Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The deviation from the ideal waveform causes disturbances and failure of end-user load equipment. Power traveling a long distance from the generation plant to the end-user leads to deterioration of its quality, and the intensive utilization of power leads to serious issues in the grid resulting in power quality problems. To make the system effective and able to meet modern requirements, flexible AC transmission system (FACTS) devices should be installed into the grid. The interline power flow controller (IPFC) is the latest FACTS device, which compensates for both active and reactive power among multi-line systems. The converters used in the IPFC are crucial as they can be adjusted to regulate the power flow among the lines. This paper proposes a cascaded IPFC with hysteresis and proportional resonant voltage controllers. Some main drawbacks of controllers like steady-state errors and reference tracking of converters can be easily achieved by the PR controller, which makes the system efficient and can be used for a wide range of grid applications. Hysteresis and PR controllers are explained in detail in the following sections. A comparative analysis is carried out among control algorithms to choose the suitable controller which maintains stability in the system.
Go to article

Bibliography

[1] Wai R.J.,WangW.H., Lin C.Y., High-performance Stand-Alone Photovoltaic Generation System, IEEE Transactions on Industrial Electronics, vol. 55, no. 1, pp. 240–250 (2008).
[2] Rahman S., Green power: What is it and where can we find it?, IEEE Power and Energy Magazine, vol. 1, no. 1, pp. 30–37 (2003).
[3] Narender Reddy N., Chandrashekar O., Srujana A., Power quality enhancement by MPC based multilevel control employed with improved particle Swarmoptimized selective harmonic elimination, Energy Sources, Part A: Recovery, Utilization and Environmental Effects, vol. 41, no. 19, pp. 2396–2414 (2019).
[4] Tang Huiling, Wu Jiekang, Multi-objective coordination optimisation method for DGs and EVs in distribution networks, Archives of Electrical Engineering, vol. 68, no. 1, pp. 15–32 (2019).
[5] Narender Reddy N., Chandrasheker O., Srujana A., Power quality enhancement in micro grids by employing MPC-EKF, International Journal of Engineering and Technology (UAE), vol. 7, no. 3, pp. 996–999 (2018).
[6] Bauer P., Strzelecki R., Kazmierkowski M.P., Multilevel Converters, Bulletin of the Polish Academy of Sciences: Technical Sciences, vol. 65, no. 5, 563–565 (2017).
[7] Malinowski M., Cascaded multilevel converters in recent research and applications, Bulletin of the Polish Academy of Sciences Technical Sciences, vol. 65, no. 5, pp. 567–578 (2017).
[8] Zhang X.P., Rehtanz C., Pal B., FACTS-Devices and Applications, in: Flexible AC Transmission Systems: Modelling and Control, Power Systems, Springer, Berlin, Heidelberg (2012).
[9] Perez M.A., Messina A.R., Fuerte-Esquivel C.R., Application of FACTS devices to improve steady state voltage stability, 2000 Power Engineering Society Summer Meeting, vol. 2, pp. 1115–1120 (2000).
[10] Kumar P., Application of fact devices for voltage stability in a power system, 2015 IEEE 9th International Conference on Intelligent Systems and Control (ISCO), pp. 1–5 (2015).
[11] Mohamed K.H., Rao K.S.R., Intelligent optimization techniques for optimal power flow using Interline Power Flow Controller, 2010 IEEE International Conference on Power and Energy, Kuala Lumpur, Malaysia, pp. 300–305 (2010).
[12] Murthy V.N.S.R., Alagappan Pandian, Analysis of capacitor voltage balance in multilevel inverter, International Journal of Applied Engineering Research, 12 (Special Issue 1), pp. 399–406 (2017).
[13] Prasadarao K.V.S., Krishna Rao K.V., Bala Koteswara Rao P., Abishai T., Power quality enhancement in grid connected PV systems using high step up DC-DC converter, International Journal of Electrical and Computer Engineering, vol. 7, no. 2, pp. 720–728 (2017).
[14] Swapna Sai P., Rajasekhar G.G., Vijay Muni T., Sai Chand M., Power quality and custom power improvement using UPQC, International Journal of Engineering and Technology (UAE), vol. 7, no. 2, pp. 41–43 (2018).
[15] Seetharamudu S., Pakkiraiah B., A new converter topology designed for cascaded h bridge fifteen level inverter, International Journal of Engineering and Advanced Technology, vol. 8, iss. 6S3, pp. 792–795 (2019).
[16] Jyothi B., Venu Gopala Rao M., Performance analysis of 3-level 5-phase multilevel inverter topologies, International Journal of Electrical and Computer Engineering, vol. 7, no. 4, pp. 1696–1705 (2017).
[17] Moulali S., Muni Vijay, Subrahmanyam Y., Kesav S., A Flying Capacitor Multilevel Topology for PV System with APOD and POD Pulse Width Modulation, Journal of Advanced Research in Dynamical and Control Systems, vol. 10, no. 2, pp. 96–101 (2018).
[18] Ilhami Colak, Ersan Kabalci, Ramazan Bayindir, Review of multilevel voltage source inverter topologies and control schemes, Energy Conversion and Management, vol. 52, iss. 2, pp. 1114–1128 (2011).
[19] Thumu Raghu, Reddy K., A Review on Fuzzy-GA based Controller for Power Flow Control in Grid Connected PV System, International Journal of Electrical and Computer Engineering, vol. 7, no. 1, pp. 125–133 (2017).
[20] Babu G.S., Reddy R., Nittala R., Reddy K.S., Comparative Analysis of Control Techniques for Interline Power Flow Controller, 3rd International Conference for Convergence in Technology (I2CT) 2018, pp. 1–6 (2018).
[21] Radomski G., Control and modulation methods of voltage source converter, Bulletin of the Polish Academy of Sciences: Technical Sciences, vol. 57, no. 4, pp. 323–336 (2009).
[22] Kabzinski J., Orłowska-Kowalska T., Sikorski A., Bartoszewicz A., Adaptive, predictive and neural approaches in drive automation and control of power converters, Bulletin of the Polish Academy of Sciences Technical Sciences, vol. 68, no. 5, pp. 959–962 (2020).
[23] Zhang Yonglong, An Yuejun, Wang Guangyu, Kong Xiangling, Multi motor neural PID relative coupling speed synchronous control, Archives of Electrical Engineering, vol. 69, no. 1, pp. 69–88 (2020).
[24] Prasadarao K.V.S., Yarra M.S., Maddi S.P.K., Comparative analysis of fuzzy and PI controller based two switch buck-boost converter for power factor correction, International Journal of Applied Engineering Research, 12 (Special Issue 1), pp. 294–301 (2017).
[25] Qader M.R., Identifying the optimal controller strategy for DC motors, Archives of Electrical Engineering, vol. 68, no. 1, pp. 101–114 (2019).
[26] Chilipi R., Al Sayari N., Al Hosani K., Beig A.R., Control scheme for grid-tied distributed generation inverter under unbalanced and distorted utility conditions with power quality ancillary services, in IET Renewable Power Generation, vol. 10, no. 2, pp. 140–149 (2016).
[27] Shen G., Zhu X., Zhang J., Xu D., A New feedback Method for PR Current Control of LCL Filter-Based Grid-Connected Inverter, IEEE Transactions on Industrial Electronics, vol. 57, no. 6, pp. 2033–2041 (2010).
[28] Chinnari M., Mounika T., Swetha K., Bharathi A., Chander A.H., Implementation of Hysteresis Voltage Control for Different Inverter Topologies, 2020 IEEE India Council International Subsections Conference (INDISCON), pp. 272–277 (2020).
[29] Tellapati A.D., Kumar M.K., A simplified hysteresis current control for cascaded converter fed switched reluctance motor, International Journal of Electrical and Computer Engineering, vol. 9, no. 6, pp. 5095–5106 (2019).
[30] Zhang X., Wang J., Li C., Three-Phase Four-Leg Inverter Based on Voltage Hysteresis Control, 2010 International Conference on Electrical and Control Engineering, Wuhan, pp. 4482–4485 (2010).
[31] Ali S.M., Kazmierkowski M.P., Current regulation of four-leg PWM/VSI, IECON ’98, Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.98CH36200), Aachen, Germany, vol. 3, pp. 1853–1858 (1998).
[32] Sivaraman P., Prem P., PR controller design and stability analysis of single stage T-source inverter based solar PV system, Journal of the Chinese Institute of Engineers, vol. 40, no. 3, pp. 235–245 (2017).
[33] Zammit D., Spiteri Staines C., Apap M., Comparison between PI and PR current controllers in grid connected PV inverters, WASET, International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, vol. 8, no. 2, pp. 221–226 (2014).
[34] Zhou S., Liu J., Analysis and comparison of resonant-based current controllers implemented in stationary reference frame: A complex pole-zero placement perspective, 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, 2015, pp. 1624–1631 (2015).
[35] Zmood D.N., Holmes D.G., Stationary frame current regulation of PWM inverters with zero steadystate error, in IEEE Transactions on Power Electronics, vol. 18, no. 3, pp. 814–822 (2003).
[36] Teodorescu R., Blaabjerg F., Liserre M., Loh P.C., Proportional-resonant controllers and filters for grid-connected voltage-source converters, in IEE Proceedings – Electric Power Applications, vol. 153, no. 5, pp. 750–762 (2006).
[37] Daniel Zammit, Cyril Spiteri Staines, Maurice Apap, John Licari, Design of PR current control with selective harmonic compensators using Matlab, Journal of Electrical Systems and Information Technology, vol. 4, iss. 3, pp. 347–358 (2017).
[38] Oruganti H., Dash S.S., Nallaperumal C., Ramasamy S., A Proportional Resonant Controller for Suppressing Resonance in Grid Tied Multilevel Inverter, Energies, vol. 11, no. 5, p. 1024 (2018).
[39] Kavitha R., Thottungal Rani, WTHD minimisation in hybrid multilevel inverter using biogeographical based optimisation, Archives of Electrical Engineering, vol. 63, no. 2, pp. 187–196 (2014).
[40] Armi Faouzi, Manai Lazhar, Besbes Mongi, CHB inverter with DC-link capacitor balancing and total harmonic minimization, Archives of Electrical Engineering, vol. 67, no. 1 (2018).
[41] Jilledi S., Comparison of Multi-Line Power Flow Control using Unified power flow controller (UPFC) and Interline Power Flow Controller (IPFC) in Power Transmission Systems, International Journal of Engineering Science and Technology (IJEST), vol. 3, no. 4, pp. 3229–3235 (2011).


Go to article

Authors and Affiliations

Sridhar Babu Gurijala
1
ORCID: ORCID
D. Ravi Kishore
1
ORCID: ORCID
Ramchandra Nittala
2
ORCID: ORCID
Rohith Reddy Godala
3
ORCID: ORCID

  1. Department of Electrical and Electronics Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
  2. Department of Electrical and Electronics Engineering, St. Martin’s Engineering College, Dhulapally, near Kompally, Secunderabad, Telangana, India
  3. Faculty of Power and Electrical Engineering, Institute of Industrial Electronics and Electrical Engineering, Riga Technical University, Riga, Latvia
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a laboratory prototype of the three-phase transformer less voltage outages compensator with an energy storage based on high voltage supercapacitors. The system described is able to protect an isolated grid e.g. in industry against short voltage interruptions, dips and sags. An idea of a control method as well as a Digital controller has been presented, too.

Go to article

Authors and Affiliations

Jan Iwaszkiewicz
Piotr Bogusławski
Antoni Krahel
Eugeniusz Łowiec
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the modeling and simulation of a novel topology of quasi Z-Multilevel Inverter with stepped DC input. The proposed inverter incorporates a simple switching technique with reduced component count and is aimed at producing boosted multilevel output AC voltage. The inverter consists of two stages and the buck /boost operation is obtained by varying the shoot through period of the pulses obtained by maximum constant boost control with third harmonic injection. With all the advantages of the quasi Z-network, the proposed inverter eliminates the fly back diodes and capacitors present in a conventional Z-Multilevel Inverter. Further the stress on the devices is less which leads to reduction in component value and hence the cost. The novel stepped DC coupled Single Phase quasi Z-Multilevel Inverter is modeled and simulated in the MATLAB – SIMULINK environment and its performance is analyzed for varying input and switching conditions. The voltage and current waveforms across each stage of the inverter is analyzed and the results are presented for different levels of input.

Go to article

Authors and Affiliations

T. Meenakshi
N. Suthanthira Vanitha
Download PDF Download RIS Download Bibtex

Abstract

The most extensively employed strategy to control the AC output of power electronic inverters is the pulse width modulation (PWM) strategy. Since three decades modulation hypothesis continues to draw considerable attention and interest of researchers with the aim to reduce harmonic distortion and increased output magnitude for a given switching frequency. Among different PWM techniques space vector modulation (SVM) is very popular. However, as the number of output levels of the multilevel inverter (MLI) increases, the implementation of SVM becomes more difficult, because as the number of levels increases the total number of switches in the inverter increases which will increase the total number of switching states, which will result in increased computational complexity and increased storage requirements of switching states and switching pulse durations. The present work aims at reducing the complexity of implementing the space vector pulse width modulation (SVPWM)technique in multilevel inverters by using a generalized integer factor approach (IFA). The performance of the IFA is tested on a three-level inverter-fed induction motor for conventional PWM (CPWM) which is a continuous SVPWM method employing a 0127 sequence and discontinuous PWM (DPWM) methods viz, DPWMMIN using 012 sequences and DPWMMAX using a 721 sequence.
Go to article

Bibliography

[1] Hava A.M., Kerkman R.J., Lipo T.A., A high-performance generalized discontinuous PWM algorithm, IEEE Transactions on Industry Applications, vol. 34, no. 5, pp. 1059–1071 (1998), DOI: 10.1109/28.720446.
[2] Hava A.M.,Kerkman R.J., Lipo T.A., Simple analytical and graphical methods for carrier-basedPWMVSI drives, IEEE Transactions on Power Electronics, vol. 14, no. 1, pp. 49–61 (1999), DOI: 10.1109/63.737592.
[3] Olorunfemi Ojo, The generalized discontinuous PWM scheme for three-phase voltage source inverters, IEEE Transactions on Industry Electronics, vol. 51, no. 6, pp. 1280–1289 (2004), DOI: 10.1109/TIE.2004.837919.
[4] Narayanan G., Ranganathan V.T., Two novel synchronized bus-clamping PWM strategies based on space vector approach for high power drives, IEEE Transactions on Power Electronics, vol. 17, no. 1, pp. 84–93 (2002), DOI: 10.1109/63.988673.
[5] Soumitra Das, Narayanan G., Pandey M., Space-Vector-Based Hybrid Pulsewidth Modulation Techniques for a Three-Level Inverter, IEEE Transactions on Power Electronics, vol. 29, no. 9, pp. 4580–4591 (2014), DOI: 10.1109/TPEL.2013.2287095.
[6] Narayanan G., Zhao Di, Krishnamurthy H.K., Rajapandian Ayyanar, Ranganathan V.T., Space vector basedPWMtechniques for reduced current ripple, IEEE Transactions on Industrial Electronics, vol. 55, no. 4, pp. 1614–1627 (2008), DOI: 10.1109/TIE.2007.907670.
[7] Hari V.S.S.P.K., Narayanan G., Space-vector-based hybrid pulse width modulation technique to reduce line current distortion in induction motor drives, IET power Electronics, vol. 5, no. 8, pp. 1463–1471 (2012), DOI: 10.1049/iet-pel.2012.0078.
[8] Changliang Xia, Guozheng Zhang, Yan Yan, Xin Gu, Tingna Shi, Xiangning He, Discontinuous Space Vector PWM Strategy of Neutral-Point-Clamped Three-Level Inverters for Output Current Ripple Reduction, IEEE Transactions on Power Electronics, vol. 32, no. 7, pp. 5109–5121 (2017), DOI: 10.1109/TPEL.2016.2611687.
[9] Basu K., Prasad J.S.S., Narayanan G., Krishnamurthy H.K., Ayyanar R., Reduction of torque ripple in induction motor drives using an advanced hybrid PWM technique, IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 2085–2091 (2010), DOI: 10.1109/TIE.2009.2034183.
[10] Das S., Narayanan G., Novel switching sequences for a space-vector-modulated three-level inverter, IEEE Transactions on Industrial Electronics, vol. 59, no. 3, pp. 1477–1487 (2012), DOI: 10.1109/TIE.2011.2163373.
[11] Das S., Narayanan G., Analytical closed-form expressions for harmonic distortion corresponding to novel switching sequences for neutral-point-clamped inverters, IEEE Transactions on Industrial Electronics, vol. 61, no. 9, pp. 4485–4497 (2014), DOI: 10.1109/TIE.2013.2293708.
[12] Narayanan G., RanganathanV.T., Analytical evaluation of harmonic distortion inPWMAC drives using the notion of stator flux ripple, IEEE Transactions on Power Electronics, vol. 20, no. 2, pp. 466–474 (2005), DOI: 10.1109/TPEL.2004.842961.
[13] Zhao D., Hari V.S.S.P.K., Narayanan G., Ayyanar R., Space-vector-based hybrid pulse width modulation techniques for reduced harmonic distortion and switching loss, IEEE Trans. Power Electron., vol. 25, no. 3, pp. 760–774 (2010), DOI: 10.1109/TPEL.2009.2030200.
[14] Hava A.M., Kerkman R.J., Lipo T.A., Carrier-based PWM-VSI overmodulation strategies: Analysis, comparison and design, IEEE Transactions on Power Electronics, vol. 13, no. 4, pp. 674–689 (1998), DOI: 10.1109/63.704136.
[15] Raja Ayyanar, Zhao D., Krishnamurthy H.K., Narayanan G., Space vector methods for AC drives to achieve high efficiency and superior waveform quality, Technical report submitted to Office of Novel Research (2004).
[16] Yen-Shin Lai, Bowes S.R., Optimal bus-clamped PWM techniques for three-phase motor drives, in Proceedings of the IEEE IECON04, Nov. 2–6, Busan, Korea, pp. 1475–1480 (2004), DOI: 10.1109/IECON.2004.1431796.
[17] Boost M.A., Ziogas P.D., State-of-the-art carrier PWM techniques: acritical evaluation, IEEE Transactions on Industry Applications, vol. 24 no. 2, pp. 271–290 (1988), DOI: 10.1109/28.2867.
[18] Trzynadlowski A.M., Legowski S., Minimum-loss vectorPWMstrategy for three-phase inverters, IEEE Transactions on Power Electronics, vol. 9, no. 1, pp. 26–34 (1994), DOI: 10.1109/63.285490.
[19] Mao X., Ayyanar R., Krishnamurthy H.K., Optimal Variable switching frequency scheme for reducing switching loss in single-phase inverters based on time-domain ripple analysis, IEEE Transactions on Power Electronics, vol. 14, no. 4, pp. 991–1001 (2009), DOI: 10.1109/TPEL.2008.2009635.
[20] Kolar J.W., Ertl H., Zach F.C., Influence of the modulation method on the conduction and switching losses of a PWM converter system, IEEE Transactions on Industry Applications, vol. 27, no. 6, pp. 1063–1075 (1991), DOI: 10.1109/28.108456.
[21] Trzynadlowski A.M., Kirlin R.L., Legowski S.F., Space vectorPWMtechnique with minimum switching losses and a variable pulse rate, IEEE Transactions on Industry Electronics, vol. 44, no. 2, pp. 173–181 (1997), DOI: 10.1109/41.564155.
[22] Dae-Woong Chung, Seung-Ki Sul, Minimum-loss strategy for three-phase PWM rectifier, IEEE Transactions on Industry Electronics, vol. 46, no. 3, pp. 517–526 (1999), DOI: 10.1109/41.767058.
[23] Amitkumar K.S., Narayanan G., Simplified implementation of space vector PWM strategies for a three level inverter, Proc. of 7th IEEE International Conference (ICIIS) (2012), DOI: 10.1109/ICIInfS.2012.6304816.
[24] Das S.,Narayanan G.,Novel switching sequences for a space vector modulated three level inverter, IEEE Transactions on Industrial Electronics, vol. 59, no. 3, pp. 1477–1487 (2012), DOI: 10.1109/TIE.2011.2163373.
[25] Chamarthi P., Pawan Chhetri, Vivek Agarwal, Simplified Implementation scheme for Space Vector Pulse Width Modulation of n-level Inverter with Online Computation of Optimal Switching Pulse Durations, IEEE Transactions on Industrial Electronics, vol. 63, no. 11, pp. 1631–1639 (2016), DOI: 10.1109/TIE.2016.2586438.
[26] Yi Deng, YebinWang, Koon Hoo Teo, Harley R.G., A Simplified Space Vector Modulation Scheme for Multilevel Converters, IEEE Transactions on Power Electronics, vol. 31, no. 3, pp. 1873–1886 (2016), DOI: 10.1109/TPEL.2015.2429595.
[27] Kumar A.S., Gowri K.S., Kumar M.V., New generalized SVPWM algorithm for multilevel inverters, Journal of Power Electronics, vol. 18, no. 4, pp. 1027–1036 (2018), DOI: 10.6113/JPE.2018.18.4.1027.
[28] Kumar A.S., Gowri K.S., Kumar M.V., Performance study of various discontinuous PWM strategies for multilevel inverters using generalized space vector algorithm, Journal of Power Electronics, vol. 20, no. 1, pp. 100–108 (2020), DOI: 10.1007/s43236-019-00010-9.
[29] Kumar A.S., Gowri K., Kumar M.V., Decomposition based New Space Vector Algorithm for Three Level Inverter with various ADSVPWM strategies, Journal of Circuits, Systems and Computers, vol. 29, no. 06, 2050090 (2020), DOI: 10.1142/S0218126620500905.
Go to article

Authors and Affiliations

Suresh Kumar Anisetty
1
ORCID: ORCID
Sri Gowri Kolli
2
ORCID: ORCID
Nagaraja Rao S.
3
ORCID: ORCID
Manjunatha B.M.
1
ORCID: ORCID
Sesi Kiran P.
1
ORCID: ORCID
Niteesh Kumar K.
1
ORCID: ORCID

  1. RGM College of Engineering and Technology (Autonomous), Nandyal, A.P., India
  2. G. Pulla Reddy Engineering College (Autonomous), Kurnool, A.P., India
  3. M.S. Ramaiah University of Applied Sciences, Bangalore, India
Download PDF Download RIS Download Bibtex

Abstract

Current source inverters (CSI) is one of the widely used converter topology in medium voltage drive applications due to its simplicity, motor friendly waveforms and reliable short circuit protection. The current source inverters are usually fed by controlled current source rectifiers (CSR) with a large inductor to provide a constant supply current. A generalized control applicable for both CSI and CSR and their extension namely current source multilevel inverters (CSMLI) are dealt in this paper. As space vector pulse width modulation (SVPWM) features the advantages of flexible control, faster dynamic response, better DC utilization and easy digital implementation it is considered for this work. This paper generalizes SVPWM that could be applied for CSI, CSR and CSMLI. The intense computation involved in framing a generalized space vector control are discussed in detail. The algorithm includes determination of band, region, subregions and vectors. The algorithm is validated by simulation using MATLAB /SIMULINK for CSR 5, 7, 13 level CSMLI and for CSR fed CSI.

Go to article

Authors and Affiliations

J. Anitha Roseline
M. Senthil Kumaran
V. Rajini

This page uses 'cookies'. Learn more