Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 31
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents an analytical model of a three-phase axial flux coreless generator excited by permanent magnets, with special focus on determining the model pa- rameters. An important aspect of this model is the derivation of a coefficient that corrects the flux on the inside and outside edges of the magnets. The obtained parameters are ver- ified by performing field analyses and measurements. A comparison of the results show satisfactory convergence, which confirms the accuracy of the proposed analytical model.
Go to article

Authors and Affiliations

Natalia Radwan-Pragłowska
Tomasz Węgiel
Dariusz Borkowski
Download PDF Download RIS Download Bibtex

Abstract

The magnetic field due to a permanent magnet of a tube-side segment as shape and of radial-oriented magnetization is considered. Such a sheet modelling a single pole of the magnet is used to express the suitable contribution to magnetic quantities. A boundary-integral approach is applied that is based on a virtual scalar quantity attributed to the magnet pole. Such an approach leads to express analytically the scalar magnetic potential and the magnetic flux density by means of the elliptic integrals. Numerical examples of the computed fields are given. The general idea of the presented approach is mainly directed towards designing the magnetic field within the air gap of electric machines with permanent magnets as an excitation source. Other technical structures with permanent magnets may be a subject of this approach as well.

Go to article

Authors and Affiliations

Krystyn Pawluk
Renata Sulima
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a method of computing electrical and mechanical variables of BLDC motors. It takes into account electrical, magnetic and mechanical phenomena in the power supply-converter-BLDC motor-load machine system. The solution to the problem is the so-called circuit-field method. The results determined with the use of time stepping finite element method were used as the parameters of equations of the developed mathematical model. Losses in the motor, losses in transistors and diodes of the converter as well as the actual back EMF waveforms, variable moment of inertia and variable load torque are accounted for. The designed laboratory stand and the test results are presented in the paper. The experimental verification shows the correctness of the developed method, algorithm and program. The developed computational method is universal with respect to different electromechanical systems with cylindrical BLDC motors. It can be applied to electromechanical systems with BLDC motors operating at constant but also variable load torque and moment of inertia.
Go to article

Authors and Affiliations

Marek Ciurys
Ignacy Dudzikowski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a methodology for the optimization of a Brushless Direct Current motor (BLDC). In particular it is focused on multiobjective optimization using a genetic algorithm (GA) developed in Matlab/Optimization Toolbox coupled with Maxwell from ANSYS. Optimization process was divided into two steps. The aim of the first one was to maximize the RMS torque value and to minimize the mass. The second part of the optimization process was to minimize the cogging torque by selecting proper magnet angle. The paper presents the methodology and capabilities of scripting methods rather than specific optimization results for the applied geometry.

Go to article

Authors and Affiliations

R. Caramia
R. Piotuch
R. Pałka
Download PDF Download RIS Download Bibtex

Abstract

The calculation results of the static field parameters for permanent magnet linear synchronous motor have been presented in this work. The influence of the construction temperature on the parameters has been analyzed mathematically. Models for magnetic and temperature fields determination have been formulated. Two kinds of permanent magnets (NdFeB and SmCo) have been considered. The distribution of the thermal field has been obtained using the finite element method (FEM).

Go to article

Authors and Affiliations

Andrzej Waindok
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a review of the electromagnetic field and a performance analysis of a radial flux interior permanent magnet (IPM) machine designed to achieve 80 kW and 125 Nmfor an electric and hybrid traction vehicle. The motor consists of a 12-slot stator with a three-phase concentrated winding as well as an 8-pole rotor with V-shaped magnets. Selected motor parameters obtained from an IPM prototype were compared with the design requirements. Based on the electromagnetic field analysis, the authors have indicated the parts of the motor that should be redesigned, including the structure of the rotor core, aimed at enhancing the motor’s performance and adjusting segmentation for magnet eddy current loss reduction. In addition, iron and PM eddy current losses were investigated. Moreover, transient analysis of current peak value showed that the current may increase significantly compared to steady-state values.Amap of transient peak current load vs. torque load plotted against rotor speed was provided. Based on the numeric and analytical results of physical machine parameters, the authors indicate that collapse load during the motor’s operation may significantly increase the risk of permanent magnet (PM) demagnetization. It was also found that collapse load increases the transient torque, which may reduce the lifetime of windings.

Go to article

Authors and Affiliations

Adrian Młot
ORCID: ORCID
Marcin Kowol
Janusz Kołodziej
Andrzej Lechowicz
Piotr Skrobotowicz
Download PDF Download RIS Download Bibtex

Abstract

The paper focusses on the analysis of the demagnetisation process of permanent magnets in line-start synchronous motors in dynamic states related to start-up and resynchronisation. A field-circuit model of electromagnetic phenomena was used to analyse the demagnetisation process, taking into account the influence of temperature on the properties of permanent magnets and their resistance to demagnetisation. The results of the conducted research have shown, among other things, that the process of resynchronisation of the motor is much more dangerous from the standpoint of the risk of demagnetisation than the start-up itself.
Go to article

Authors and Affiliations

Tomasz Zawilak
1
ORCID: ORCID
Cezary Jędryczka
2
ORCID: ORCID

  1. Wrocław University of Science and Technology, Department of Electrical Machines, Drives and Measurements, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
  2. Poznan University of Technology, Institute of Electrical Engineering and Electronics, Piotrowo 3A, 60-965 Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

Accurate demagnetization modelling is mandatory for a reliable design of rare-earth permanent magnet applications, such as e.g. synchronous machines. The magnetization of rare-earth permanent magnets requires high magnetizing fields. For technical reasons, it is not always possible to completely and homogeneously achieve the required field strength during a pulse magnetization, due to stray fields or eddy currents. Not sufficiently magnetized magnets lose remanence as well as coercivity and the demagnetization characteristic becomes strongly nonlinear. It is state of the art to treat demagnetization curves as linear. This paper presents an approach to model the nonlinear demagnetization in dependence on the magnetization field strength. Measurements of magnetization dependent demagnetization characteristics of rare-earth permanent magnets are compared to an analytical model description. The physical meaning of the model parameters and the influence on them by incomplete magnetization are discussed for different rare-earth permanent magnet materials. Basically, the analytic function is able to map the occurring magnetization dependent demagnetization behavior. However, if the magnetization is incomplete, the model parameters have a strong nonlinear behavior and can only be partially attributed to physical effects. As a benefit the model can represent nonlinear demagnetization using a few parameters only. The original analytical model is from literature but has been adapted for the incomplete magnetization. The discussed effect is not sufficiently accurate modelled in literature. The sparse data in literature has been supplemented with additional pulsed-field magnetometer measurements.

Go to article

Authors and Affiliations

Gregor Bavendiek
Fabian Müller
Jamshid Sabirov
Kay Hameyer
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

This paper deals with the finite element analysis of the demagnetization process of the line start permanent magnet synchronous motor. Special attention has been paid to demagnetization risk assessment after resynchronization during a short-term supply power outage. The current and torque waveforms have been determined assuming the difference depending initial rotor position angle. It has been demonstrated that the highest demagnetization risk occurs when resynchronization (motor reclosing) is performed whe induced electromotive forces are in anti-phase to the supply voltage waveforms. The effect of cage winding resistance on the risk of demagnetization is examined and discussed.

Go to article

Authors and Affiliations

Tomasz Zawilak
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Production deviations have a remarkable effect on the radiated sound of electrical machines, introducing additional signal components besides the fundamental field waves which significantly change and enrich the subjectively perceived sound characteristic. In literature these harmonics are mainly traced back to dynamic eccentricity, which modulates the fundamental fieldwaves. In this paper a thorough mechanic and electromagnetic analysis of a modern, well-constructed traction drive (permanent magnet synchronous machine) is performed to showthat for this typical rotor configuration dynamic eccentricity is negligible. Instead, deviations in the rotor magnetization are shown to be the dominant cause for vibration harmonics.
Go to article

Bibliography

[1] Nahlaoui M.A., Steins H., Kulig S., Exnowski S., Comparison of numerically determined noise of a 290 kW induction motor using FEM and measured acoustic radiation, Archives of Electrical Engineering, vol. 62, pp. 195–207 (2013), DOI: 10.2478/aee-2013-0015.
[2] Gieras J.F., Wang C., Cho Lai J., Noise of polyphase electric motors, CRC Press Taylor and Francis Group (2006).
[3] Hu Y., Wei H., Chen H., Sun W., Zhao S., Li L., Vibration Study of Permanent Magnet Synchronous Motor Base on Static Eccentricity Model, 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, pp. 1–5 (2019), DOI: 10.1109/ICEMS.2019.8922162.
[4] LiY.,Wu H.,Xu X., CaiY., Sun X., Analysis on electromechanical coupling vibration characteristics of in-wheel motor in electric vehicles considering air gap eccentricity, Archives of Electrical Engineering, vol. 5, pp. 851–862 (2019), DOI: 10.24425/bpasts.2019.130882.
[5] Lundin U., Wolfbrandt A., Method for Modeling Time-Dependent Nonuniform Rotor/Stator Configurations in Electrical Machines, IEEE Transactions on Magnetics, vol. 45, iss. 7, pp. 2976–2980 (2009), DOI: 10.1109/TMAG.2009.2015052.
[6] Zhang M., Macdonald A., Tseng K.-J., Burt G.M., Magnetic Equivalent Circuit Modeling for Interior Permanent Magnet Synchronous Machine under Eccentricity Fault, 48th International Universities’ Power Engineering Conference (UPEC), Dublin, Ireland, pp. 1–6 (2013), DOI: 10.1109/UPEC.2013.6715044.
[7] Ebrahimi B.M., Faiz J., Roshtkhari M.J., Static-, Dynamic-, and Mixed- Eccentricity Fault Diagnoses in Permanent-Magnet Synchronous Motors, IEEE Transactions on industrial electronics, vol. 56, no. 11, pp. 4727–4739 (2009), DOI: 10.1109/TIE.2009.2029577.
[8] Rosero J.A., Cusido J., Garcia A., Ortega J.A., Romeral L., Broken Bearings and Eccentricity Fault Detection for a Permanent Magnet Synchronous Motor, 32nd Annual Conference on IEEE Industrial Electronics (IECON), Paris, France, pp. 964–969 (2006), DOI: 10.1109/IECON.2006.347599.
[9] Ilamparithi T., Nandi S., Saturation independent detection of dynamic eccentricity fault in salient-pole synchronous machines, IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED), Valencia, Spain, pp. 336–341 (2013), DOI: 10.1109/DEMPED.2013.6645737. [10] Goktas T., Zafarani M., Akin B., Discernment of Broken Magnet and Static Eccentricity Faults in Permanent Magnet Synchronous Motors, IEEE Transactions on Energy Conversion, vol. 31, iss. 2, pp. 578–587 (2016).
[11] Coenen I., van der Giet M., Hameyer K., Manufacturing Tolerances: Estimation and Prediction of Cogging Torque Influenced by Magnetization Faults, IEEE Transactions on Magnetics, vol. 48, iss. 5, pp. 1932–1936 (2012), DOI: 10.1109/TMAG.2011.2178252.
[12] Gasparin L., Fiser R., Cogging torque sensitivity to permanent magnet tolerance combinations, Archives of Electrical Engineering, vol. 62, pp. 449–461 (2013), DOI: 10.2478/aee-2013-0036.
[13] International Organization for Standardization, ISO 1940-1: Mechanical vibration — Balance quality requirements for rotors in a constant (rigid) state, Geneva, Switzerland (2003).
[14] https://www.smalley.com/wave-springs/bearing-preload, accessed March 2020.
[15] Henrotte F., Felden M., van der Giet M., Hameyer K., Electromagnetic force computation with the Eggshell method, 14th International Symposium on Numerical Field Calculation in Electrical Engineering (IGTE), Graz, Austria (2010).
[16] Herold T., Franck D., Schröder M., Böhmer S., Hameyer K., Transientes Simulationsmodell für die akustische Bewertung elektrischer Antriebe, e & i Elektrotechnik und Informationstechnik, vol. 133, no. 2, pp. 55–64 (2016).

Go to article

Authors and Affiliations

Markus Jaeger
1
Pascal Drichel
2
Michael Schröder
1
Joerg Berroth
2
Georg Jacobs
2
Kay Hameyer
1
ORCID: ORCID

  1. Institute of Electrical Machines (IEM), RWTH Aachen University, Germany
  2. Institute of Systems Engineering and Machine Elements (MSE), RWTH Aachen University, Germany
Download PDF Download RIS Download Bibtex

Abstract

The multi-phase permanent-magnet machines with a fractional-slot concentrated-winding (FSCW) are a suitable choice for certain purposes like aircraft, marine, and electric vehicles, because of the fault tolerance and high power density capability. The paper aims to design, optimize and prototype a five-phase fractional-slot concentrated-winding surface-mounted permanent-magnet motor. To optimize the designed multi-phase motor a multi-objective optimization technique based on the genetic algorithm method is applied. The machine design objectives are to maximize torque density of the motor and maximize efficiency then to determine the best choice of the designed machine parameters. Then, the two-dimensional Finite Element Method (2D-FEM) is employed to verify the performance of the optimized machine. Finally, the optimized machine is prototyped. The paper found that the results of the prototyped machine validate the results of theatrical analyses of the machine and accurate consideration of the parameters improved the acting of the machine.

Go to article

Authors and Affiliations

Amir Nekoubin
Jafar Soltani
Milad Dowlatshah
Download PDF Download RIS Download Bibtex

Abstract

In this work, the electromotive force (EMF) near a permanent magnet heating cylinder was determined using a practical test bench. The aim is to elaborate three-dimensional analytical calculation capable of predicting accurately the same electromagnetic quantities by calculating the induced EMF in the presence of an inductive sensor. The analytical approach is obtained from developing mathematical integrals using the Coulombian approach to permanent magnets. In this approach, rotations are considered by Euler’s transformations matrices permitting the calculation of all permanent magnets flux densities contributions at the same points in the surrounding free space. These points, part of a uniform rectangular grid of the active EMF sensor surface, are used to compute the EMF by Faraday’s law. The validation results between experimental and simulated ones confirm the robustness and the efficiency of the proposed analytical approach.
Go to article

Authors and Affiliations

Riad Bouakacha
1
Mehdi Ouili
2
Hicham Allag
1
Rabia Mehasni
2
Mohammed Chebout
3
Houssem Rafik Al-hana Bouchekara
4

  1. L2EI laboratory, University of Jijel,18000, Algeria
  2. LEC laboratory, University of Constantine1, Algeria
  3. L2ADI Applied Automation and Industrial Diagnostics Laboratory, University of Djelfa, Algeria
  4. Electrical Engineering, University of Hafr Al Batin, Saudi Arabia
Download PDF Download RIS Download Bibtex

Abstract

The combination of permanent magnets and electrically excited windings creates an air gap magnetic field. The development of a hybrid magnetic circuit motor with an adjustable magnetic field is of great significance. This article introduces a hybrid magnetic circuit motor design that combines salient pole electromagnetic and permanent magnets. A tubular magnetic barrier has been designed to reduce inter-pole leakage and enhance the usage rate of permanent magnets in the hybrid magnetic circuit motor. The optimum eccentricity of the rotor has been accurately designed, resulting in an improved sinusoidal distribution of the air gap magnetic density waveform. An analysis of the static composite magnetic field under various excitation currents has been conducted, showcasing the capability of the hybrid magnetic circuit motor to stably adjust the air gap flux density level and output torque. A prototype has undergone comprehensive trial production and testing, conclusively confirming the machine’s superior output performance.
Go to article

Authors and Affiliations

Mingling Gao
1
Shilong Yan
1
Chenglong Yu
2
Wenjing Hu
1
Huihui Geng
1
Hongbin Yin
1
Mingjun Xu
1
Yufeng Zhang
1

  1. Shandong University of Technology 266 Xincun West Road, Zhangdian District, Zibo, Shandong Province, China
  2. Zibo Yongtai Motor Co., Ltd Zichuan District, Zibo, Shandong, China
Download PDF Download RIS Download Bibtex

Abstract

In this paper, a creative dung beetle optimization (CDBO) algorithm is proposed and applied to the offline parameter identification of permanent magnet synchronous motors. First, in order to uniformly initialize the population state and increase the population diversity, a strategy to improve the initialization of the dung beetle population using Singer chaotic mapping is proposed to improve the global search performance; second, in order to improve the local search performance and enhance the convergence accuracy of the algorithm, a new dung beetle position update strategy is designed to increase the spatial search range of the algorithm. Simulation results show that the proposed optimization algorithm can quickly and accurately identify parameters such as resistance, inductance, and magnetic chain of the PMSM, with significant improvements in convergence algebra, identification accuracy and stability.
Go to article

Authors and Affiliations

Xiaoliang Yang
1 2
ORCID: ORCID
Yuyue Cui
1 2
Lianhua Jia
3
Zhihong Sun
3
Peng Zhang
3
ORCID: ORCID
Jiane Zhao
4
Rui Wang
1 2
ORCID: ORCID

  1. School of Electrical and Information Engineer, Zhengzhou University of Light Industry, Zhengzhou, China
  2. Henan Key Lab of Information based Electrical Appliances, Zhengzhou, China
  3. China Railway Engineering Equipment Group Co. Ltd, Zhengzhou, China
  4. School of Electrical and Electronic Engineering, Zhengzhou University of Science and Technology, Zhengzhou, China
Download PDF Download RIS Download Bibtex

Abstract

Different buried permanent magnet arrangements in rotors are compared based on electrical machines found in literature regarding high-speed capability. An analytical approach is presented to analytically calculate mechanical stresses in the bilateral and central bridge of V arrangements in order to determine the achievable circumferential velocity of a rotor geometry. The mechanical model is coupled to an analytical model which can determine the flux density in the main air gap under consideration of flux leakage within the rotor. The multi-domain model enables the analytical design of high-speed rotors with buried permanent magnets in V-arrangement.
Go to article

Authors and Affiliations

Maximilian Lauerburg
1
ORCID: ORCID
Polkrit Toraktrakul
1
Kay Hameyer
1
ORCID: ORCID

  1. Institute of Electrical Machines (IEM), RWTH Aachen UniversitySchinkelstr. 4, D-52062 Aachen, Germany
Download PDF Download RIS Download Bibtex

Abstract

The aim of the studywas to find an effective method of ripple torque compensation for a direct drive with a permanent magnet synchronous motor (PMSM) without time-consuming drive identification. The main objective of the research on the development of a methodology for the proper teaching a neural network was achieved by the use of iterative learning control (ILC), correct estimation of torque and spline interpolation. The paper presents the structure of the drive system and the method of its tuning in order to reduce the torque ripple, which has a significant effect on the uneven speed of the servo drive. The proposed structure of the PMSM in the dq axis is equipped with a neural compensator. The introduced iterative learning control was based on the estimation of the ripple torque and spline interpolation. The structurewas analyzed and verified by simulation and experimental tests. The elaborated structure of the drive system and method of its tuning can be easily used by applying a microprocessor system available now on the market. The proposed control solution can be made without time-consuming drive identification, which can have a great practical advantage. The article presents a new approach to proper neural network training in cooperation with iterative learning for repetitive motion systems without time-consuming identification of the motor.

Go to article

Authors and Affiliations

Adrian Wójcik
Tomasz Pajchrowski
Download PDF Download RIS Download Bibtex

Abstract

The artificial bee colony (ABC) intelligence algorithm is widely applied to solve multi-variable function optimization problems. In order to accurately identify the parameters of the surface-mounted permanent magnet synchronous motor (SPMSM), this paper proposes an improved ABC optimization method based on vector control to solve the multi-parameter identification problem of the PMSM. Because of the shortcomings of the existing parameter identification algorithms, such as high computational complexity and data saturation, the ABC algorithm is applied for the multi-parameter identification of the PMSM for the first time. In order to further improve the search speed of the ABC algorithm and avoid falling into the local optimum, Euclidean distance is introduced into the ABC algorithm to search more efficiently in the feasible region. Applying the improved algorithm to multi-parameter identification of the PMSM, this method only needs to sample the stator current and voltage signals of the motor. Combined with the fitness function, the online identification of the PMSM can be achieved. The simulation and experimental results show that the ABC algorithm can quickly identify the motor stator resistance, inductance and flux linkage. In addition, the ABC algorithm improved by Euclidean distance has faster convergence speed and smaller steady-state error for the identification results of stator resistance, inductance and flux linkage.
Go to article

Bibliography

[1] Boileau T., Leboeuf N., Nahid-Mobarakeh B., Online identification of PMSM parameters: parameter identifiability and estimator comparative study, IEEE Transactions on Industry Applications, vol. 47, no. 4, pp. 1944–1957 (2011), DOI: 10.1109/TIA.2011.2155010.
[2] Ichikawa S., Tomita M., Doki S., Sensorless control of permanent-magnet synchronous motors using online parameter identification based on system identification theory, IEEE Transactions on Industrial Electronics, vol. 53, no. 2, pp. 363–372 (2006), DOI: 10.1109/TIE.2006.870875.
[3] Jian-fei S., Bao-jun G., Yan-ling L., Research of parameter identification of permanent magnet synchronous motor online, Electric Machines and Control, vol. 22, no. 3, pp. 17–24 (2018), DOI: 10.15938/j.emc.2018.03.003.
[4] Fan S., LuoW., Zou J., A hybrid speed sensorless control strategy for PMSM based on MRAS and fuzzy control, Proceedings of 7th International Power Electronics and Motion Control Conference, Harbin, China, pp. 2976–2980 (2012), DOI: 10.1109/IPEMC.2012.6259344.
[5] Shi Y., Sun K., Huang L., Online identification of permanent magnet flux based on extended Kalman filter for IPMSM drive with position sensorless control, IEEE Transactions on Industrial Electronics, vol. 59, no. 11, pp. 4169–4178 (2012), DOI: 10.1109/TIE.2011.2168792.
[6] Liu K., Zhang J., Adaline neural network based online parameter estimation for surface-mounted permanent magnet synchronous machines, Proceedings of the CSEE, vol. 30, no. 30, pp. 68–73 (2010).
[7] Gu X., Hu S., Shi T., Muti-parameter decoupling online identification of permanent magnet synchronous motor based on neural network, Transactions of China Electrotechnical Society, vol. 30, no. 6, pp. 114–121 (2015).
[8] Liwei Z., Peng Z., Yuefeng L., Parameter identification of permanent magnet synchronous motor based on variable step-size Adaline neural network, Transactions of China Electrotechnical Society, vol. 33, no. z 2, pp. 377–384 (2018).
[9] Peerez J.N.H., Hernandez O.S., Caporal R.M., Parameter identification of a permanent magnet synchronous machine based on current decay test and particle swarm optimization, IEEE Latin America Transactions, vol. 11, no. 5, pp. 1176–1181 (2013), DOI: 10.1109/TLA.2013.6684392.
[10] Liu Z., Wei H., Zhong Q., Parameter estimation for VSI-Fed PMSM based on a dynamic PSO with learning strategies, IEEE Transactions on Power Electronics, vol. 32, no. 4, pp. 3154–3165 (2017), DOI: 10.1109/TPEL.2016.2572186.
[11] Liu Z., Wei H., Li X., Global identification of electrical and mechanical parameters in PMSM drive based on dynamic self-learning PSO, IEEE Transactions on Power Electronics, vol. 33, no. 12, pp. 10858–10871 (2018), DOI: 10.1109/TPEL.2018.2801331.
[12] Sandre-Hernandez O., Morales-Caporal R., Rangel-Magdaleno J., Parameter identification of PMSMs using experimental measurements and a PSO algorithm, IEEE Transactions on Instrumentation and Measurement, vol. 64, no. 8, pp. 2146–2154 (2015), DOI: 10.1109/TIM.2015.2390958.
[13] Liu X., Hu W., Ding W., Research on multi-parameter identification method of permanent magnet synchronous motor, Transactions of China Electrotechnical Society, vol. 35, no. 6, pp. 1198–1207 (2020).
[14] Liu C., Zhou S., Liu K., Permanent magnet synchronous motor multiple parameter identification and temperature monitoring based on binary-modal adaptive wavelet particle swarm optimization, Acta Automatica Sinica, vol. 39, no. 12, pp. 2121–2130 (2013), DOI: 10.3724/SP.J.1004.2013.02121.
[15] Fu X., Gu H., Chen G., Permanent magnet synchronous motors parameters identification based on Cauchy mutation particle swarm optimization, Transactions of China Electrotechnical Society, vol. 29, no. 5, pp. 127–131 (2014).
[16] Guo-han L., Jing Z., Zhao-hua L., Kui-yin Z., Parameter identification of PMSM using improved comprehensive learning particle swarm optimization, Electric Machines and Control, vol. 19, no. 1, pp. 51–57 (2015).
[17] San-yang L., Ping Z., Ming-min Z., Artificial bee colony algorithm based on local search, Control and Decision, vol. 29, no. 1, pp. 123–128 (2014).
[18] Ding X., Liu G., Du M., Efficiency improvement of overall PMSM-Inverter system based on artificial bee colony algorithm under full power range, IEEE Transactions on Magnetics, vol. 52, no. 7, pp. 1–4 (2016), DOI: 10.1109/TMAG.2016.2526614.
[19] Zawilak T., Influence of rotor’s cage resistance on demagnetization process in the line start permanent magnet synchronous motor, Archives of Electrical Engineering, vol. 69, no. 2, pp. 249–258 (2020), DOI: 10.24425/aee.2020.133023.

Go to article

Authors and Affiliations

Chunli Wu
1
ORCID: ORCID
Shuai Jiang
1
Chunyuan Bian
1

  1. College of Information Science and Engineering, Northeastern University, China
Download PDF Download RIS Download Bibtex

Abstract

When the machine is at high speed, serious problems occur, such as high frequency loss, difficult thermal management, and the rotor structural strength insufficiency. In this paper, the performances of two high-speed permanent magnet generators (HSP- MGs) with different rotational speeds and the same torque are compared and analyzed. The two-dimensional finite element model (FEM) of the 117 kW, 60 000 rpm HSPMG is established. By comparing a calculation result and test data, the accuracy of the model is verified. On this basis, the 40 kW, 20 000 rpm HSPMG is designed and the FEM is established. The relationship between the voltage regulation sensitivity and power factor of the two HSPMGs is determined. The influence mechanism of the voltage regulation sensitivity is further revealed. In addition, the air-gap flux density is decomposed by the Fourier transform principle, and the influence degree of different harmonic orders on the HSPMG performance is determined. The method to reduce the harmonic content is further proposed. Finally, the method to improve the HSPMG overload capacity is obtained by studying the maximum power. The research showed that the HSPMG at low speed (20 000 rpm) has high sensitivity of the voltage regulation, while the HSPMG at high speed (60 000 rpm) is superior to the HSPMG at low speed in reducing the harmonic content and increasing the overload capacity.

Go to article

Authors and Affiliations

Hongbo Qiu
Yanqi Wei
Xi Fang Zhao
Cunxiang Yang
Ran Yi
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a comparison of an AC radial flux interior permanent magnet (IPM) motor with the distributed winding (DW) and concentrated winding (CW). From time to time, manufacturers of electric vehicles change the design of electric motors, such changes may include changing the DW into CW and vice versa. A change to the winding in a radial permanent magnet synchronous motor may lead to a change in motor parameters during motor operation and /or change in the distribution of the magnetic field and thermal circuit of the electrical machine. The electromagnetic analysis, efficiency map, mechanical stress, and thermal analysis of the machine with the DW and CW are presented in this paper. This article describes the advantages and disadvantages of selected stator winding designs and helps understand manufacturers’ designers howtheDWandCWplay a key role in achieving the designed motor’s operational parameters such as continuous performance. Analyzing the performance of both machines will help identify their advantages and disadvantages with regard to thermal phenomena, magnetic field and operational parameters of the presented IPM prototypes. Both prototypes are based on commonly used topologies such as 12/8 (slot/pole) and 30/8 (slot/pole) IPM motors consisting of magnets arranged in a V-shape. The AC IPM motor was designed for an 80 kW propulsion system to achieve 170 N·m at a base speed of 4 500 rpm. Modern CAD tools are utilized throughout the numerical computations based on 2-D finite element methods. Selected test data are used to verify and validate the accuracy of finite element models.
Go to article

Authors and Affiliations

Adrian Młot
1
ORCID: ORCID
Mariusz Korkosz
2
ORCID: ORCID
Andrzej Lechowicz
1
Jerzy Podhajecki
3
Stanisław Rawicki
3

  1. Opole University of Technology, Poland
  2. Rzeszow University of Technology, Poland
  3. The Jacob of Paradies University, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a method of determining the efficiency of the slewing drive system applied in tower cranes. An algorithm for the proper selection of a permanent magnet synchronous motor (PMSM) for crane applications is presented. In the first stage of our research the proper PMSM was proposed on the basis of the simulation calculation. Next, the PM motor was examined on a special test bench. The experimental setup allows determining major electrical and mechanical parameters of the motor drive system. The applied slewing system consists of: an inverter, gear, cable drum and a permanent magnet motor. The performance and efficiency of the system were experimentally determined. Selected results of the experimental measurement are presented and discussed.
Go to article

Bibliography

[1] Gansen A.U., Chokkalingam L.N., Self-start synchronous reluctance motor new rotor designs and its performance characteristic, International Transaction on Electrical Energy Systems, vol. 29, no. 11, pp. 1–22 (2019).
[2] Resa J., Cortes D., Marquez-Rubio J.F., Navarro D., Reduction of induction motor energy consumption via variable velocity and flux references, Electronics, vol. 8, no. 740, pp. 1–14 (2019).
[3] Belmans R., Bisschots F., Trimmer R., Practical design considerations for braking problems in overhead crane drives, Annual Meetings of IEEE Industry Applications Society – IAS, vol. 1, pp. 473–479 (1993).
[4] Baranski M., FE analysis of coupled electromagnetic-thermal phenomena in the squirrel cage motor working at hight ambient temperature, COMPEL, vol. 38, no. 4, pp. 1120–1132 (2019).
[5] Kometani H., Sakabe S., Nakanishi K., 3-D electro-magnetic analyses of a cage induction motor with rotor skew, IEEE Transactions on Energy Conversion, vol. 11, no. 2, pp. 331–337 (1996).
[6] Torrent M., Perat J.I., Jimenez J.A., Permanent magnet synchronous motor with different rotor structures for traction motor in high speed trains, Energies, vol. 11, no. 1549, pp. 1–17 (2018).
[7] Knypinski Ł., Nowak L., Demenko A., Optimization of the synchronous motor with hybrid permanent magnet excitation system, COMPEL, 2015, vol. 34, no. 2, pp. 448–455 (2015).
[8] Zawilak T., Influence of rotor’s cage resistance on demagnetization process in the line start permanent magnet synchronous motor, Archives of Electrical Engineering, vol. 69, no. 2, pp. 249–258 (2020).
[9] Knypinski Ł., Pawełoszek K., Le Manech Y., Optimization of low-power line-start PM motor using gray wolf metaheuristic algorithm, Energies, vol. 13, no. 5, pp. 1–11 (2020).
[10] Dorell D.G., Popescu M., Evans L., Staton D.A., Knight A.M., Comparison of the permanent magnet drive motor with a cage induction motor design for a hybrid electric vehicle, Proceedings of International Power Electronics Conference – ICCE ASIA, pp. 1–6 (2010), DOI: 10.1109/IPEC.2010.5543566.
[11] Baranski M., Szel˛agW., Łyskawinski W., An analysis of a start-up process in LSPMSMs with aluminum and copper rotor bars considering the coupling of electromagnetic and thermal phenomena, Archives of Electrical Engineering, vol. 68, no. 4, pp. 933–946 (2019).
[12] Slusarek B., Kapelski D., Antal L., Zalas P., Gwozdziewicz M., Synchronous motor with hybrid permanent magnets on the rotor, Sensors, vol. 14, pp. 12425–12436 (2014).
[13] Jedryczka C., Szel˛ag W., Piech J., Multiphase permanent magnet synchronous motors with fractional slot windings, COMPEL, vol. 35, no. 6, pp. 1937–1948 (2016).
[14] Wardach M., Pałka R., Paplicki P., Bronisławski M., Novel hybrid excited machine with flux barriers in rotor structure, COMPEL, vol. 37, no. 4, pp. 1489–1499 (2018).
[15] Młynarek P., Łukaniszyn M., Jagiełła M., Kowol M., Modelling of heat transfer in low-power IPM synchronous motors, IET Science, Measurement and Technology, vol. 12, no. 8, pp. 1066–1073 (2018).
[16] Rebelo J.M., Silvestre M.A.R., Development of a coreless permanent magnet synchronous motor for a battery electric shell eco marathon prototype vehicle, Open Engineering, vol. 8, no. 1, pp. 382–390 (2018).
[17] Knypinski Ł., Krupinski J., The energy conversion efficiency in the trolley travelling drive system in tower cranes, Proceedings of 15-th Selected Issue of Electrical Engineering and Electronics – WZEE, pp. 1–4 (2020), DOI: 10.1109/WZEE48932.2019.8979940.
[18] Egrov A., Kozlow K., Belogusev V., Method for evaluation of the chain derive efficiency, Journal of Applied Engineering Science, vol. 341, pp. 277–282 (2015).
[19] Janaszek M., The analysis of the influence unequal parameters of motors on the work of multimotors traction drive, Journal of the Electrical Engineering Institute (in Polish), vol. 286, pp. 1–26 (2015).
[20] Dambrauskas K., Vanagas J., Zimnickas T., Kalvaitisand A., Ažubalis K., A method for efficiency determination of permanent magnet synchronous motor, Energies, vol. 13, no. 1004, pp. 1–15 (2020).
[21] Knypinski Ł., Krupinski J., Application of the permanent magnet synchronous motors for tower cranes, Przegląd Elektrotechniczny, vol. 96, no. 1, pp. 27–30 (2020), DOI: 10.15199/48.2020.01.07.
[22] Geng S., Zhang Y., Qiu H., Yang R., Yi R., Influence of harmonic voltage coupling on torque ripple of permanent magnet synchronous motor, Archives of Electrical Engineering, vol. 68, no. 2, pp. 399–410 (2019).
[23] Dong S., Zhang Q., Ma H., Wang R., Design for the interior permanent magnet synchronous motor drive system based on the Z-source inverter, Energies, vol. 12, no. 3350, pp. 1–14 (2019).
[24] Chen Z., Zhang H., Tu W., Luo G., Manoharan D., Kennel R., Sensorless control for permanent magnet synchronous motor in rail transient applications using segmented synchronous modulation, IEEE Access, vol. 7, pp. 76669–7667 (2019).
[25] Putz Ł., Bednarek K., Kasprzyk L., Analysis of higher harmonics generated by LED lamps, Przegląd Elektrotechniczny, vol. 96, no. 4, pp. 90–93 (2020).
[26] https://www.krupinskicranes.com, accessed July 2020.
Go to article

Authors and Affiliations

Łukasz Knypiński
1
ORCID: ORCID
Jacek Krupiński
2

  1. Poznan University of Technology, Poland
  2. Krupinski Cranes, Poland
Download PDF Download RIS Download Bibtex

Abstract

The development in industrial systems leads to the augmentation in the consumption of the power. Therefore, this development makes use of multiphase machines. The use of multiphase machines caused several problems and defects. Electrical energy is mainly distributed in a three-phase system to provide the electrical power necessary for the electrical engineering equipment and materials. The sinusoidal aspect of the required original voltage primarily preserves its essential qualities for transmitting useful power to terminal equipment. When the voltage waveform is no longer sinusoidal, perturbations are encountered, which generate malfunctions and overheating of the receivers and the equipment connected to the same electrical supply network. The main disturbing phenomena are harmonics, voltage fluctuations, voltage unbalances, electromagnetic fields, and electrostatic discharges. This present work aims to study the effects of harmonic pollution and voltage unbalance on the five-phase permanent magnet synchronous machine using spectrum current analysis and wavelet transform.
Go to article

Authors and Affiliations

Ahmed Amine Kebir
1
ORCID: ORCID
Mouloud Ayad
1
ORCID: ORCID
Saoudi Kamel
1
ORCID: ORCID

  1. LPM3E Laboratory, Faculty of Sciences and Applied Sciences, University of Bouira, Algeria
Download PDF Download RIS Download Bibtex

Abstract

This paper takes a 50 kW interior permanent magnet brushless DC motor as an example, and explores the influence of the degree of stator slot skew on the overall motor magnetic density and air gap magnetic density; then reveals the influences of stator slot skewed structure on a series of key electromagnetic properties like no-load back electromotive force (B-EMF), cogging torque, electromagnetic torque, torque fluctuation, electromagnetic loss, input power, output power and operating efficiency. On this basis, a relatively best range of the skew degrees is obtained. The research work in this paper has direct reference value for the further improvement of design and manufacture, operation and maintenance, control and protection of such motors.
Go to article

Bibliography

[1] Zhang Chen, Principle and Application of Brushless DC Motor, China Machinery Industry Press, Beijing (1996).
[2] Tang Renyuan, Modern Permanent Magnet Motor Theory and Design, Mechanical Industry Press, Beijing (2005).
[3] LiWeiqi, LinRongwen, Tao Tao, Optimized design based on the air gap length of the built-in permanent magnet brushless DC motor, Electric Switchgear, vol. 58, no. 05, pp. 58–63 (2020).
[4] Parsa L., Hao L., Interior Permanent Magnet Motors with Reduced Torque Pulsation, IEEE Transactions on Industrial Electronics, vol. 55, no. 2, pp. 602–609 (2008), DOI: 10.1109/TIE.2007.911953.
[5] Ren Dejiang, Huang Qu, Li Jianjun, Wu Ning, Cogging torque optimization analysis of built-in permanent magnet synchronous motor, Explosion-Proof Electric Machine, vol. 54, no. 4, pp. 4–7+43 (2019).
[6] Zhao W., Lipo T.A., Kwon B., Torque Pulsation Minimization in Spoke-type Interior Permanent Magnet Motors with Skewing and Sinusoidal Permanent Magnet Configurations, IEEE Transactions on Magnetics, vol. 51, no. 11, pp. 1–4 (2015), DOI: 10.1109/TMAG.2015.2442977.
[7] AimengW., Heming L.,Weifu L., Haisen Z., Influence of skewed and segmented magnet rotor on IPM machine performance and ripple torque for electric traction, IEEE International Electric Machines and Drives Conference, pp. 305–310 (2009), DOI: 10.1109/IEMDC.2009.5075222.
[8] Adrian Młot, Marcin Kowol, Janusz Kołodziej, Andrzej Lechowicz, Piotr Skrobotowicz, Analysis of IPM motor parameters in an 80-kW traction motor, Archives of Electrical Engineering, vol. 69, no. 2 (2020), DOI: 10.24425/aee.2020.133038.
[9] Yang Zhihao, Yang Mengxue, Wang Sinuo, Bao Xiaohua, The influence of stator skew on the performance of permanent magnet synchronous motors, Transactions of the Chinese Society of Electrical Engineering, vol. 14, no. 3, pp. 97–102 (2019).
[10] Wang Dongliang, Chen Wei, Discussion on the electromagnetic design of concentrated winding permanent magnet motor from the perspective of torque fluctuation, Electric Tool, vol. 4, pp. 15–17 (2017), DOI: 10.16629/j.cnki.1674-2796.2017.04.004.
[11] Xiaodong S., Zhou S., Long C., Zebin Y., Skew Angle Optimization Analysis of a Permanent Magnet Synchronous Motor for EVs, IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), pp. 1–2 (2018), DOI: 10.1109/ASEMD.2018.8558826.
[12] Wang Changcheng, Guo Hui, Sun Pei, Liu Ningning,Wang Yansong, Qin Yifei, A method for reducing cogging torque of permanent magnet synchronous motors, Light Industry Machinery, vol. 36, no. 6, pp. 62–66 (2018).
[13] He Qiang, Magnetic field analysis and cogging torque study of brushless DC permanent magnet motors, Hefei University of Technology (2016).
[14] Hongwei Fang, Hongxu Chen, Analysis and reduction of the cogging torque of flux-modulated generator for wave energy conversion, Energy Procedia, vol. 158, pp. 327–332 (2019), DOI: 10.1016/j.egypro.2019.01.097.
[15] Fu Lixin et al., GB/T 1029-2005 Three-phase synchronous motor test method, China Standard Press, Beijing (2006).
Go to article

Authors and Affiliations

Xue-gui Gan
1
ORCID: ORCID
Zhen-nan Fan
1
ORCID: ORCID
Jing-can Li
2
ORCID: ORCID

  1. The Key Laboratory of Fluid and Power Machinery, Ministry of Education, Xihua University, Chengdu, China
  2. State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing, China
Download PDF Download RIS Download Bibtex

Abstract

The popularity of high-efficiency permanent magnet synchronous motors in drive systems has continued to grow in recent years. Therefore, also the detection of their faults is becoming a very important issue. The most common fault of this type of motor is the stator winding fault. Due to the destructive character of this failure, it is necessary to use fault diagnostic methods that facilitate damage detection in its early stages. This paper presents the effectiveness of spectral and bispectrum analysis application for the detection of stator winding faults in permanent magnet synchronous motors. The analyzed diagnostic signals are stator phase current, stator phase current envelope, and stator phase current space vector module. The proposed solution is experimentally verified during various motor operating conditions. The object of the experimental verification was a 2.5 kW permanent magnet synchronous motor, the construction of which was specially prepared to facilitate inter-turn short circuits modelling. The application of bispectrum analysis discussed so far in the literature has been limited to vibration signals and detecting mechanical damages. There are no papers in the field of motor diagnostic dealing with the bispectrum analysis for stator winding fault detection, especially based on stator phase current signal.
Go to article

Authors and Affiliations

Przemysław Pietrzak
1
ORCID: ORCID
Marcin Wolkiewicz
1
ORCID: ORCID

  1. Wrocław University of Science and Technology, Department of Electrical Machines, Drives and Measurements, Wybrzeze Wyspia ˙ nskiego 27, ´ 50-370 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this study, the optimization of air gap magnetic flux density of open slotted axial flux permanent magnet (AFPM) machine which was developed for wind turbine has been obtained using the Taguchi experimental method. For this, magnetic analyzes were performed by ANSYS Maxwell program according to Taguchi table. Then the optimum values have been determined and the average magnetic flux density values have been calculated for air gap and iron core under load and no-load conditions with ANSYS Maxwell. Traditionally, 15625 analyzes are required for 6 independent variables and 5 levels when experimental method is used. In this study, optimum values are determined by 25 magnetic analyzes, which use L25 orthogonal array. For this purpose, both factor effect graph and signal to noise ratios are used, according to the factors and levels which are obtained from the factor effect graph and the signal to noise ratio. Parameters are re-analyzed by Maxwell. The optimum factors and levels are determined. For optimized values, the air gap magnetic flux density is improved by 65.7% and 173.26%, respectively, according to the average value and the initial design. Therefore, the variables are optimized in a shorter time with Taguchi experimental design method instead of the traditional design method for open slotted AFPM generator. In addition, the results were analyzed statistically using ANOVA and Regression model. The variables were found to be significant by ANOVA. The degree of influence of the variables on the air gap magnetic flux density was also determined by the Regression model.

Go to article

Authors and Affiliations

E. Hüner

This page uses 'cookies'. Learn more