Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Modern electrical-power systems are often exploited for transmitting highfrequency carrier signals for communications purposes. Series-connected air-core coils represent the fundamental component allowing such applications by providing a proper filtering in the frequency domain. They must be designed, however, to withstand also the line short-circuit current. When a high-magnitude current flows through a coil, strong mechanical stresses are produced within the conductor, leading to possible damage of the coil. In this paper, an approximate analytical model is derived for the relationship between the maximum mechanical stress and the electrical/geometrical parameters of the coil. Such a model provides the guidelines for a fast and safe coil design, whereas numerical simulations are only needed for the design refinement. The presented approach can be extended to other applications such as, for example, the mechanical stress resulting from the inrush currents in the coils of power transformers.
Go to article

Authors and Affiliations

D. Bellan
Download PDF Download RIS Download Bibtex

Abstract

Based on the theory of heat transfer, the influence of expansion joints on the temperature and stress distribution of ladle lining is discussed. In view of the current expansion joint, the mathematical model of heat transfer and the three dimensional finite element model of ladle lining brick are established. By analyzing the temperature and stress distribution of ladle lining brick when the expansion joints are in different sizes, the thermal mechanical stress caused by the severe temperature difference can be reduced by the suitable expansion joint of the lining brick during the ladle baking and working process. The analysis results showed that the thermal mechanical stress which is caused by thermal expansion can be released through the 2 mm expansion joint, which is set in the building process. So we can effectively reduce the thermal mechanical stress of the ladle lining, and there is no risk of steel leakage, thus the service life of ladle can be effectively prolonged.
Go to article

Authors and Affiliations

H. Liu
W. Chang
G. Li
J. Kong
Y. Sun
G. Jiang
Download PDF Download RIS Download Bibtex

Abstract

Varying ohmic loss in the winding of electrical machines, which are operated at various operating points, results in temperature changes during operation. Particularly, when the temperature is varying dynamically, the insulation system suffers from repeated thermalmechanical stress, since the thermal expansion coefficients of the insulating materials and copper conductors are different. For the appropriate design of an insulation system, the effect of thermal-mechanical stress must be known. In the present work, motorettes are subjected to repeated thermal cycles. The expected lifetime is estimated and compared to the lifetime which is achieved by applying a lifetime-model which only considers thermal aging while ignoring thermal-mechanical stress effects. In addition, the hotspot temperature is simulated, the lifetime at the hotspot is estimated as theworst case. As expected, the results indicate that the thermal-mechanical stress plays a significant role during dynamic thermal aging of the winding insulation system. To better understand the thermal-mechanical stress effect, the resulting thermal-mechanical stress in a single wire is analyzed by the finite element method. A preliminary analysis of the aging mechanism of materials due to cyclic thermal-mechanical stress is performed with the theory of material fatigue.
Go to article

Bibliography

[1] Stone G.C., Boulter E.A., Culbert I., Dhirani H., Electrical insulation for rotating machines: design, evaluation, aging, testing, and repair, John Wiley & Sons (2004).
[2] Rothe R., Hameyer K., Life expectancy calculation for electric vehicle traction motors regarding dynamic temperature and driving cycles, 2011 IEEE International Electric Machines and Drives Conference (IEMDC), Niagara Falls, ON, Canada, pp. 1306–1309 (2011).
[3] Huang Z., Modeling and testing of insulation degradation due to dynamic thermal loading of electrical machines, Licentiate Thesis, Lund University, Lund (2017).
[4] Chen W., Nelson C., Thermal stress in bonded joints, IBM Journal of Research and Development, vol. 23, no. 2, pp. 179–188 (1979).
[5] Arrhenius S., On the heat of dissociation and the influence of temperature on the degree of dissociation of the electrolytes, Zeitschrift für Physikalische Chemie (in German, Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte), vol. 4, no. 1, pp. 96–116 (1889).
[6] Dakin T.W., Electrical insulation deterioration treated as a chemical rate phenomenon, Transactions of the American Institute of Electrical Engineers, vol. 67, no. 1, pp. 113–122 (1948).
[7] Ruf A., Pauli F., Schröder M., Hameyer K., Lifetime modelling of non-partial discharge resistant insulation systems of electrical machines in dynamic load collectives, e & i Elektrotechnik und Informationstechnik (in German, Lebensdauermodellierung von nicht-teilentladungsresistenten isoliersystemen elektrischer maschinen in dynamischen lastkollektiven), vol. 135, no. 2, pp. 131–144 (2018).
[8] Pauli F., Schröder M., Hameyer K., Design and evaluation methodology for insulation systems of low voltage drives with preformed coils, 2019 9th International Electric Drives Production Conference (EDPC), Esslingen, Germany, pp. 1–7 (2019).
[9] Madonna V., Giangrande P., Lusuardi L., Cavallini A., Gerada C., Galea M., Thermal overload and insulation aging of short duty cycle, aerospace motors, IEEE Transactions on Industrial Electronics, vol. 67, no. 4, pp. 2618–2629 (2019).
[10] Sciascera C., Galea M., Giangrande P., Gerada C., Lifetime consumption and degradation analysis of the winding insulation of electrical machines, 2016 8th IET International Conference on Power Electronics, Machines and Drives (PEMD), Glasgow, UK, pp. 1–5 (2016).
[11] IEC 60505, Evaluation and qualification of electrical insulation systems (2011).
[12] Ruf A., Paustenbach J., Franck D., Hameyer K., A methodology to identify electrical ageing of winding insulation systems, 2017 IEEE International Electric Machines and Drives Conference (IEMDC), Miami, FL, USA, pp. 1–7 (2017).
[13] Pauli F., Ruf A., Hameyer K., Low voltage winding insulation systems under the influence of high du/dt slew rate inverter voltage, Archives of Electrical Engineering, vol. 69, no. 1, pp. 187–202 (2020).
[14] IEC 60034–18–41, Rotating electrical machines – Part 18–41: Partial discharge free electrical insulation system (Type I) used in rotating electrical machines fed from voltage converters – Qualification and quality control tests (2014).
[15] Nikolova G., Ivanova J., Interfacial shear and peeling stresses in a two-plate structure subjected to monotonically increasing thermal loading, Journal of Theoretical and Applied Mechanics, vol. 51 (2013).
Go to article

Authors and Affiliations

Liguo Yang
1
ORCID: ORCID
Florian Pauli
1
Kay Hameyer
1
ORCID: ORCID

  1. Institute of Electrical Machines (IEM), RWTH Aachen University, Schinkelstraße 4, 52062 Aachen, Germany
Download PDF Download RIS Download Bibtex

Abstract

An algorithm of determination of mechanical stresses and deformations of the magnetic circuit shape, caused by forces of magnetic origin, is presented in this paper. The mechanical stresses cause changes of magnetizing characteristics of the magnetic circuit. The mutual coupling of magnetic and mechanical fields was taken into account in the algorithm worked out. A computational experiment showed that it was possible to include the interaction of both fields into one numerical model. The elaborated algorithm, taking into account the impact of mechanical stresses on magnetic parameters of construction materials, can be used in both the 2D and the 3D type field-model.

Go to article

Authors and Affiliations

Paweł Idziak
Krzysztof Kowalski
Download PDF Download RIS Download Bibtex

Abstract

When the in-wheel motor is working, it will be affected by gravity, centrifugal force and electromagnetic force. These three kinds of mechanical loads will affect the mechanical stress characteristics of the in-wheel motor, and then affect the reliability of the in-wheel motor structure. In order to understand the influence of the above loads on the mechanical stress of the in-wheel motor, this paper takes a 15-kWbuilt-in permanent magnet in-wheel motor as the research object. Based on the establishment of the electromagnetic field and structure field coupling analysis model of the in-wheel motor, the mechanical stress of the in-wheel motor under different mechanical loads under rated and peak conditions are calculated and analyzed, and the influence of different mechanical loads on the stress and deformation of the in-wheel motor are studied. The research results show that, regardless of the rated operating condition or the peak operating condition, the in-wheel motor has the largest mechanical stress and deformation under the combined action of centrifugal force and electromagnetic force, and the smallest mechanical stress and deformation under the action of gravity only; under the same load (except for the case of gravity only), the stress and deformation of the in-wheel motor under the peak operating condition are larger than those under the rated operating condition; and the maximum stress and deformation of the in-wheel motor appear at the rotor magnetic bridge and the inner edge of the rotor, respectively, so the rotor is an easily damaged part of the in-wheel motor.
Go to article

Authors and Affiliations

Jie Xu
1
ORCID: ORCID

  1. Shandong University of Technology, School of Transportation and Vehicle Engineering, China

This page uses 'cookies'. Learn more