Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The progress of additive manufacturing technology brings about many new questions and challenges. Additive manufacturing technology allows for designing machine elements with smaller mass, but at the same time with the same stiffness and stress loading capacity. By using additive manufacturing it is possible to produce gears in the form of shell shape with infill inside. This study is carried out as an attempt to answer the question which type of infill, and with how much density, is optimal for a spur gear tooth to ensure the best stiffness and stress loading capacity. An analysis is performed using numerical finite element method. Two new infill structures are proposed: triangular infill with five different densities and topology infill designed according to the already known results for 2D cantilever topology optimization, known as Michell structures. The von Mises stress, displacements and bending stiffness are analyzed for full body gear tooth and for shell body gear tooth with above mentioned types of infill structure.

Go to article

Authors and Affiliations

A.J. Muminovic
M. Colic
E. Mesic
I. Saric
Download PDF Download RIS Download Bibtex

Abstract

Advancements in technology and material sciences lead new solutions to be used in civil engineering. PolyUrethane Flexible Joints (PUFJ) and Fiber Reinforced PolyUrethanes (FRPU) are among those innovative solutions. PUFJ implemented systems comprise of seismic preventive buffer material between masonry infill walls and reinforced concrete (RC) frames, whereas FRPU solution is designed for covering the wall surfaces with thin composite strips. Both methods are primarily developed for increasing the ductility capacities of buildings while sustaining the overall structural strength without compromising on the safety of these systems against earthquakes. In this article, test results of the quasi-static cyclic experiments as well as dynamic tests on the shake tables including harmonic forces operating in resonance are presented. Moreover, numerical analyses are performed in order to comprehend the behavior of PUFJ implemented frames constituted with different masonry materials than above which are under various loading conditions. The outcomes confirmed the high efficiency of the proposed solutions, which at the same time meet the strict requirements of the modern seismic standards.
Go to article

Authors and Affiliations

Arkadiusz Kwiecień
1
ORCID: ORCID
Ahmet Tugrul Akyildiz
1

  1. Cracow University of Technology, Faculty of Civil Engineering, Warszawska 24,31-155 Cracow, Poland

This page uses 'cookies'. Learn more