Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aftermath of including new technologies in a modern electric system in conjunction with the incessant rise in power demand could pose a risk to the optimal operation of the system. Therefore, it becomes imperative to identify the most influential and critical nodes of such a system to avert future problems in network operation. In this paper, to identify most significant nodes of the system, the authors propose two measures of centrality in accordance with the network structural properties of a power system, namely, degree centrality (DC) and eigenvector centrality (EC). These are expressed considering the admittance matrix that exists among the interconnection of load to load nodes in an electrical power network. A critical node closeness centrality (CNCC) method is also proposed to identify critical nodes of the system. This is done by modifying the conventional closeness centrality (CC) to include the influence of interconnection that exists between network load to load nodes as captured by the admittance matrix between them. A comparative analysis of the proposed techniques with other conventional methods is also carried out. The result of the simulation shows that the proposed methods could serve as alternative tools in the identification of influential and weak nodes in a power system.
Go to article

Authors and Affiliations

Isaiah Adebayo
1
Yanxia Sun
2

  1. Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Oyo State, Nigeria
  2. University of Johannesburg, P.O. BOX 524, Auckland Park 2006, South Africa
Download PDF Download RIS Download Bibtex

Abstract

The use of quantitative methods, including stochastic and exploratory techniques in environmental studies does not seem to be sufficient in practical aspects. There is no comprehensive analytical system dedicated to this issue, as well as research regarding this subject. The aim of this study is to present the Eco Data Miner system, its idea, construction and implementation possibility to the existing environmental information systems. The methodological emphasis was placed on the one-dimensional data quality assessment issue in terms of using the proposed QAAH1 method - using harmonic model and robust estimators beside the classical tests of outlier values with their iterative expansions. The results received demonstrate both the complementarity of proposed classical methods solution as well as the fact that they allow for extending the range of applications significantly. The practical usefulness is also highly significant due to the high effectiveness and numerical efficiency as well as simplicity of using this new tool.

Go to article

Authors and Affiliations

Piotr Czechowski
Artur Badyda
Grzegorz Majewski

This page uses 'cookies'. Learn more