Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

To improve the power quality of a multi-pulse rectifier, a zigzag 18-pulse uncontrolled rectifier with an auxiliary circuit at the DC side is proposed. When the grid-side currents are sinusoidal waves, the required DC side injection currents to be compensated can be obtained by analyzing the AC-DC side relationship of diode bridge rectifiers. Then the 6 compensation currents generated by an active auxiliary circuit are injected into the DC side to eliminate the grid-side harmonics of the rectifier. The simulation results verifying the correctness of the theoretical analysis show that the proposed rectifier can mitigate the harmonic content, as the total harmonic distortion of the grid-side current is about 1.45%. In addition, the single-phase inverter used in the active auxiliary circuit has the characters of simple circuit structure and easy controllability.

Go to article

Authors and Affiliations

Jiongde Liu
Xiaoqiang Chen
Ying Wang
ORCID: ORCID
Tao Chen
Download PDF Download RIS Download Bibtex

Abstract

In order to meet the lightweight requirements of high-speed trains, the inductancecapacitance (LC) resonance circuits are cancelled in the traction drive system of some high-speed electric multiple units (EMUs) in China, which will lead to large low-order current harmonics on the grid side in the traction drive system of EMUs, seriously affecting the power quality. Therefore, the low-order harmonic current of the traction drive system of an EMU is studied in this paper. Firstly, the working principle of a four-quadrant pulse rectifier in a traction drive system is analyzed, and then the generation mechanism of loworder current harmonics on the grid side is studied deeply. Secondly, the voltage outer loop and current inner loop control of a four-quadrant pulse rectifier are optimized respectively. In the voltage outer loop control, a Butterworth filter is designed to suppress the beat frequency voltage of the DC side voltage, so as to indirectly suppress the low-order current harmonics. In the current inner loop, a quasi-proportional resonance (PR) controller with harmonic compensation is used to suppress low-order current harmonics, and a novel loworder current harmonics suppression strategy based on the Butterworth filter and quasi-PR controller is proposed. Finally, the results of the simulated validation of the proposed control strategy show that compared with the existing method of the notch filter ΒΈ PR controller, the proposed optimal control strategy has a better effect on low-order current harmonic suppression, and improves the dynamic performance of the control system, further showing the correctness and effectiveness of the optimal control strategy.
Go to article

Authors and Affiliations

Feng Zhao
1
Jianing Zhang
1
ORCID: ORCID
Xiaoqiang Chen
1 2
Ying Wang
1 2
ORCID: ORCID

  1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou, China
  2. Key Laboratory of Opto-Technology and Intelligent Control Ministry of Education, Lanzhou, China

This page uses 'cookies'. Learn more