Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 2
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

The optimal design of excitation signal is a procedure of generating an informative input signal to extract the model parameters with maximum pertinence during the identification process. The fractional calculus provides many new possibilities for system modeling based on the definition of a derivative of noninteger-order. A novel optimal input design methodology for fractional-order systems identification is presented in the paper. The Oustaloup recursive approximation (ORA) method is used to obtain the fractional-order differentiation in an integer order state-space representation. Then, the presented methodology is utilized to solve optimal input design problem for fractional-order system identification. The fundamental objective of this approach is to design an input signal that yields maximum information on the value of the fractional-order model parameters to be estimated. The method described in this paper was verified using a numerical example, and the computational results were discussed.

Przejdź do artykułu

Autorzy i Afiliacje

W. Jakowluk

Abstrakt

The model predictive control (MPC) technique has been widely applied in a large number of industrial plants. Optimal input design should guarantee acceptable model parameter estimates while still providing for low experimental effort. The goal of this work is to investigate an application-oriented identification experiment that satisfies the performance objectives of the implementation of the model. A- and D-optimal input signal design methods for a non-linear liquid two-tank model are presented in this paper. The excitation signal is obtained using a finite impulse response filter (FIR) with respect to the accepted application degradation and the input power constraint. The MPC controller is then used to control the liquid levels of the double tank system subject to the reference trajectory. The MPC scheme is built based on the linearized and discretized model of the system to predict the system’s succeeding outputs with reference to the future input signal. The novelty of this model-based method consists in including the experiment cost in input design through the objective function. The proposed framework is illustrated by means of numerical examples, and simulation results are discussed.

Przejdź do artykułu

Autorzy i Afiliacje

W. Jakowluk
M. Świercz

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji