Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Human-induced climate change is caused by the emission of pollutants into the environment. One of the sources of the formation of harmful compounds is the combustion of solid fuels in heating boilers. These contribute to the occurrence of respiratory and circulatory system diseases, allergies, cancer and developmental disorders in children. In this research, the concentrations of carbon monoxide, nitrogen oxides, sulfur dioxide and hydrocarbons in samples obtained from the combustion of hard coal intended for fuel in household furnaces were measured using an exhaust-gas analyzer equipped with electrochemical sensors. The combustion of test samples was performed using an up-draft research furnace. The results show that the average total concentration of the tested pollutants emitted from the combustion of type 32 and type 33 coal is over 20% lower compared to the emission from the combustion of type 31 coal. Moreover, the concentration of carbon monoxide, the permissible levels of which are regulated by the chimney emission standards, is significantly lower during the combustion of type 32 and type 33 coal compared to the combustion of type 31 coal. Therefore, one of the ways to locally reduce pollutant emission from the combustion of solid fuels in home heating boilers might be the accurate choice of the type of hard coal used for heating. Before the use of coal stoves in households is completely dismissed, local regulations can be introduced to limit emissions in places where air quality indicators are exceeded and improve the health of the population.
Go to article

Authors and Affiliations

Aleksandra Kęska
1
ORCID: ORCID
Iwona Jatowczyc-Borkowska
1
ORCID: ORCID

  1. Wrocław University of Science and Technology, Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

Low emission has a significant impact on air quality in Poland. Low sources are found which lead to high concentrations of pollutants in the area inhabited by humans. The effects of low emissions on health and life in the polluted areas (Małopolska, Silesia) are conducive to radical decisions regarding the quality of solid fuels and their combustion facilities. At present, local anti-smuggling laws have been introduced in the two provinces banning the burning of the most emitting fuels such as mules, flotoconcentrates and lignite. Regional EU-funded programs for the use of renewable energy sources (RES) and energy efficiency improvement will transition to the implementation phase of the approved projects as of 2017. This is expected to significantly reduce energy consumption for heating buildings and replacing old boilers and automatic furnaces with low-emission heating devices. In the case of households, proving that the residential building has adequate energy efficiency characteristics is necessary in order to receive co-financing for replacing an old solid fuel boiler with a new low-emission boiler,. The paper will present the current situation on the regulation of the fuel market in the household and small–scale consumer sector and the proposal for changes to the law on monitoring and control of solid fuel quality. Another important issue will be significant changes in heating up to 500 kW, proposed by the Ministry of Development in October 2016. The proposed regulation precedes the implementation of the Ecodesign Directive, which will come into effect as of 2022 for room heaters and heating furnaces up to 500 kW for solid fuels. All these actions will help reduce low emissions and improve energy efficiency.

Go to article

Authors and Affiliations

Tomasz Mirowski
Renata Maczuga
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the main dilemma of development of the Polish energy sector on the 20th anniversary of the first liberalization directive of the European Union, which created the energy market. The situation in the Polish energy sector based on fossil fuels, its transformation into lower emission one is closely connected to the process of restructuring and further development of the mining sector. On the other hand, we are witnessing the development of RES, household installations producing electricity with storage and the electrification of public transport. The investments in new, large scale fossil fuel fired power plants are very expensive and not economically proven when electricity prices are low. Until the new direction of investment in energy sector will be decided, the option of the lasting of the operating existing power units seems to be a good proposal. Is the thesis: “The energy security of Poland should be fully based on indigenous sources, generation and distribution assets, delivering electricity to end users. Ensuring competitive energy prices to the economy and households, the market should be fully open to producers and consumers, including chip electricity arising from the European single market” the right assumption for the Polish energy policy?

Go to article

Authors and Affiliations

Stanisław Tokarski
Download PDF Download RIS Download Bibtex

Abstract

The energy obtained from biomass in the global balance of energy carriers is the largest source among all RES. It should be borne in mind that the share of biomass as an energy carrier in the total balance is as much as 14%. The basic sources of renewable energy used in Poland are the wind power industry and biomass. Organic chemical compounds are the source of chemical energy for biomass. The biomass can be used in a solid form (wood, straw) or after being converted to liquid (alcohol, bio-oil) or gas (biogas) form.

Pellets, meaning, the type of fuel of natural origin created from biomass compressed under high pressure without the participation of any chemical adhesive substances are recognized as the most common and available grades of biomass. Wood pellets manufactured from sawdust, shaving, or woodchips are the most popular type of pellets on the market. Fuel created in the form of granules is very dense and can be manufactured with low humidity content, which translates into an exceptionally high burn efficiency.

The authors of this article burned agro pellets from Miscanthus giganteus without additives and with solid catalyst and conducted a series of tests that determine the impact of boiler settings (blast power, time of feeding, chimney draft) on the process of burning fuel in real conditions. A solid catalyst was used to improve combustion conditions in one of the fuels. The catalyst burns carbon monoxide and reduces nitrogen oxides. The results in the form of observation of selected parameters are summarized in the table.

Go to article

Authors and Affiliations

Tomasz Mirowski
Marta Jach-Nocoń
Iwona Jelonek
ORCID: ORCID
Adam Nocoń
Download PDF Download RIS Download Bibtex

Abstract

Smart farming is about managing a farm using modern information and communication techniques in order to increase the efficiency and quality of plant and animal production and to optimise human labour inputs. It is an inseparable part of a sustainable agricultural economy, where energy-saving and low-emission solutions are of particular importance, e.g. in livestock construction. Animal buildings are one of the main building elements of a farm. The paper presents the use of modern solutions that may result in lower energy consumption, and thus lower operating costs of the building. They also reduce the consumption of natural resources and the emission of pollutants, and ensure animal welfare and safety of the operators’ work. Rational use of energy depends, among others, on from the used insulation materials for the construction of livestock buildings, technical equipment, i.e. lighting, heating, ventilation, as well as zootechnical devices. The profitability of livestock production can also be supported by the use of solar, wind, water and biomass energy. Photovoltaic cells, solar collectors, wind turbines, heat pumps and agricultural biogas plants are used for this purpose.
Go to article

Authors and Affiliations

Anna M. Bartkowiak
1
ORCID: ORCID

  1. Institute of Technology and Life Sciences – National Research Institute, Falenty, Hrabska Av. 3, 05-090 Raszyn
Download PDF Download RIS Download Bibtex

Abstract

Is the world’s power engineering at a crossroads? Will ongoing climate changes and rise of new technologies such as the Internet of Things (IoT), Smart City or e-mobility give us a completely different perspective on the world’s future energy? What are our actual visions and development forecasts in this matter? Who is right concerning this matter, large energy companies and some politicians, environmentalists, climate researchers and all kinds of visionaries? Is transformation based on solar energy and hydrogen a holy grail for the energy sector? The author of this article tries to find answers to these and many other questions. Today we can already accept as a proven thesis that rapid and dangerous climate changes for our civilisation can also be attributed to high carbon and low-efficient power engineering. Power engineering and climate neutrality are no longer just problems for politicians, companies, and scientists, but have become a challenge for our civilisation. If we are to save the Earth, our civilisation has to change its mentality and develop ideas that will not prioritise economic growth and high consumption but sustainable growth in harmony with nature. For this to happen, the way people think about energy and global transformation must also change. The foregoing general remarks, but also the fact that a gradual transition from traditional large-scale fossil fuel-based energy generation to distributed energy generation based on renewable resources is inevitable, constitute the main message of this article. The article also aims to discuss the role of the Institute of Fluid-Flow Machinery of the Polish Academy of Sciences (IMP PAN) in Gdańsk in the process of energy transformation in our country. The institute, as the coordinating entity of over a dozen of high-budgeted national and European projects in the field of environmentally-friendly power engineering, has contributed to some extent to the creation of conditions required for the development of prosumer power engineering (or more broadly: civic power engineering) in our country.

Go to article

Bibliography

  1.  W. Steffen, et al., “Planetary boundaries: Guiding human development on a changing planet”, Science 347(6223), 1259855‒1, (2015).
  2.  Ch.H. Trisos, C. Merow, and A.L. Pigot, “The projected timing of abrupt ecological disruption from climate change”, Nature, 580, 496–501(2020).
  3. European Economic Congress Trends, Warszawa, 2020.
  4.  International Energy Agency, “World Energy Outlook”, 2013, 2014, 2015, 2016.
  5.  International Energy Agency, “Key World Energy Statistics”, 2015.
  6.  “Pictures of the Future”, Siemens, The Magazine for Research and Innovation, Fall (2009).
  7.  The energy future: how to provide energy after the depletion of fossil fuels? [Online]. www.futurenergia.org/ [in Polish].
  8.  The energy future. [Online]. www.shell.pl/ [in Polish].
  9.  Hawking warns: Doom awaits mankind. [Online]. www.rp.pl [in Polish].
  10.  Artificial intelligence for a billion dollars. [Online]. www.rp.pl [in Polish].
  11.  What will be the energy in the future? Exxon Mobil has given forecasts for 2040. [Online]. www.gazetaprawna.pl/ [in Polish].
  12.  Elon Musk predicts the world’s energy future. [Online]. http://www.odnawialnezrodlaenergii.pl [in Polish].
  13.  Distributed energy systems – on the way to low-carbon Poland, expert debate, Mariusz Wójcik. [Online]. http://www.chronmyklimat.pl/ [in Polish].
  14.  M. Nowicki, Dilemmas of the Polish energy sector. 01/2016 [Online]. www.csm.org.pl, [in Polish].
  15.  J. Rączka, M. Swora, and W. Stawiany, “Distributed generation in modern energy policy”, Materials of the forum Energy-Effect- Environment. [Online]. http://forumees.pl/ [in Polish].
  16.  IRENA International Renewable Energy Agency, Transforming the energy system – and holding the line on the rise of global temperatures, ISBN 978‒92‒9260‒149‒2, 2019. [Online]. www.irena.org/publications
  17.  Report: Global Commission on the Geopolitics, International Renewable Energy Agency IRENA, A New World. The Geopolitics of the Energy Transformation, January 2019, ISBN: 978-92-9260-097-6. [Online]. www.geopoliticsofrenewables.org
  18.  IRENA International Renewable Energy Agency, Global Energy Transformation. A Roadmap to 2050, 2019 edition, ISBN 978‒92‒9260‒121‒8. [Online]. www.irena.org/publications
  19.  IRENA International Renewable Energy Agency, Hydrogen: A renewable energy perspective, Tokyo, September 2019, ISBN: 978-92- 9260-151-5.
  20.  IRENA International Renewable Energy Agency, Off-grid renewable energy solutions to expand electricity access: An opportunity not to be missed, ISBN 978‒92‒9260‒101‒0, 2019.
  21.  T. Chmielniak, S. Lepszy, and P. Mońka, “Hydrogen energy – opportunities and barriers, Modern problems of thermodynamics”. Eds. T. Bury, A. Szlęk, Institute of Heat Engineering, Gliwice, 2017 [in Polish].
  22.  A. Cenian, J. Kiciński, P. Lampart, “New distributed sustainable prosumer power engineering”, Nowa Energia 6, 23–28 (2012) [in Polish].
  23.  A.Cenian, J.Kiciński, and P. Lampart, “Prosumer power engineering – a chance for the development of the domestic machine industry”, Czysta Energia 10 (2013) [in Polish].
  24.  A. Cenian, J. Kiciński, and P. Lampart, “Quo vadis power engineering? Why small and distributed is beautiful and rich?”, Czysta Energia 4, 30–31 (2012) [in Polish].
  25.  J. Kiciński, “Do we have a chance for small-scale energy generation? The examples of technologies and devices for distributed energy systems in micro & small scale in Poland”, Bull. Pol. Ac.: Tech. 61(4), 749‒756 (2013).
  26.  J. Kiciński and G. Żywica, “Prototype of the domestic CHP ORC energy system”, Bull. Pol. Ac.: Tech. 64(2), 417‒424 (2016).
  27.  J. Kiciński and G. Żywica, Steam Microturbines in Distributed Cogeneration, Springer, 2014.
  28.  A. Cenian, P. Lampart, K. Łapiński, and J. Kiciński, “Innovative eco-technologies for sustainable power engineering which are developed at IMP PAN in Gdańsk. Part I”, Przegląd Energetyczny 3, 36–39 (2015) [in Polish].
  29. J. Kiciński, “Examples of technologies and devices used in distributed energy systems based on energy produced from biomass and agricultural waste”, Nowa Energia 1, 119–122 (2014) [in Polish].
  30.  A. Cenian, M. Górski, and J. Kiciński, “Photovoltaics, biogas plants, biomass”, Przemysł Zarządzanie Środowisko, September-October 2011 [in Polish].
  31. J. Kiciński, A. Cenian, and K. Bogucka, “IMP PAN focuses on innovative solutions for the energy sector – we are discovering the potential of biogas”, Nasz Gdańsk, 11(112), 11–12 (2010), [in Polish].
  32.  J. Kiciński and P. Lampart, “Mini and micro CHP ORC power plants as a prospective form of implementation of renewable energy technologies in Poland”, Energetyka Cieplna i Zawodowa 6, 39–43 (2009), [in Polish].
Go to article

Authors and Affiliations

Jan Kiciński
1

  1. Institute of Fluid Flow Machinery Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
Download PDF Download RIS Download Bibtex

Abstract

The manuscript presents the research results concerning the properties of concrete with non-clinker, low-emission binder composed of by-products from metallurgy and power industry: ground granulated blast furnace slag and fly ash from circular fluidized-bed combustion of brown coal. The binder was added in five proportions. The consistency and air content of the concrete mix were measured, as well as the temperature of the concrete mix during hardening. The compressive strength of the hardened concrete was investigated in three periods of samples’ curing: after 28, 90 and 360 days. Also the penetration depth of water under pressure and freeze and thaw resistance of concrete samples were investigated. The results confirm the possibility of application of slag-CFBC fly ash binder for mass concrete due to low temperature during hardening. The obtained results of the compressive strength and penetration depth of water under pressure reveal the influence of changing the proportion of the binder ingredients, as well as the sample damage during testing the freeze/thaw resistance. The CFBC fly ash-slag binder can be used for mass concrete, hydrotechnical concretes in particular, but excluding the zones exposed to frost.

Go to article

Authors and Affiliations

Agnieszka Machowska
ORCID: ORCID

This page uses 'cookies'. Learn more