Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to assess the feasibility of utilizing sodium alginate biopolymer as animmobilization carrier for laccase in the removal of indigo carmine (IC), an anionic dye. The main goal of this work was to optimize the decolourization process by selecting the appropriate immobilized enzyme dose per 1 mg of dye, as well as the process temperature. The effective immobilization of laccase using sodium alginate as a carrier was confirmed by Raman spectroscopy. An analysis of the size and geometric parameters of the alginate beads was also carried out. Tests of IC decolourization using alginate-laccase beads were conducted. Applying the most effective dose of the enzyme (320 mg of enzyme/1 mg of IC) made it possible to remove 92.5% of the dye over 40 days. The optimal temperature for the IC decolourization process, using laccase immobilized on sodium alginate, was established at 30-40ºC. The obtained results indicate that laccase from Trametes versicolor immobilized on sodium alginate was capable of decolourizing the tested dye primarily based on mechanism of biocatalysis.
Go to article

Bibliography

  1. Achieng, G.O., Kowenje, Ch.O., Lalah, J.O. & Ojwach S.O. (2019). Preparation, characterization of fish scales biochar and their applications in the removal of anionic indigo carmine dye from aqueous solutions, Water Science & Technology, 80, 11, pp. 2218-2231. DOI:10.2166/wst.2020.040.
  2. Ahlawat, A., Jaswal, A.S. & Mishra, S. (2022). Proposed pathway of degradation of indigo carmine and its co-metabolism by white-rot fungus Cyathus bulleri, International Biodeterioration & Biodegradation, 172, 3, 105424. DOI:10.1016/j.ibiod.2022.105424.
  3. Almulaiky, Y.Q. & Al Harbi, S.A. (2022). Preparation of a calcium alginate coated polypyrrole/silver nanocomposite for site specific immobilization of polygalacturonase with high reusability and enhanced stability, Catalysis Letters, 152, pp. 28-42. DOI:10.1007/s10562-021-03631-7.
  4. Alvarado-Ramírez, L., Rostro-Alanis, M., Rodríguez-Rodríguez, J., Castillo-Zacarías, C., Sosa-Hernández, J.E., Barceló, D., Iqbal, H.M.N. & Parra-Saldívar R. (2021). Exploring current tendencies in techniques and materials for immobilization of laccases – A review, International Journal of Biological Macromolecules, 181, pp. 683–696. DOI:10.1016/j.ijbiomac.2021.03.175.
  5. Bhowmik, S., Chakraborty, V. & Das, P. (2021). Batch adsorption of indigo carmine on activated carbon prepared from sawdust: a comparative study and optimization of operating conditions using Response Surface Methodology, Results in Surfaces and Interfaces, 3, 100011. DOI:10.1016/j.rsurfi.2021.100011.
  6. Bilal, M., Rasheed, T., Nabeel, F. & Iqbal, H.M.N. (2019). Hazardous contaminants in the environment and their laccase-assisted degradation – A review, Journal of Environmental Management, 234, pp. 253-264. DOI:10.1016/j.jenvman.2019.01.001.
  7. Ching, S.H., Bansal, N. & Bhandari, B. (2017). Alginate gel particles–A review of production techniques and physical properties, Critical Reviews in Food Science and Nutrition, 57, pp. 1133–1152. DOI:10.1080/10408398.2014.965773.
  8. Daâssi, D., Mechichi, T., Nasri, M. & Rodriguez-Couto, S. (2013). Decolorization of the metal textile dye Lanaset Grey G by immobilized white-rot fungi, Journal of Environmental Management, 129, pp. 324-332. DOI:10.1016/j.jenvman.2013.07.026.
  9. Deska, M. & Kończak, B. (2020). Operational stability of laccases under immobilization conditions, Przemysł Chemiczny, 99, 3, pp. 472-476. DOI:10.15199/62.2020.3.22. (in Polish)
  10. Deska, M. & Kończak, B. (2022a). Support materials for laccase immobilization for decolourization processes, Przemysł Chemiczny, 101, 2, pp. 135-139. DOI:10.15199/62.2022.2.9. (in Polish)
  11. Deska, M. & Kończak, B. (2022b). Laccase Immobilization on Biopolymer Carriers – Preliminary Studies, Journal of Ecological Engineering, 23, 3, pp. 235–249. DOI:10.12911/22998993/146611.
  12. Deska, M. & Kończak, B., (2019). Immobilized fungal laccase as "green catalyst" for the decolourization process – State of the art, Process Biochemistry, 84, pp. 112-123. DOI:10.1016/j.procbio.2019.05.024.
  13. Deska, M. & Zawadzki, P. (2021). Novel methods of removing synthetic dyes from industrial wastewater, Przemysł Chemiczny, 100, 7, pp. 664-667. DOI:10.15199/62.2021.7.5 (in Polish).
  14. Hevira, L., Rahmayeni, Z., Ighalo, J.O. & Zein R. (2020). Biosorption of indigo carmine from aqueous solution by Terminalia Catappa shell, Journal of Environmental Chemical Engineering, 8, 104290. DOI:10.1016/j.jece.2020.104290.
  15. Holkar, C.R., Jadhav, A.J., Pinjari, D.V., Mahamuni, N.M. & Pandit, A.B. (2016). A critical review on textile wastewater treatments: Possible approaches, Journal of Environmental Management, 182, pp. 351–366. DOI:10.1016/j.jenvman.2016.07.090.
  16. Hurtado, A., Aljabali, A.A.A., Mishra, V.; Tambuwala, M.M. & Serrano-Aroca, Á. (2022). Alginate: Enhancement Strategies for Advanced Applications, International Journal of Molecular Sciences, 23, 4486, DOI:10.3390/ijms23094486.
  17. Kandelbauer, A., Kessler, W. & Kessler, R.W. (2008). Online UV-visible spectroscopy and multivariate curve resolution as powerful tool for model-free investigation of laccase-catalysed oxidation, Analytical and Bioanalytical Chemistry, 390, 5, pp. 1303–1315. DOI:10.1007/s00216-007-1791-0.
  18. Kishor, R., Purchase, D., Saratale, G.D., Saratale, R.G., Ferreira, L.F.R., Bilal, M., Chandra, R. & Bharagava, R.N. (2021). Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety, Journal of Environmental Chemical Engineering, 9, 2, 105012. DOI:10.1016/j.jece.2020.105012.
  19. Klis, M., Maicka, E., Michota, A., Bukowska, J., Sek, S., Rogalski, J. & Bilewicz R. (2007). Electroreduction of laccase covalently bound to organothiol monolayers on gold electrodes, Electrochimica Acta, 52, 18, pp. 5591–5598. DOI:10.1016/j.electacta.2007.02.008.
  20. Krzyczmonik, P., Klisowska, M., Leniart, A., Ranoszek-Soliwoda, K., Surmacki, J., Beton-Mysur, K. & Brożek-Płuska. B. (2023). The Composite Material of (PEDOT-Polystyrene Sulfonate)/Chitosan-AuNPS-Glutaraldehyde/as the Base to a Sensor with Laccase for the Determination of Polyphenols, Materials, 16, 14, pp. 5113. DOI:10.3390/ma16145113.
  21. Kuśmierek, K., Dąbek, L. & Świątkowski A. (2023). Removal of Direct Orange 26 azo dye from water using natural carbonaceous materials, Archives of Environmental Protection, 49, 1, pp. 47-56, DOI:10.24425/aep.2023.144736.
  22. Marszałek, A. (2022). Encapsulation of halloysite with sodium alginate and application in the adsorption of copper from rainwater, Archives of Environmental Protection, 48, 1, pp. 75-82, DOI:10.24425/aep.2022.140546.
  23. Lassouane, F., Aït-Amar, H., Amrani, S. & Rodriguez-Couto, S. (2019). A promising laccase immobilization approach for Bisphenol A removal from aqueous solutions, Bioresource Technology, 271, pp. 360-367. DOI:10.1016/j.biortech.2018.09.129.
  24. Leonties, A.R., Răducan, A., Culiță, D.C., Alexandrescu, E., Moroșan, A., Mihaiescu, D.E. & Aricov, L. (2022). Laccase immobilized on chitosan-polyacrylic acid microspheres as highly efficient biocatalyst for naphthol green B and indigo carmine degradation, Chemical Engineering Journal, 439, 135654. DOI:10.1016/j.cej.2022.135654.
  25. Mohan, Ch., Yadav, S., Uniyal, V., Takaeva, N. & Kumari, N. (2022). Interaction of Indigo carmine with naturally occurring clay minerals: An approach for the synthesis of nanopigments, Materials Today: Proceedings, 69, 2, pp. 82-86. DOI:10.1016/j.matpr.2022.08.081.
  26. Neha, A., Vijendra, S.S., Amel, G., Mohd, A.H., Brijesh, P., Amrita, S., Anupama, S., Virendra, K.Y., Krishna, K.Y., Chaigoo, L., Wonjae, L., Sumate, Ch. & Byong-Hun, J. (2022). Bacterial Laccases as Biocatalysts for the Remediation of Environmental Toxic Pollutants: A Green and Eco-Friendly Approach - A Review, Water, 14, 24, 4068. DOI:10.3390/w14244068.
  27. Niladevi, K. & Prema, P. (2007). Immobilization of laccase from Streptomyces psammoticus and its application in phenol removal using packed bed reactor, World Journal of Microbiology and Biotechnology, 24, pp. 1215-1222. DOI:10.1007/s11274-007-9598-x.
  28. Olajuyigbe, F.M., Adetuyi, O.Y. & Fatokun, C.O. (2018). Characterization of free and immobilized laccase from Cyberlindera fabianii and application in degradation of bisfenol A, International Journal of Biological Macromolecules, 125, pp. 856-864. DOI:10.1016/j.ijbiomac.2018.12.106.
  29. Rane, A. & Joshi, S.J. (2021). Biodecolorization and Biodegradation of Dyes: A Review, The Open Biotechnology Journal, 15, Suppl-1, M4, pp. 97-108. DOI:10.2174/1874070702115010097.
  30. Rodriguez-Couto, S. & Herrera, J.L.T. (2006). Industrial and biotechnological applications of laccases: a review, Biotechnology Advances, 24, 5, pp. 500-513. DOI:10.1016/j.biotechadv.2006.04.003.
  31. Saoudi, O. & Ghaouar, N. (2019). Biocatylytic characterization of free and immobilized laccase from Trametes versicolor in its activation zone, International Journal of Biological Macromolecules, 128, pp.681-691. DOI:10.1016/j.ijbiomac.2019.01.199.
  32. Shokri, Z., Seidi, F., Karami, S., Li, Ch., Saeb, M.R. & Xiao, H. (2021). Laccase immobilization onto natural polysaccharides for biosensing and biodegradation, Carbohydrate Polymers, 262, 117963. DOI:10.1016/j.carbpol.2021.117963.
  33. Teerapatsakul, Ch., Parra, R., Keshavarz, T. & Chitradon, L. (2017). Repeated batch for dye degradation in an airlift bioreactor by laccase entrapped in copper alginate, International Biodeterioration & Biodegradation, 120, pp. 52-57. DOI:10.1016/j.ibiod.2017.02.001.
  34. Tyagi, N., Gambhir, K., Pandey, R., Gangenahalli, G. & Verma, Y.K. (2021) Minimizing the negative charge of Alginate facilitates the delivery of negatively charged molecules inside cells, Journal of Polymer Research, 29, 1. DOI:10.1007/s10965-021-02813-6
  35. Vautier, M., Guillard, C. & Herrmann, J.M. (2001). Photocatalytic degradation of dyes in water: Case study of indigo and of indigo carmine, Journal of Catalysis, 201, pp. 46-59. DOI:10.1006/jcat.2001.3232.
  36. Wang, J.; Lu, L. & Feng, F. (2017). Improving the Indigo Carmine Decolorization Ability of a Bacillus amyloliquefaciens Laccase by Site-Directed Mutagenesis, Catalysts, 7, 275. DOI:10.3390/catal7090275.
  37. Zdarta, J., Meyer, A.S., Jesionowski, T. & Pinelo, M. (2018). Developments in support materials for immobilization of oxidoreductases: A comprehensive review, Advances in Colloid and Interface Science, 258, pp.1-20. DOI:10.1016/j.cis.2018.07.004.
  38. Zein, R., Hevira, L., Zilfa, Rahmayeni, Fauzia, S. & Ighalo J.O. (2022). The Improvement of Indigo Carmine Dye Adsorption by Terminalia catappa Shell Modified with Broiler Egg White, Biomass Conversion and Biorefinery, 13, pp. 13795-13812. DOI:10.1007/s13399-021-02290-3.
  39. Zhou, W., Zhang, W. & Cai, Y. (2021). Laccase immobilization for water purification: A comprehensive review, Chemical Engineering Journal, 403, 126272. DOI:10.1016/j.cej.2020.126272.
Go to article

Authors and Affiliations

Małgorzata Białowąs
1
ORCID: ORCID
Beata Kończak
1
Stanisław Chałupnik
1
Joanna Kalka
2
Magdalena Cempa
1
ORCID: ORCID

  1. Central Mining Institute – National Research Institute, Katowice, Poland
  2. Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering,The Silesian University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

Culture supernatant containing laccase produced by Cerrena unicolor strain was used to examine laccase partitioning between phases in an aqueous two-phase system. The investigated system consisted of polyethylene glycol 3000 and sodium phosphate buffer adjusted to pH = 7. Influence of several parameters on partitioning was measured, including phase forming components’ concentrations, tie line lengths, phase volume ratio, supernatant dilution, process temperature and halogen salt supplementation. Partitioning coefficients up to 78 in the bottom phase were achieved with yields of over 90%. Tie line length and phase volume ratio had significant effect on enzyme partitioning.

Go to article

Authors and Affiliations

Michał Blatkiewicz
Stanisław Ledakowicz
Axel Prinz
Andrzej Górak
Download PDF Download RIS Download Bibtex

Abstract

An useful electrochemical sensing approach was developed for norepinephrine (NE) detection based on semiconducting polymer (9-nonyl-2,7-di(selenophen-2-yl)- 9H-carbazole) and laccase modified platinum electrode (Pt). The miniature Pt biosensor was designed and constructed via the immobilization of laccase in an electroactive layer of the electrode coated with thin polymeric film. This sensing arrangement utilized the catalytic oxidation of NE to norepinephrine quinone. The detection process was based on the oxidation of catecholamine in the presence of enzyme – laccase. With the optimized conditions, the analytical performance demonstrated selectivity in a wide linear range (0.1–200x10-6 M) with a detection limit of 240 nM and a quantification limit of 365 nM. Moreover, the method was successfully applied for selective NE determination in the presence of interfering substances.

Go to article

Authors and Affiliations

Sylwia Baluta
Agnieszka Swist
Joanna Cabaj
Karol Malecha
Download PDF Download RIS Download Bibtex

Abstract

Diclofenac (2-[(2,6-Dichlorophenyl)amino]benzeneacetic acid) is a non-steroidal anti-infl ammatory

drug. Due to excessive use of diclofenac, this drug has been detected in surface water, ground water and drinking

water. In our study, four fungal strain Trametes trogii, Aspergillus niger, Yarrowia lipolytica and Phanerochaete

chrysosporium were investigated in terms of diclofenac degradation potential. Trametes trogii was found to be

the most effi cient strain with 100% diclofenac degradation rate. Two hydroxylated diclofenac metabolites have

been identifi ed in culture medium. Crude laccase from T. trogii almost completely removed diclofenac with 97%

removal in 48 h. We suggest that the degradation of diclofenac depends on the cytochrome P450 enzyme system

and laccase activity. After 24 h incubation decrease in toxicity of diclofenac was confi rmed by Microtox test.

Go to article

Authors and Affiliations

Y. Doruk Aracagök
Hakan Göker
Nilüfer Cihangir
Download PDF Download RIS Download Bibtex

Abstract

Foam fractionation process for concentration of laccases from two Basidiomycete strains under different process conditions was investigated. Culture supernatants of Cerrena unicolor and Pleurotus sapidus containing active laccase were used with and without surfactant additives. Two surfactants: cationic cetrimonium bromide (CTAB) and non-ionic Polysorbate 80 were applied in the range from 0.2 mM to 1.5 mM. The pH levels ranging from 3 to 10 were examined with particular attention to pH=4, which is close to the pI of the enzymes. Results show that the source of the enzyme is significant in terms of partitioning efficiency in a foam fractionation process. Laccase from Cerrena unicolor showed the best activity partitioning coefficients between foamate and retentate of almost 200 with yields reaching 50% for pH 7.5 and concentration of CTAB cCTAB = 0.5 mM, whereas laccase from Pleurotus sapidus showed partitioning coefficients of up to 8 with 25% yield for pH 4 and cCTAB = 0.5 mM.

Go to article

Authors and Affiliations

Michał Blatkiewicz
Stanisław Ledakowicz
Anna Antecka
Andrzej Górak
Download PDF Download RIS Download Bibtex

Abstract

Extracellular laccase produced by the wood-rotting fungus Cerrena unicolor was immobilised covalently on the mesostructured siliceous foam (MCF) and three hexagonally ordered mesoporous silicas (SBA-15) with different pore sizes. The enzyme was attached covalently via glutaraldehyde (GLA) or by simple adsorption and additionally crosslinked with GLA. The experiments indicated that laccase bound by covalent attachment remains very active and stable. The best biocatalysts were MCF and SBA-15 with Si-F moieties on their surface. Thermal inactivation of immobilised and native laccase at 80°C showed a biphasic-type activity decay, that could be modelled with 3- parameter isoenzyme model. It appeared that immobilisation did not significantly change the mechanism of activity loss but stabilised a fraction of a stable isoform. Examination of time needed for 90% initial activity loss revealed that immobilisation prolonged that time from 8 min (native enzyme) up to 155 min (SBA-15SF).

Go to article

Authors and Affiliations

Jolanta Bryjak
Katarzyna Szymańska
Andrzej B. Jarzębski
Download PDF Download RIS Download Bibtex

Abstract

The contamination of the environment by antibiotics has become a serious problem, supported by abundant scientific evidence of its negative impact on both aquatic ecosystems and human health. Therefore, it is crucial to intensify research efforts towards developing effective and efficient processes for removing antibiotics from the aquatic environment. In this study, a bacterial consortium capable of breaking down penicillin was employed in a ceramic separator microbial fuel cell (MFC) to generate electricity. The consortium’s properties such as laccase activity, penicillin removal and microbial structure were studied. The SF11 bacterial consortium, with a laccase activity of 6.16±0.04 U/mL, was found to be effective in breaking down penicillin. The highest rate of penicillin removal (92.15±0.27%) was achieved when the SF11 consortium was incubated at 30 °C for 48 hours. Furthermore, when used as a whole-cell biocatalyst in a low-cost upflow MFC, the Morganella morganii-rich SF11 consortium demonstrated the highest voltage and power density of 964.93±1.86 mV and 0.56±0.00 W/m3, respectively. These results suggest that the SF11 bacterial consortium has the potential for use in ceramic separator MFCs for the removal of penicillin and electricity generation.
Go to article

Bibliography

[1]. Ahilan, V., Bhowmick, G.D., Ghangrekar, M.M., Wilhelm, M. & Rezwan, K. (2019). Tailoring hydrophilic and porous nature of polysiloxane derived ceramer and ceramic membranes for enhanced bioelectricity generation in microbial fuel cell, Inonics, 25, pp. 5907-5918. DOI:10.1007/s11581-019-03083-5
[2]. Ajayi, F.F. & Weigele, P.R. (2012). A terracotta bio-battery, Bioresource Technology, 116, pp. 86-91. DOI:10.1016/j.biortech.2012.04.019
[3]. Al-Dhabi, N.A., Esmail, G.A. & Arasu, M.V. (2021). Effective degradation of tetracycline by manganese peroxidase producing Bacillus velezensis strain Al-Dhabi 140 from Saudi Arabia using fibrous-bed reactor, Chemosphere, 268, pp. 128726. DOI:10.1016/j.chemosphere.2020.128726
[4]. Ambika, A., Kumar, V., Jamwal, A., Kumar, V. & Singh, D. (2022). Green bioprocess for degradation of synthetic dyes mixture using consortium of laccase-producing bacteria from Himalayan niches, Journal of Environmental Management, 310, pp. 114764. DOI:10.1016/j.jenvman.2022.114764
[5]. Bhakta, J. & Munekage, Y. (2011). Mercury(II) Adsorption onto the magnesium oxide impregnated volcanic ash soil derived ceramic from aqueous phase, International Journal of Environmental Research, 5, pp. 585-594. DOI:10.22059/ijer.2011.365
[6]. Bhakta, J.N. & Munekage, Y. (2013). Identification of potential soil adsorbent for the removal of hazardous metals from aqueous phase, International Journal of Environmental Science and Technology, 10, pp. 315-324. DOI:10.1007/s13762-012-0116-9
[7]. Chaijak, P. & Michu, P. (2022). Modified water hyacinth biochar as a low-cost supercapacitor electrode for electricity generation from pharmaceutical wastewater, Polish Journal of Environmental Studies, 31, 6, pp. 5471-5475. DOI:10.15244/pjoes/150463
[8]. Chaijak, P. & Thipraksa, J. (2022). Improved performance of a novel-model laccase based microbial fuel cell (LB-MFC) with edible mushroom as a whole-cell biocatalyst, Polish Journal of Environmental Studies, 31, 5, pp. 4481-4485. DOI:10.15244/pjoes/147196
[9]. Chen, R., Zhang, Z., Feng, C., Lei, Z., Li, Y., Li, M., Shimizu, K. & Sugiura, N. (2010). Batch study of arsenate (V) adsorption using Akadama mud: Effect of water mineralization, Applied Surface Science, 256, 9, pp. 2961-2967. DOI:10.1016/j.apsusc.2009.11.058
[10]. Cheng, D., Ngo, H.H., Guo, W., Lee, D., Nghiem, D.L., Zhang, J., Liang, S., Varjani, S. & Wang, J. (2020). Performance of microbial fuel cell for treating swine wastewater containing sulfonamide antibiotics, Bioresource Technology, 311, pp. 123588. DOI:10.1016/j.biortech.2020.123588
[11]. Copete-Pertuz, L.S., Placido, J., Serna-Galvis, E.A., Torres-Palma, R.A. & Mora, A. (2018). Elimination of Isoxazolyl-Penicillins antibiotics in waters by the ligninolytic native Colombian strain Leptosphaerulina sp. considerations on biodegradation process and antimicrobial activity removal, The Science of The Total Environment, 630, pp. 1195-1204. DOI:10.1016/j.scitotenv.2018.02.244
[12]. Das, I., Das, S., Dixit, R. & Ghangrekar, M.M. (2020). Goethite supplemented natural clay ceramic as an alternative proton exchange membrane and its application in microbial fuel cell, Ionics, 26, pp. 3061-3072. DOI:10.1007/s11581-020-03472-1
[13]. Ding, D., Lei, Z., Yang, Y. & Zhang, Z. (2014). Efficiency of transition metal modified akadama clay on cesium removal from aqueous solutions, Chemical Engineering Journal, 236, pp. 17-28. DOI:10.1016/j.cej.2013.09.075
[14]. Eliato, T.R., Pazuki, G. & Majidian, N. (2016). Potassium permanganate as an electron receiver in a microbial fuel cell, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38, 5, pp. 644-651. DOI:10.1080/15567036.2013.818079
[15]. Feng, L., Casas, M.E., Ottosen, L.D.M., Moller, H.B. & Bester, K. (2017). Removal of antibiotics during the anaerobic digestion of pig manure, Science of The Total Environment, 603-604, pp. 219-225. DOI:10.1016/j.scitotenv.2017.05.280
[16]. Garcia, D., Posadas, E., Grajeda, C., Blanco, S., Martinez-Paramo, S., Acien, G., Garcia-Encina, P., Bolado, S.  Munoz, R. (2017). Comparative evaluation of piggery wastewater treatment in algal-bacterial photobioreactors under indoor and outdoor conditions, Bioresource Technology, 245, pp. 483-490. DOI:10.1016/j.biortech.2017.08.135
[17]. Ge, X., Cao, X., Song, X., Wang, Y., Si, Z., Zhao, Y., Wang, W. & Tesfahunegn, A.A. (2020). Bioenergy generation and simultaneous nitrate and phosphorus removal in a pyrite-based constructed wetland-microbial fuel cell. Bioresource Technology, 296, pp. 122350. DOI:10.1016/j.biortech.2019.122350
[18]. Ghadge, A.N. & Ghangrekar, M.M. (2015). Development of low cost ceramic separator using mineral cation exchanger to enhance performance of microbial fuel cells, Electrochimica Acta, 166, 1, pp. 320-328. DOI:10.1016/j.electacta.2015.03.105
[19]. Ghadge, A.N., Jadhav, D.A. & Ghangrekar, M.M. (2016). Wastewater treatment in pilot-scale microbial fuel cell using multielectrode assembly with ceramic separator suitable for field applications, Environmental Progress & Sustainable Energy, 35, 6, pp. 1809-1817. DOI:10.1002/ep.12403
[20]. Ghadge, A.N., Sreemannarayana, M., Duteanu, N. & Ghangrekar, M.M. (2014). Influence of ceramic separator’s characteristics on microbial fuel cell performance, Electrochemical Engineering, 4, 4, pp. 315-326. DOI:10.5599/jese.2014.0047
[21]. Ghasemi, M., Daud, W.R.W., Ismail, M., Rahimnejad, M., Ismail, A.F., Leong, J.X., Miskan, M. & Liew, K.B. (2013). Effect of pre-treatment and biofouling of proton exchange membrane on microbial fuel cell performance, International Journal of Hydrogen Energy, 38, 13, pp. 5480-5484. DOI:10.1016/j.ijhydene.2012.09.148
[22]. Goto, Y. & Yoshida, N. (2019). Scaling up microbial fuel cells for treating swine wastewater. Water, 11, 9, pp. 1803. DOI:10.3390/w11091803
[23]. Guang, L., Koomson, D.A., Jingyu, H., Ewusi-Mensah, D. & Miwornunyuie, N. (2020). Performance of exoelectrogenic bacteria used in microbial desalination cell technology, International Journal of Environmental Research and Public Health, 17, 3, 1, pp. 1121. DOI:10.3390/ijerph17031121
[24]. He, L.Y., Ying, G.G., Liu, Y.S., Su, H.C., Chen, J., Liu, S.S. & Zhao, J.L. (2016). Discharge of swine wastes risks water quality and food safety: Antibiotics and antibiotic resistance genes from swine sources to the receiving environments, Environment International, 92-93, pp. 210-219. DOI:10.1016/j.envint.2016.03.023
[25]. Jahan, N., Tahmid, M., Shoronika, A.Z., Fariha, A., Roy, H., Pervez, M.N., Cai, Y., Naddeo, V. & Islam, M.S. (2022). A comprehensive review on the sustainable treatment of textile wastewater: Zero liquid discharge and resource recovery perspectives, Sustainability, 14, pp. 15398. DOI:10.3390/su142215398
[26]. Ji, M., Su, X., Zhao, Y., Qi, W., Wang, Y., Chen, G. & Zhang, Z. (2015). Effective adsorption of Cr(VI) on mesoporous Fe-functionalized Akadama clay: optimization, selectivity, and mechanism, Applied Surface Science, 344, pp. 128-136. DOI:10.1016/j.apsusc.2015.03.006
[27]. Kim, D.P., Saegerman, C., Douny, C., Dinh, T.V., Xuan, B.H., Vu, B.D., Hong, N.P. & Scippo, M.L. (2013). First survey on the use of antibiotics in pig and poultry production in the Red River Delta Region of Vietnam, Food and Public Health, 3, 5, pp. 247-256. DOI:10.5923/j.fph.20130305.03
[28]. Kim, M., Song, Y.E., Li, S. & Kim, J.R. (2021). Microwave-treated expandable graphite granule for bioelectricity generation of microbial fuel cells, Journal of Electrochemical Science and Technology, 12, 3, pp. 297-301. DOI:10.33961/jecst.2020.01739
[29]. Kim, T., An, J., Jang, J.K. & Chang, I.S. (2020). Determination of optimum electricity connection mode for multi-electrode-embedded microbial fuel cells coupled with anaerobic digester for enhancement of swine wastewater treatment efficiency and electricity recover, Bioresource Technology, 297, pp. 122464. DOI:10.1016/j.biortech.2019.122464
[30]. Krasnikova, A.V. & Iozep, A.A. (2003). Structure of chemical compounds, Methods of analysis and process control, Pharmaceutical Chemistry Journal, 37, 9, pp. 504.
[31]. Kusada, H., Zhang, Y., Takami, H., Kimura, N. & Kamagata, Y. (2019). Novel N-Acyl Homoserine lactone-degrading bacteria isolated from penicillin-contaminated environments and their quorum-quenching activities, Frontiers in Microbiology, 10, pp. 445, 2019. DOI:10.3389/fmicb.2019.00455
[32]. Li, H., Xu, H., Yang, Y.L., Yang, X.L., Wu, Y., Zhang, S. & Song, H.L. (2019). Effects of graphite and Mn ore media on electro-active bacteria enrichment and fate of antibiotic and corresponding resistance gene in up flow microbial fuel cell constructed wetland, Water Research, 165, pp. 114988. DOI:10.1016/j.watres.2019.114988
[33]. Liu, F., Sun, L., Wan, J., Shen, L., Yu, Y., Hu, L. & Zhou, Y. (2020). Performance of different macrophytes in the decontamination of and electricity generation from swine wastewater via an integrated constructed wetland-microbial fuel cell process, Journal of Environmental Science (China), 89, pp. 252-263. DOI:10.1016/j.jes.2019.08.015
[34]. Masse, D.I., Lu, D., Masse, L. & Droste, R.L. (2000). Effect of antibiotics on psychrophilic anaerobic digestion of swine manure slurry in sequencing batch reactors. Bioresource Technology, 75, 3, pp. 205-211. DOI:10.1016/S0960-8524(00)00046-8
[35]. Michu, P. & Chaijak, P. (2022). Electricity generation and winery wastewater treatment using silica modified ceramic separator integrated with yeast-based microbial fuel cell, Communication in Science and Technology, 7, 1, pp. 98-102. DOI:10.21924/cst.7.1.2022.799
[36]. More, S.S., Renuka, P.S., Pruthvi, K., Swetha, M., Malini, S. & Veena, S.M. (2011). Isolation, purification, and characterization of fungal laccase from Pleurotus sp., Enzyme Research, 2011, pp. 248735. DOI:10.4061/2011/248735
[37]. Mukhopadhyay, D., Khan, N., Kamal, N., Varjani, S., Singh, S., Sindhu, R., Gupta, P. & Bhargava, P.C. (2022). Degradation of beta-lactam antibiotic ampicillin using sustainable microbial peroxide producing cell system, Bioresource Technology, 361, pp. 127605. DOI:10.1016/j.biortech.2022.127605
[38]. Nguyen, T.T., Soda, S., Kanayama, A. & Hamai, T. (2021). Effects of cattails and hydraulic loading on heavy metal removal from closed mine drainage by pilot-scale constructed wetlands, Water, 13, 14, pp. 1937. DOI:10.3390/w13141937
[39]. Ni, H., Wang, K., Lv, S., Wang, X., Zhuo, L. & Zhang, J. (2020). Effects of Concentration Variations on the Performance and Microbial Community in Microbial Fuel Cell Using Swine Wastewater, Energies, 13, 9, pp. 2231. DOI:10.3390/en13092231
[40]. Piontek, K., Antorini, M. & Choinowski, T. (2002). Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-A resolution containing a full complement of coppers, Journal of Biological Chemistry, 277, 40, pp. 37663. DOI:10.1074/jbc.M204571200
[41]. Portis, E., Lindeman, C., Johansen, L. & Stoltman, G. (2012). A ten-year (2000-2009) study of antimicrobial susceptibility of bacteria that cause bovine respiratory disease complex--Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni--in the United States and Canada. Journal of Veterinary Diagnostic Investigation, 24, 5, pp. 932-944. DOI:10.1177/1040638712457559
[42]. Prosekov, A.Y.  Ivanova, S.A. (2018). Food security: The challenge of the present, Geoforum, 91, 1, pp. 73-77. DOI:10.1016/j.geoforum.2018.02.030
[43]. Rahimnejad, M., Adhami, A., Darvari, S., Zirepour, A. & Oh, S.E. (2015). Microbial fuel cell as new technology for bioelectricity generation: A review. Alexandria Engineering Journal, 54, 3, pp. 745-756. DOI:10.1016/j.aej.2015.03.031
[44]. Rahimnejad, M., Ghoreyshi, A.A., Najafpour, G. & Jafary, T. (2011). Power generation from organic substrate in batch and continuous flow microbial fuel cell operations, Applied Energy, 88, 11, pp. 3999-4004. DOI:10.1016/j.apenergy.2011.04.017
[45]. Rahman, T.U., Roy, H., Islam, M.R., Tahmid, M., Fariha, A., Mazumder, A., Tasnim, N., Pervez, M.N., Cai, Y., Naddeo, V. & Islam, M.S. (2022). The advancement in membrane reactor (MBR) technology toward sustainable industrial wastewater management, Membranes, 13, pp. 181. DOI:10.3390/membranes13020181
[46]. Ren, B., Wang, T. & Zhao, Y. (2021). Two-stage hybrid constructed wetland-microbial fuel cells for swine wastewater treatment and bioenergy generation, Chemoshpere, 268, pp. 128803. DOI:10.1016/j.chemosphere.2020.128803
[47]. Rossi, R., Jones, D., Myung, J., Zikmund, E., Yang, W., Gallego, Y.A., Pant, D., Evans, P.J., Page, M.A., Cropek, D.M. & Logan, B.E. Evaluating a multi-panel air cathode through electrochemical and biotic tests, Water Research, 148, pp. 51-59. DOI:10.1016/j.watres.2018.10.022
[48]. Santos, F., Almeida, C.M.R., Ribeiro, I. & Mucha, A.P. (2019). Potential of constructed wetland for the removal of antibiotics and antibiotic resistant bacteria from livestock wastewater, Ecological Engineering, 129, pp. 45-53. DOI:10.1016/j.ecoleng.2019.01.007
[49]. Shang, S., Fan, H., Li, Y., Li, L. & Li, Z. (2022). Preparation of lightweight ceramsite from solid waste using SiC as a foaming agent, Materials (Basel), 15, 1, pp. 325. DOI:10.3390/ma15010325
[50]. Sekyere, J.O. (2014). Antibiotic types and handling practices in disease management among pig farms in Ashanti region, Ghana, Journal of Veterinary Medicine, 2014, pp. 531952. DOI:10.1155/2014/531952
[51]. Subha, C., Kavitha, S., Abisheka, S., Tamilarasan, K., Arulazhagan, P. & Banu, J.R. (2019). Bioelectricity generation and effect studies from organic rich chocolaterie wastewater using continuous upflow anaerobic microbial fuel cell, Fuel, 251, pp. 224-232. DOI:10.1016/j.fuel.2019.04.052
[52]. Sun, W., Gu, J., Wang, X., Qian, X. &Peng, H. (2019). Solid-state anaerobic digestion facilitates the removal of antibiotic resistance genes and mobile genetic elements from cattle manure, Bioresource Technology, 274, pp. 287-295. DOI:10.1016/j.biortech.2018.09.013
[53]. Sunder, A.V., Utari, P.D., Ramasamy, S., Van Merkerk, R., Quax, W. & Pundle, A. (2017). Penicillin V acylases from gram-negative bacteria degrade N-acylhomoserine lactones and attenuate virulence in Pseudomonas aeruginosa, Applied Microbiology and Biotechnology, 101, 6, pp. 2383-2395. DOI:10.1007/s00253-016-8031-5
[54]. Thipraksa, J. & Chaijak, P. (2022). Improved the coconut shell biochar properties for bio-electricity generation of microbial fuel cells from synthetic wastewater, Journal of Degraded and Mining Lands Management, 9, 4, pp. 3613-3619.
[55]. Thipraksa, J., Chaijak, P., Michu, P. & Lertworapreecha, M. (2022). Biodegradation and electricity generation of melanoidin in palm oil mill effluent (POME) by laccase-producing bacterial consortium integrated with microbial fuel cell, Biocatalysis and Agricultural Biotechnology, 43, pp. 102444. DOI:10.1016/j.bcab.2022.102444
[56]. Tsai, W.T. (2018). Regulatory promotion and benefit analysis of biogas-power and biogas-digestate from anaerobic digestion in Taiwan’s livestock industry, Fermentation, 4, 3, pp. DOI:10.3390/fermentation4030057
[57]. Vogel, G., Nicolet, J., Martig, J., Tschudi, P. & Meylan, M. (2001). Pneumonia in calves: characterization of the bacterial spectrum and the resistance patterns to antimicrobial drugs, Schweizer Archiv fur Tierheilkunde, 143, 7, pp. 341-350.
[58]. Wang, S., Ma, X., Wang, Y., Du, G. &Tay, J.H. (2019). Piggery wastewater treatment by aerobic granular sludge: Granulation process and antibiotics and antibiotic-resistant bacteria removal and transport, Bioresource Technology, 273, pp. 350-357. DOI:10.1016/j.biortech.2018.11.023
[59. Xu, F., Ouyang, D.L., Rene, E.R., Ng, H.Y., Guo, L.L., Zhu, Y.J., Zhou, L.L., Yuan, Q., Miao, M.S., Wang, Q. & Kong, Q. (2019). Electricity production enhancement in a constructed wetland-microbial fuel cell system for treating saline wastewater, Bioresource Technology, 288, pp. 121462. DOI:10.1016/j.biortech.2019.121462
[60]. Yan, R., Wang, Y., Li, J., Wang, X. & Wang, Y. (2022). Determination of the lower limits of antibiotic biodegradation and the fate of antibiotic resistant genes in activated sludge: Both nitrifying bacteria and heterotrophic bacteria matter, Journal of Hazardous Materials, 425, pp. 127764. DOI:10.1016/j.jhazmat.2021.127764
[61]. Yousefi, V., Mohebbi-Kalhori, D. & Samimi, A. (2017). Ceramic-based microbial fuel cells (MFCs): A review. International Journal of Hydrogen Energy, 42, 3, pp. 1672-1690. DOI:10.1016/j
.ijhydene.2016.06.054
[62]. Zhang, D., Wang, X.  Zhou, Z. (2017). Impacts of small-scale industrialized swine farming on local soil, water and crop qualities in a hilly red soil region of subtropical China. International Journal of Environmental Research and Public Health, 14, 12, pp. 1524. DOI:10.3390/ijerph14121524
[63]. Zhang, Y., Zhao, Y. & Zhou, M. (2019). A photosynthetic algal microbial fuel cell for treating swine wastewater, Environmental Science and Pollution Research, 26, 6182-6190. DOI:10.1007/s11356-018-3960-4

Go to article

Authors and Affiliations

Pimprapa Chaijak
1
ORCID: ORCID
Alisa Kongthong
1
ORCID: ORCID
Junjira Thipraksa
1
ORCID: ORCID
Panisa Michu
1
ORCID: ORCID

  1. Thaksin University, Thailand
Download PDF Download RIS Download Bibtex

Abstract

The current study was aimed to evaluate the industrial effl uents biodegradation potential of an indigenous microorganism which reduced water pollution caused by these effl uents. In the present study biodegradation of three textile industrial effl uents was performed with locally isolated brown rot fungi named Coniophora puteana IEBL-1. Response Surface Methodology (RSM) was employed under Box Bhenken Design (BBD) for the optimization of physical and nutritional parameters for maximum biodegradation. Quality of treated effl uents was checked by study of BOD, COD and analysis through HPLC. Three ligninolytic enzymes named lignin peroxidase, manganese peroxidase and laccase were also studied during the biodegradation process. The results showed that there was more than 85% biodegradation achieved for all three effl uents with decrease in Biological Oxygen Demand (BOD) and Chemical Oxygen Demand (COD) below the recommended values for industrial effl uent i.e. 80 mg/L for BOD and 220 mg/L for COD after optimization of nutritional parameters in the second stage. Analysis of samples through HPLC revealed the formation of less toxic diphenylamine, 3-methyldiphenylamine and N-methylaniline after treatment. The ligninolytic enzymes assays confi rmed the role of lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase in biodegradation process. Lignin peroxidase with higher activity has more contribution in biodegradation of effl uents under study. It can be concluded through the results that Coniophora buteana IEBL-1 is a potential fungus for the treatment of industrial effluents.

Go to article

Authors and Affiliations

Raja T. Mahmood
Muhammad J. Asad
Muhammad Asgher
Tayyaba Zainab
Mudassar Zafar
Saqib H. Hadri
Imran Ali
Nasib Zaman
Feroza H. Wattoo

This page uses 'cookies'. Learn more