 73, 42-201 Czestochowa, Poland
  2. Faculty of Mechanical Engineering and Computer Science, Department of Computer Science, Czestochowa University of Technology, Dąbrowskiego 73, 42-201 Czestochowa, Poland
  3. Faculty of Production Engineering and Materials Technology, Department of Physics, Czestochowa University of Technology, Armii Krajowej 19, 42-201 Czestochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

This contribution gives an overview about new procedures for the parameter identification for the material characterisation of rubber blends. They are based on a Newton-Raphson procedure and a genetic algorithm. As basis serves an experimental investigation of the viscous properties of rubber blends by means of a capillaryviscometer. Because of simultaneous consideration of wall slippage, temperature and of the die swell, the proposed material characterisation is represented by a coupled system of nonlinear equations. Describing their solutions requires a numerical integration algorithm. For this purpose a generalized Newton-Raphson scheme has been adopted. The verification of the developed parameter identification was done by means of another approach which is based on a genetic algorithm.
Go to article

Authors and Affiliations

Herbert W. Mullner
Josef Eberhardsteiner
Andre Wieczorek
Download PDF Download RIS Download Bibtex

Abstract

The Job Shop scheduling problem is widely used in industry and has been the subject of study by several researchers with the aim of optimizing work sequences. This case study provides an overview of genetic algorithms, which have great potential for solving this type of combinatorial problem. The method will be applied manually during this study to understand the procedure and process of executing programs based on genetic algorithms. This problem requires strong decision analysis throughout the process due to the numerous choices and allocations of jobs to machines at specific times, in a specific order, and over a given duration. This operation is carried out at the operational level, and research must find an intelligent method to identify the best and most optimal combination. This article presents genetic algorithms in detail to explain their usage and to understand the compilation method of an intelligent program based on genetic algorithms. By the end of the article, the genetic algorithm method will have proven its performance in the search for the optimal solution to achieve the most optimal job sequence scenario.
Go to article

Authors and Affiliations

Habbadi SAHAR
1
Brahim HERROU
Souhail SEKKAT
2

  1. Sidi Mohamed Ben Abdellah University, Faculté des Sciences Techniques de Fès, Industrial Engineering Department, Morocco
  2. Ecole Nationale Supérieure d’Arts et Métiers ENSAM MEKNES, Industrial Engineering Department, Morocco
Download PDF Download RIS Download Bibtex

Abstract

The paper considers the production scheduling problem in a hybrid flow shop environment with sequence-dependent setup times and the objectives of minimizing both the makespan and the total tardiness. The multi-objective genetic algorithm is applied to solve this problem, which belongs to the non-deterministic polynomial-time (NP)-hard class. In the structure of the proposed algorithm, the initial population, neighborhood search structures and dispatching rules are studied to achieve more efficient solutions. The performance of the proposed algorithm compared to the efficient algorithm available in literature (known as NSGA-II) is expressed in terms of the data envelopment analysis method. The computational results confirm that the set of efficient solutions of the proposed algorithm is more efficient than the other algorithm.
Go to article

Authors and Affiliations

Seyyed Mostafa Mousavi
1
Parisa Shahnazari-Shahrezaei
2

  1. Department of Technical and Engineering, Nowshahr Branch, Islamic Azad University, Mazandaran, Iran
  2. Department of Industrial Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran

This page uses 'cookies'. Learn more