Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 12
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The objective of the study was to compare the impact of three systems of multiannual fertilization applied in two long-term field experiments on the content of phenolic compounds in the soil. In the study, both natural (manure, slurry) and mineral (NPK) fertilizers were used, along with combined, organic-and-mineral fertilization. Experiment I was established in 1972 on grey brown podzolic soil; experiment II, in 1973 on brown soil. In both experiments crops were cultivated in a 7-year rotation, with a 75% share of cereals. The experimental samples were taken from the top layer of soil after 36 (experiment I) and 35 (experiment II) years following the establishment of the experiments. It was demonstrated that the presence of phenolic compounds in the soils was significantly dependent on the contents of organic C and total N, type of soil and the type and dose of used fertilizers. In grey brown podzolic soil, the content of total phenolic compounds was at a lower level than the content found in brown soil. Multiannual fertilization contributed to an increase in the content of total phenolic compounds in relation to the values obtained in control objects, which was particularly reflected in the soil originating from objects fertilized with slurry applied at a dose being equivalent to manure in terms of the amount of introduced organic carbon. The percentage of water-soluble phenols in the total content of these compounds in grey brown podzolic soil was at the level of 18.4%, while in brown soil it amounted to 29.1%.

Go to article

Authors and Affiliations

Wiera Sądej
Andrzej Cezary Żołnowski
Olga Marczuk
Download PDF Download RIS Download Bibtex

Abstract

Allelopathy is a complex phenomenon which depends on allelochemical concentrations. So, two pot experiments were carried out to investigate the allelopathic effect of alcoholic fresh shoot extract of Eruca sativa (foliar spray) and E. sativa shoot powder (mixed with soil) on Pisum sativum plants and two associated weeds, Phalaris minor and Beta vulgaris. The experiments were conducted in the greenhouse of the National Research Centre, Giza, Egypt during two successive winter seasons (2016–2017 and 2017–2018). Ten treatments were applied in this study. Four treatments were applied before sowing, that E. sativa shoot powder was mixed with the soil at rates of 15, 30, 45 and 60 g ⋅ pot–1. The other four treatments of E. sativa alcoholic fresh shoot extract were sprayed twice on both plants and weeds at 5, 10, 15 and 20% (w/v) concentrations. Additionally, two untreated treatments, healthy (P. sativum only) and unweeded (untreated infested P. sativum plants with weeds) were applied for comparison. The results indicated that both alcoholic extracts and powder reduced growth of both weeds. Moreover, there was a direct relationship between concentration and weed reduction. Eruca sativa alcoholic extracts increased yield parameters of P. sativum plants. The maximum yield attributes were recorded by spraying of E. sativa alcoholic extract at 20%. On the other hand, it was clearly noticed that the high powder rates affected negatively P. sativum yield parameters. But the lowest powder rate (15 g ⋅ pot–1) stimulated P. sativum yield parameters as compared to unweeded treatment. Chemical analysis of E. sativa shoot powder ensured that the abundant amount of glucosinolates (9.6 μmol ⋅ g–1) and phenolic compounds (46.5 mg ⋅ g–1) may be responsible for its allelopathic effect. In conclusion, spraying of alcoholic fresh shoot extract of E. sativa at 20% (w/v) and mixing E. sativa shoot powder at 15 g · pot–1can be applied as natural bioherbicides for controlling weeds.

Go to article

Authors and Affiliations

Mona Adel El-Wakeel
Salah El-Din Abd El-Ghany Ahmed
Ebrahim Roushdi El-Desoki
Download PDF Download RIS Download Bibtex

Abstract

Sorghum produces allelopathic compounds, including total phenolic compounds and sorgoleone, which exhibit a phytotoxic effect on weeds. The field study, carried out in 2016-2017, was designed as an one-factor experiment, in the randomized block design, in four replications, with Sucrosorgo 506, Rona 1, KWS Freya, KWS Juno, and KWS Sammos, to assess the impact of allelochemicals on weeds. Weed infestation was determined at the beginning of July. Individual weed species were collected from two random places in each plot and weighed. The aim of the laboratory study was to evaluate the total content of phenolic compounds, and sorgoleone in the early stages of plant development (5, 10, and 15 days after emergence) in varieties Rona 1, KWS Freya, KWS Juno, KWS Sammos, Farmsorgo 180, GK Aron, PR 845F, Sucrosorgo 506 and PR849F. The total content of phenolic compounds was determined using the colorimetric method, and the sorgoleone HPLC technique on a Flexar chromatographic set. The highest value of sorgoleone was observed in 15-day-old seedlings of KWS Juno, the lowest in 5-day-old seedlings of Sucrosorgo 506, the highest levels of total phenolic compounds in 5-day-old seedlings of PR 845F, the lowest in 15-day-old seedlings of Farmsorgo 180. The results do not fully confirm the beneficial effect of allelopathic compounds on reducing weed infestation, however, it is important to emphasize the diversity of cultivars used. The statistically insignificant results indicated that most varieties of sorghum plants do not exhibit a significant decrease in yield.
Go to article

Authors and Affiliations

Hubert Waligóra
1
ORCID: ORCID
Sylwiana Nowicka
1
Robert Idziak
1
ORCID: ORCID
Piotr Ochodzki
2
Piotr Szulc
1
Leszek Majchrzak
1

  1. Faculty of Agriculture, Horticulture and Bioengineering, Department of Agronomy, Poznań University of Life Sciences,Poznań, Poland
  2. Department of Applied Biology, Institute of Plant Breeding and Acclimatization – National Research Insitute in Radzikowo,Radzikowo, Poland
Download PDF Download RIS Download Bibtex

Abstract

We used DPPH scavenging assays to study the antioxidant activity of three native Polish species of blackberry leaves (Rubus kuleszae Ziel., R. fabrimontanus (Sprib.) Sprib. and R. capitulatus Utsch.). All the studied extracts (methanolic, water, methanolic-water) showed high DPPH free radical scavenging activity (IC50 450.0-186.0 μg/ml). The most effective of the studied species was Rubus kuleszae. Total content of phenolic compounds (70.50-136.04 mg GAE/g) and phenolic acids (14.70-38.26 mg CAE/g) was determined spectrophotometrically. Antioxidant activity correlated positively with total content of phenolic compounds and phenolic acids.

Go to article

Authors and Affiliations

Anna Gawron-Gzella
Marlena Dudek-Makuch
Irena Matławska
Download PDF Download RIS Download Bibtex

Abstract

Phenol degradation efficiency or Pscndontonas putida PCM2 l 53 free cel ls was experimentally studied. Bacterial cells were acclimatized to phenol what relied on gradually increasing the phenol concentration in the medium. The highest phenol degradation rate was calculated as approximately 15.2 mgdmŁh'. Investigated strain degraded the phenol at the concentration or 400 111g-d111·-' in 24 h. The result or toxicity analysis showed that acclimatized cells orP putida PCM2 l 53 arc able to survive even al as high concentration or phenol as 3000 rng.dm'. The obtained result suggests that the analyzed strain can be used lor cflcciivc treating of high strength phenolic wastewater. Due to resistance of the strain to high phenol concentration it may be applied in biorcmcdiation of exceedingly contaminated sites, especially where dilution or pollutants cannot be implemented.
Go to article

Authors and Affiliations

Grzegorz Przybyłek
Sławomir Ciesielski
Download PDF Download RIS Download Bibtex

Abstract

Liquid chromatography-mass spectrometry was used to detect and analyze phenolic compounds in the surface waters of four urban lakes in Xi’an – Hancheng Lake, Xingqing Lake, Nanhu Lake, and Taohuatan Lake. A total of 5 phenolic compounds were detected from the water samples, with a concentration range of ND-100.32 ng/L, of which bisphenol A (BPA) and nonyl phenol (NP) were the main types of phenolic compounds pollution in the four lakes. Pearson correlation analysis was used to analyze the concentration of phenolic compounds in the lake waters of Xi’an City and the water quality indicators COD, TP, NH3-N, DO, and pH during the same period. It was found that there was a significant positive relationship between the concentration of BPA and COD, the concentration of estradiol (17-beta-E2), estrone (E1) and TP and TN, the concentration of octylphenol (4-t-OP) and pH. The ecological risk assessment (ERA) shows that the concentration of BPA, 4-t-OP and NP in the lakes is at a medium risk level( is between 0.1–1), and that of E1 is at a high risk level (is greater than 1). Female cells (breast cancer cells) and male germ cells (testis cells) of mice were used as research objects to explore BPA and NP Toxic effect on mouse germ cells. BPA and NP at a concentration of 10-8 mol/L were found to have the most value-inducing effect on MCF-7 breast cancer cells positive for estrogen receptor. Obviously, both BPA and NP can induce the proliferation of testicular Sertoli cells
Go to article

Bibliography

  1. Atieh, Y., Anis, E. & Kiarash, G. (2022). Quantitative evaluation senx3-regx3 gene of Mycobacterium tuberculosis by real-time RT-PCR assays for monitoring the response to anti-TB therapy. Gene Reports, 28, 101642. DOI:10.1016/j.genrep.2022.101642
  2. Biam, R.S., Robichaud, P.P. & Mbarik M. (2022). Loss of detection of fatty acid-metabolizing proteins in Western blot analyses – Impact of sample heating. Biochemical and Biophysical Research Communications, 607, pp. 110-116. DOI:10.1016/j.bbrc.2022.03.130
  3. Chen, M.H., Guo, M. & Liu D. (2017). Occurrence and distribution of typical endocrine disruptors in surface water and sediments from Taihu Lake and its tributaries. China Environmental Science, 37(11), pp. 4323-4332. (in Chinese)
  4. Diao, P.P., Chen, Q. & Wang R. (2017). Phenolic endocrine-disrupting compounds in the Pearl River Estuary: Occurrence, bioaccumulation and risk assessment. Science of The Total Environment, 584–585, pp. 1100-1107. DOI:10.1016/j.scitotenv.2017.01.169.
  5. Dong, J., Sun, L.N. & Chen, R.H. (2009). A study on the pollution of chlorophenol compounds in the surface water of the pearl river estuary area. Environmental Science & Technology, 32(07), pp. 82-85. (in Chinese)
  6. Duan, X.Y., Li, Y.X. & Li, X.G. (2014). Alkylphenols in surface sediments of the Yellow Sea and East China Sea inner shelf: Occurrence, distribution and fate. Chemosphere, 107, pp. 265-273. DOI:10.1016/j.chemosphere.2013.12.054
  7. Fan, Z.L., Hu, J. & An, W. (2013). Detection and occurrence of chlorinated byproducts of bisphenol A, nonylphenol, and estrogens in drinking water of China: Comparison to the parent compounds. Environmental Science&Technology, 47(19), pp. 10841-10850. DOI:10.1021/es401504a
  8. Hernando, M.D., Mezcua, M. & Fernández-Alba, A.R. (2006). Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta, 69(2), pp. 334-342. DOI:10.1016/j.talanta.2005.09.037
  9. Hodaka, K., Hidekazu, O. & Mayuri I. (2004). Endocrine disrupter nonylphenol and bisphenol A contamination in Okinawa and Ishigaki Islands, Japan––within coral reefs and adjacent river mouths. Chemosphere, 55(11), pp. 1519-1527. DOI:10.1016/j.chemosphere.2004.01.032
  10. Hu, S.L., Ji, J.Y. & Chen, R. (2016). Analysis of eutrophication status and causes of urban landscape water body in xi'an. Environmental Monitoring Management and Technology, 28(05), pp. 62-65.(in Chinese)
  11. Kong, M., Bu Y.Q. & Zhang Q. (2021). Distribution, abundance, and risk assessment of selected antibiotics in a shallow freshwater body used for drinking water. China.Journal of Environmental Management, 280, pp. 111738. DOI:10.1016/j.jenvman.2020.111738
  12. Legler, J., Zeinstra, L.M. & Schuitemaker, F. (2002). Comparison of in vivo and in vitro reporter gene assays for short-term screening of estrogenic activity. Environ Sci Technol, 36(20) , pp. 4410-4415. DOI: 10.1021/es010323a
  13. Li, H.J., Li, H.X. & Shi, X.M. (2019). Pollution charasteristics of heavy metals and ecological risk assessment for the surface sediments of the lakes in Xi’an. Resources And Environment In Arid Areas, 33(02), pp. 122-126. DOI:10.13448/j.cnki.jalre.2019.051.(in Chinese)
  14. Liang, J.J. & Gu, A.H. (2021). Multigenerational and cross-generational effect of environmental endocrine disruptors on reproductive system in male animals. Chinese Journal of Public Health, 37(02), pp. 375-380. (in Chinese)
  15. Liu, Q.,Wang, S. & Xu, J.J. (2017). Analysis of phytoplankton community structure and water quality status in Hancheng Lake, Xi'an. Safety and Environmental Engineering, 24(03), pp. 48-56. DOI:10.13578/j.cnki.issn.1671-1556.2017.03.009. (in Chinese)
  16. Liu, Y.H., Zhang, S.H. & Ji, G.X. (2017). Occurrence, distribution and risk assessment of suspected endocrine-disrupting chemicals in surface water and suspended particulate matter of Yangtze River (Nanjing section). Ecotoxicology and Environmental Safety 135, pp. 90-97. DOI:10.1016/j.ecoenv.2016.09.035
  17. Lv, Y.Z., Zhao, J.L. & Yao, L. (2019). Bioaccumulation of phenolic endocrine disrupting chemicals in the plasma of wild fish from Yangtze River, China. Environmental chemistry. 38(03), pp. 443-453. (in Chinese)
  18. Ministry of Ecology and Environment of the People's Republic of China. (2017). Water quality ---determinnation of the chemical oxygen demand-dichromate method. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201704/t20170410_409547.shtml (in Chinese)
  19. Ministry of Ecology and Environment of the People's Republic of China. (2013). Water quality ---determination of total phosphorus-Flow injection analysis (FIA) and ammonium molybdate spectrophotometry. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201311/t20131106_262959.shtml (in Chinese)
  20. Ministry of Ecology and Environment of the People's Republic of China. (2012). Water quality ---determination of total nitrogen-Alkaline potassium persulfate digestion UV spectrophotometric method. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201203/t20120307_224383.shtml (in Chinese)
  21. Ministry of Ecology and Environment of the People's Republic of China. (2009). Water quality ---determination of ammonia nitrogen-Nessler’s reagent spectrophotometry. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201001/t20100112_184155.shtml (in Chinese)
  22. Ministry of Ecology and Environment of the People's Republic of China.(2009).Water quality ---determination of dissolved oxgen-Electrochemical probe method. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/200911/t20091106_181278.shtml (in Chinese)
  23. Ministry of Ecology and Environment of the People's Republic of China. (2020). Water quality ---determination of pH-Electrode method. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/shjbh/xgbzh/202011/t20201127_810274.shtml (in Chinese)
  24. Ministry of Ecology and Environment of the People's Republic of China. (2009). Water quality sampling---technical regulation of the preservation and handling of samples. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/200910/t20091010_162157.shtml (in Chinese)
  25. Namita, P., Ankita, P. & Mitali, M.S. (2022). A comprehensive review on eco-toxicity and biodegradation of phenolics: Recent progress and future outlook. Environmental Technology & Innovation, 27, 102423. DOI:10.1016/j.eti.2022.102423.
  26. Peranandam, T., Kulanthaivel, L. & Shanmugam, V. (2014). Efficiency of lycopene against reproductive and developmental toxicity of Bisphenol A in male Sprague Dawley rats. Biomedicine & Preventive Nutrition, 4(4), pp. 491-498. DOI:10.1016/j.bionut.2014.07.008
  27. Qiu, L.N., Yun, X. & Na, G.S. (2015). On the bioaccumulation and biomagnification of phenols endocrine disruptors in the organisms in the coast of Northern Yellow Sea. Journal of Safety and Environment, 15(04), pp. 353-357. DOI:10.13637/j.issn.1009-6094.2015.04.074.(in Chinese)
  28. Schultis T. & Metzger J.W. (2004). Determination of estrogenic activity by LYES-assay (yeast estrogen screen-assay assisted by enzymatic digestion with lyticase). Chemosphere, 57(11), pp. 1649-1655. DOI:10.1016/j.chemosphere.2004.06.027
  29. Standnicka, J., Schirmer, K. & Ashauer, R. (2012). Predicting concentrations of organic chemicals in fish by using toxicokinetic models. Environmental Science &Technology, 46(6), pp. 3273-3280. DOI:10.1021/es2043728
  30. Sui, Q., Huang, J. & Yu, G. (2009). Priority Analysis for Controlling Endocrine Disrupting Chemicals in Municipal Wastewater Treatment Plants of China. Environmental Science, 30(02), pp. 384-390. DOI:10.13227/j.hjkx.2009.02.013. (in Chinese)
  31. Sun, Y., Huang, H. & Hu, H.Y. (2010). Concentration and Ecological Risk Level of Estrogenic Endocrine-Disrupting Chemicals in the Effluents from Wastewater Treatment Plants. Environmental Science Research, 23(12), pp. 1488-1493. DOI:10.13198/j.res.2010.12.46.suny.005. (in Chinese)
  32. Takuo, K. & Kunio, K. (1996). Studies on the mechanism of toxicity of chlorophenols found in fish through quantitative structure-activity relationships. Water Research, 30(2), pp. 393-399. DOI:10.1016/0043-1354(95)00152-2
  33. Tan, R.J., Li, Z.S. & Liu, R.X. (2015). PContamination Level of Endocrine Disrupting Compounds in Natural Aquatic Environment. Anhui Agricultural Sciences, 43(23), 167-169+288. DOI:10.13989/j.cnki.0517-6611.2015.23.067. (in Chinese)
  34. Tanaka, H., Yakou, Y. & Takahashi, A. (2001). Comparison between estrogenicities estimated from DNA recombinant yeast assay and from chemical analyses of endocrine disruptors during sewage treatment. Water Sci Technol, 43 (2), pp. 125-132. DOI:10.2166/wst.2001.0081
  35. Tao, S.Y., Wang, L.H. & Zhu, Z.L. (2019). Adverse effects of bisphenol A on Sertoli cell blood-testis barrier in rare minnow Gobiocypris rarus. Ecotoxicology and Environmental Safety, 171, pp. 475-483. DOI:10.1016/j.ecoenv.2019.01.007
  36. Tülay, A.Ö., Önder, H.Ö. & Songül, Z.B. (2002). Removal of phenolic compounds from rubber–textile wastewaters by physico-chemical methods. Chemical Engineering and Processing. Process Intensification, 41(8), pp. 719-730. DOI:10.1016/S0255-2701(01)00189-1
  37. Wang, W. & Kurunthachalam, K. (2018). Inventory, loading and discharge of synthetic phenolic antioxidants and their metabolites in wastewater treatment plants. Water Research, 129, pp. 413-418. DOI:10.1016/j.watres.2017.11.028
  38. Wang, Z, Yang, XH, Fan, D.L. (2017). Ecological Risk Assessment of Triclocarban in Fresh Water of China by Species Sensitivity Distribution. Journal of Ecology and Rural Environment, 33(10), pp. 921-927. (in Chinese)
  39. Wei, H., Wang, J.W. & Yang, X.Y. (2017). Contamination characteristic and ecological risk of antibiotics in surface water of the Weihe Guanzhong section. China Environmental Science, 37(6), pp. 2255-5562. (in chinese)
  40. Yang, M.F., Zou, Y.Q. & Wang, X. (2022). Synthesis of intracellular polyhydroxyalkanoates (PHA) from mixed phenolic substrates in an acclimated consortium and the mechanisms of toxicity. Journal of Environmental Chemical Engineering, 10, (3), 107944. DOI:10.1016/j.jece.2022.107944.
  41. Yin, W., Fan, D.L. & Wang, Z. (2020). Pollution Characteristics and Ecological Risks of 7 Phenolic Compounds of High Concern in the Surface Water and Sediments of Tianjin, China. Asian Journal of Ecotoxicology, 15(01), pp. 230-241. (in Chinese)
  42. Yoel, S., Ann, S. & Monica, S. (2018). The influence of in vivo exposure to nonylphenol ethoxylate 10 (NP-10) on the ovarian reserve in a mouse model. Reproductive Toxicology, 81, pp. 246-252. DOI:10.1016/j.reprotox.2018.08.020
  43. Yousefi, H., Yahyazadeh, A. & Moradi Rufchahi, E.O. (2013). Spectral properties, biological activity and application of new 4-(benzyloxy)phenol derived azo dyes for polyester fiber dyeing. Journal of Molecular Liquids, 180, pp. 51-58. DOI:10.1016/j.molliq.2012.12.030
  44. Zhang, F., Lu, X. & Yang, X.H. (2017). Investigation Report on Water Environment of Hancheng Lake in Xi’an City. Journal of Xi'an University(Natural Science Edition), 20(05), 109-112, 117. (in Chinese)
  45. Zhang, Y.B. (2016). Application of fuzzy comprehensive evaluation method to the assessment of surface water environment quality with the example of surface water environment in Xi’an Qujiang Pool. Journal of Xi'an Shiyou University(Social Science Edition), 25(04), pp. 1-6. (in Chinese)
  46. Zhou, L.J., Ying, G.G. & Liu, S. (2012). Simultaneous determination of human and veterinary antibiotics in various environmental matrices by rapid resolution liquid chromatography electrospray ionization tandem mass spectrometry. Journal of Chromatography A, 1244, pp. 123-138 .DOI:10.1016/j.chroma.2012.04.076
Go to article

Authors and Affiliations

Min Wang
1
Yutong Zhang
1
Jingxin Sun
1
Chen Huang
1
Hongqin Zhai
1

  1. Xi’an University of Technology, China
Download PDF Download RIS Download Bibtex

Abstract

The entomopathogenic fungi (EPF) are characterized as fungi with various functions and numerous mechanisms of action. The ability to establish themselves as beneficial endophytes provides a sound ground for their exploitation in crop production and protection. The purpose of this study was to evaluate the entomopathogenic strains of Beauveria bassiana and Mertarhizium anisopliae for their potential to colonize cucumber plants under natural environmental conditions in non-sterile substrate. Seed submersion in conidial suspension resulted in systemic colonization of cucumber plants 28 days post-inoculation. Scanning electron microscope micrographs demonstrated that conidia of both fungal genera have adhered, germinated and directly penetrated seed epidermal cells 24 hr post-submersion. Treated with EPF cucumber seeds resulted seedlings tissues of which contained a significantly higher amount of total phenolic compounds and unchanged amounts of chlorophylls. There was a significant negative effect of endophytic colonization on the Aphis gossypii population size after 5 days of exposure as well as a positive effect on cucumber growth and development 7 weeks post-inoculation. We suggest that reduction of A. gossypii population on mature Cucumis sativus plants is caused via an endophyte-triggered improvement of plant’s physiological parameters such as enhanced plant growth with subsequent increase in plant resistance through augmented production of phenolic compounds.
Go to article

Bibliography


Ainsworth E.A., Gillespie K.M. 2007. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nature Protocols 2: 875−877. DOI: 10.1038/nprot.2007.102
Akello J., Sikora R. 2012. Systemic acropedal influence of endophyte seed treatment on Acyrthosiphon pisum and Aphis fabae offspring development and reproductive fitness. Biological Control 61: 215−221. DOI: 10.1016/J.BIOCONTROL.2012.02.007
Akutse K., Maniania N., Fiaboe K., Van Den Berg J., Ekesi S. 2013. Endophytic colonization of Vicia faba and Phaseolus vulgaris (Fabaceae) by fungal pathogens and their effects on the life-history parameters of Liriomyza huidobrensis (Diptera: Agromyzidae). Fungal Ecology 6: 293−301. DOI: https://doi.org/10.1016/j.funeco.2013.01.003
Bajan C., Tyrawska D., Popowska-Nowak E., Bienkowski P. 1998. Biological response of Beauveria bassiana strains to heavy metal pollution and their accumulative ability. Ecological Chemistry and Engineering 5 (8−9): 676−685.
Bamisile B.S., Dash C.K., Akutse K.S., Keppanan R., Afolabi O.G., Hussain M., Qasim M., Wang L. 2018. Prospects of endophytic fungal entomopathogens as biocontrol and plant growth promoting agents: An insight on how artificial inoculation methods affect endophytic colonization of host plants. Microbiological Research 217: 34–50. DOI: https://doi.org/10.1016/j.micres.2018.08.016
Barelli L., Moreira C.C., Bidochka M.J. 2018. Initial stages of endophytic colonization by Metarhizium involves rhizoplane colonization. Microbiology 164: 1531–1540. DOI: 10.1099/mic.0.000729.
Barnes J.D., Balaguer L., Manrique E., Elvira S., Davison A.W. 1992. A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environment 32: 83–100. DOI: http://dx.doi.org/10.1016/0098-8472(92)90034-Y
Behie S.W., Jones S.J., Bidochka M.J. 2015. Plant tissue localization of the endophytic insect pathogenic fungi Metarhizium and Beauveria. Fungal Ecology 13: 112–119. DOI: 10.1016/J.FUNECO.2014.08.001
Blackman R.L. 2010. Aphids − Aphidinae (Macrosiphini). Handbook for the Identification of British Insects 2 (7): 1−413.
Blackman R.L., Eastop V.F. 2000. Aphids on the world’s crops: An identification and information guide. John Wiley and Sons, Chichester, UK. XF2006251066.
Braniša J., Jenisova Z., Porubska M., Jomova K., Valko M. 2014. Spectrophotometric determination of chlorophylls and carotenoids. An effect of sonication and sample processing. Journal of Microbiology, Biotechnology and Food Sciences 3 (2): 61−64.
Carriere Y., Bouchard A., Bourassa S., Brodeur J. 1998. Effect of endophyte incidence in perennial ryegrass on distribution, host choice, and performance of the hairy chinch bug (Hemiptera: Lygaeidae). Economic Entomology 91: 324–328. DOI: https://doi.org/10.1093/jee/91.1.324
Castillo-Lopez D., Zhu-Salzman K., Ek-Ramos M.J., Sword G.A. 2014. The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus) and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions. PLoS ONE 9 (8): e103891. DOI: 10.1371/journal.pone.0103891
Chung I.M., Park Chun J.C., Yun S.J. 2003. Resveratrol accumulation and resveratrol synthase gene expression in response to abiotic stresses and hormones in peanut plants. Plant Science 164: 103–109. DOI: 10.1016/S0168-9452(02)00341-2
Clay K. 1996. Interactions among fungal endophytes, grasses and herbivores. Researches on Population Ecology 38 (2): 191–201. DOI: https://doi.org/10.1007/BF02515727
Clay K., Marks S., Cheplick G.P. 1993. Effects of insect herbivory and fungal endophyte infection on competitive interactions among grasses. Ecology 74 (6): 1767–1777. DOI: https://doi.org/10.2307/1939935
Clifton E.H., Jaronski S.T., Coates B.S., Hodgson E.W., Gassmann A.J. 2018. Effects of endophytic entomopathogenic fungi on soybean aphid and identification of Metarhizium isolates from agricultural fields. PLoS ONE 13 (3): e0194815. DOI: https://doi.org/10.1371/journal.pone.0194815
Daayf F., Ongena M., Boulanger R., El Hadrami I., Belanger R.R. 2000. Induction of phenolic compounds in two cultivars of cucumber by treatment of healthy and powdery mildew infected plants with extracts of Reynoutria sachalinensis. Journal of Chemical Ecology 26 (7): 1579−1593. DOI: https://doi.org/10.1023/A:1005578510954
Diaz Napal G.N., Defago M., Valladares G., Palacios S. 2010. Response of Epilachna paenulata to two flavonoids, pinocembrin and quercetin, in a comparative study. Journal of Chemical Ecology 36 (8): 898–904. DOI: 10.1007/s10886-010-9823-1
Dugassa-Gobena D., Raps A., Vidal S. 1996. Einfluß von Acremonium strictum auf den Sterolhaushalt von Pflanzen: Ein möglicher Faktor zum veränderten Verhalten von Herbivoren. Mitteilungen aus der Biologischen Bundesanstalt fur Land- und Forstwirtschaft 321: 299.
Furstenberg-Hagg J., Zagrobelny M., Bak S. 2013. Plant defense against insect herbivores. International Journal of Molecular Sciences 14 (5): 10242–10297. DOI: 10.3390/ijms140510242
Gange A.C., Koricheva J., Currie A.F., Jaber L.R., Vidal S. 2019. Meta-analysis of the role of entomopathogenic and unspecialized fungal endophytes as plant bodyguards. New Pathologist 223 (4): 2002–2010. DOI: https://doi.org/10.1111/nph.15859
Gawel N.J., Jarret R.L. 1991. A modified CTAB DNA extraction procedure for musa and ipomoea. Plant Molecular Biology Reporter 9 (3): 262−266. DOI: 10.1007/BF02672076
Gissella M.V., David B.O., James R.B. 2006. Efficacy assessment of Aphidius colemani (Hymenoptera: Braconidae) for suppression of Aphis gossypii (Homoptera: Aphididae) in greenhouse-grown chrysanthemum. Economic Entomology 99 (4): 1104–1111. DOI: 10.1603/0022-0493-99.4.1104
Godfrey L.D., Rosenheim J.A., Goodell P.B. 2000. Cotton aphid emerges as major pest in SVJ cotton. California Agriculture 54 (6): 32–34. DOI: 10.3733/ca.v054n06p26
Gonzalez-Mas N., Sanchez-Ortiz A., Valverde-Garcia P., Quesada- Moraga E. 2019. Effects of endophytic entomopathogenic ascomycetes on the life-history traits of Aphis gossypii Glover and its interactions with melon plants. Insects 10 (6): 165. DOI: 10.3390/insects10060165
Grace S.C., Logan B.A. 2000. Energy dissipation and radical scavenging by the plant phenylpropanoid pathway. Philosophical Transactions: Biological Sciences 355 (1402): 1499−1510. DOI: 10.1098/rstb.2000.0710
Gurulingappa P., McGee P.A., Sword G. 2011. Endophytic Lecanicillium lecnii and Beauveria bassiana reduce the survival and fecundity of Aphis gossypii following contact with conidia and secondary metabolites. Crop Protection 30 (3): 349−353. DOI: 10.1016/J.CROPRO.2010.11.017
Gurulingappa P., Sword G.A., Murdoch G., McGee P.A. 2010. Colonization of crop plants by fungal entomopathogens and their effects on two insect pests when in planta. Bio- Control 55 (1): 34–41. DOI: https://doi.org/10.1016/j.biocontrol.2010.06.011
Hermoso de Mendoza A., Belliure B., Carbonell E.A., Real V. 2001. Economic thresholds for Aphis gossypii (Hemiptera: Aphididae) on Citrus clementina. Journal of Economic Entomology 94 (2): 439–444. DOI: https://doi.org/10.1603/0022-0493-94.2.439
Humber R.A. 1997. Fungi: identification. p. 153–185. In: “Manual of Techniques in Insect Pathology” (L.A. Lacey, ed.). Academic Press, London. DOI: https://doi.org/10.1016/B978-012432555-5/50011-7
Ibrahim L., Hamieh A., Ghanem H., Ibrahim S. 2011. Pathogenicity of entomopathogenic fungi from Lebanese soils against aphids, whitefly and non-target beneficial insects. International Journal of Agriculture Sciences 3 (3): 156−164. DOI: 10.9735/0975-3710.3.3.156-164
Ibrahim L., Laham L., Tomma A., Ibrahim S. 2015. Mass production, yield, quality, formulation and efficacy of entomopathogenic Metarhizium anisopliae conidia. British Journal of Applied Sciences and Technology 9 (5): 427−440. DOI: 10.9734/bjast/2015/17882
Ibrahim L., Spackman V.M.T., Cobb A.H. 2001. An investigation of wound healing in sugar beet roots using light and fluorescence microscopy. Annals of Botany 88 (2): 313−320. DOI: https://doi.org/10.1006/anbo.2001.1461
Jaber L.R., Enkerli J. 2016. Effect of seed treatment duration on growth and colonization of Vicia faba by endophytic Beauveria bassiana and Metarhizium brunneum. Biological Control 103: 187–195. DOI: https://doi.org/10.1016/j.biocontrol.2016.09.008
Jaber L.R., Enkerli J. 2017. Fungal entomopathogens as endophytes: can they promote plant growth? Biocontrol Science and Technology 27 (1): 28–41. DOI: https://doi.org/10.1080/09583157.2016.1243227
Jaber L.R., Vidal S. 2010. Fungal endophyte negative effects on herbivory are enhanced on intact plants and maintained in a subsequent generation. Ecological Entomology 35 (1): 25–36. DOI: https://doi.org/10.1111/j.1365-2311.2009.01152.x
Jensen R.E., Enkegaard A., Steenberg T. 2019. Increased fecundity of Aphis fabae on Vicia faba plants following seed or leaf inoculation with the entomopathogenic fungus Beauveria bassiana. PLoS ONE 14 (10): 1−13, e0223616. DOI: https://doi.org/10.1371/journal.pone.0223616
Kabaluk J.T., Ericsson J.D. 2007. Metarhizium anisopliae seed treatment increases yield of field corn when applied for wireworm control. Agronomy Journal 99 (5): 1377−1381. DOI: 10.2134/agronj2007.0017N
Kumar P.K.R., Hemanth G., Niharika P.S., Kolli S.K. 2015. Isolation and identification of soil mycoflora in agricultural fields at Tekkali Mandal in Srikakulam District. International Journal of Advances in Pharmacy, Biology and Chemistry 4 (2): 484−490.
Lacey L.A. 2016. Entomopathogens used as microbial control agents. p. 3−12. In: “Microbial Control of Insect and Mite Pests” (L.A. Lacey, ed.). Amsterdam: Elsevier/Academic Press. DOI: https://doi.org/10.1016/B978-0-12-803527- 6.00001-9
Lee S.B., Milgroom M.G., Taylor J.W. 1988. A rapid, high yield mini-prep method for isolation of total genomic DNA from fungi. Fungal Genetics Newsletter 35: 23–24. DOI: https://doi.org/10.4148/1941-4765.1531
Liao J., Li X., Wong T.Y., Wang J.J., Khor C.C., Tai ES., Aung T., Teo Y.Y., Cheng C.Y. 2014. Impact of measurement error on testing genetic association with quantitative traits. PloS ONE 9 (1): e87044. DOI: https://doi.org/10.1371/journal.pone.0087044
Liao X., Lovett B., Fang W., St. Leger R.J. 2017. Metarhizium robertsii produces indole-3-acetic acid, which promotes root growth in Arabidopsis and enhances virulence to insects. Microbiology 163 (7): 980–991. DOI: 10.1099/mic.0.000494
Lingg A.J., Donaldson M.D. 1981. Biotic and abiotic factors affecting stability of Beauveria bassiana conidia in soil. Journal of Invertebrate Pathology 38 (2): 191−200. DOI: https://doi.org/10.1016/0022-2011(81)90122-1
Lopez D.C., Zhu-Salzman K., Ek-Ramos M.J., Sword G.A. 2014. The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus) and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions. PLoS One 9: e103891. DOI: 10.1371/journal.pone.0104342
Maniania N.K., Sithanantham S., Ekesi S., Ampong-Nyarko K., Baumgärtner J., Löhr B., Matoka C.M. 2003. A field trial of the entomogenous fungus Metarhizium anisopliae for control of onion thrips, Thrips tabaci. Crop Protection 22 (3): 553–559. DOI: https://doi.org/10.1016/S0261-2194(02)00221-1
Matallanas B., Lantero E., M’Saad M., Callejas C., Ochando M.D. 2013. Genetic polymorphism at the cytochrome oxidase I gene in mediterranean populations of Batrocera oleae (Diptera: Tephritidae). Applied Entomology 137 (8): 624–630. DOI: https://doi.org/10.1111/jen.12037
McKinnon A.C., Saari S., Moran-Diez M.E., Meyling N.V., Raad M., Glare T.R. 2017. Beauveria bassiana as an endophyte: a critical review on associated methodology and biocontrol potential. BioControl 62: 1–17. DOI: 10.1007/s10526-016-9769-5.
Omkar P.A. 2004. Predaceous coccinellids in India: predatorprey catalogue. Oriental Insects 38 (1): 27–61. DOI: 10.1080/00305316.2004.10417373
Ownley B.H., Dee M.M., Gwinn K. 2008. Effect of conidial seed treatment rate of entomopathogenic Beauveria bassiana 11-98 on endophytic colonization of tomato seedlings and control of Rhizoctonia disease. Phytopathology 98 (6): S118−S118.
Pańka D., Piesik D., Jeske M., Musiał N., Koczwara K. 2013. Production of phenolic compounds by perennial ryegrass (Lolium perenne L.)/Neotyphodium lolii association as a defense reaction towards infection by Fusarium poae and Rhizoctonia solani. p. 124−125. In: “Endophytes for Plant Protection: the State of the Art” (C. Schneider, C. Leifert, F. Feldmann, eds.). Deutsche Phytomedizinische Gesellschaft, Braunschweig.
Pathan A.K., Bond J., Gaskin R.E. 2010. Sample preparation for SEM of plant surfaces. Materials Today 12 (1): 32−43. DOI: 10.1016/S1369-7021(10)70143-7
Perea-Domínguez X.P., Hernández-Gastelum L.Z., Olivas- -Olguin H.R., Espinosa-Alonso L.G., Valdez-Morale M., Medina-Godoy S. 2018. Phenolic composition of tomato varieties and an industrial tomato by-product: free, conjugated and bound phenolics and antioxidant activity. Journal of Food Science and Technology 55 (9): 3453–3461. DOI: https://doi.org/10.1007/s13197-018-3269-9
Pereira R.M., Stimac J.L., Alves S.B. 1993. Soil antagonism affecting the dose − response of workers of the red imported fire ant, Solenopsis invicta, to Beauveria bassiana conidia. Journal of Invertebrate Pathology 61 (2): 156−161. DOI: https://doi.org/10.1006/jipa.1993.1028
Petrini O., Fisher P.J. 1987. Fungal endophytes in Salicornia perennis. Transactions of the British Mycological Society 87 (4): 647−651. DOI: https://doi.org/10.1016/S0007-1536-(86)80109-7
Pineda A., Zheng S.-J., van Loon J.J.A., Pieterse C.M.J., Dicke M. 2010. Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends in Plant Science 15 (9): 507–514. DOI: https://doi.org/10.1016/j.tplants.2010.05.007
Powell W.A., Klingeman W.E., Ownley B.H., Gwinn K.D. 2009. Evidence of endophytic Beauveria bassiana in seed-treated tomato plants acting as a systemic entomopathogen to larval Helicoverpa zea (Lepidoptera: Noctuidae). Journal of Entomological Science 44 (4): 391−396. DOI: https://doi.org/10.18474/0749-8004-44.4.391
Rajab L., Ahmad M., Gazal I. 2020. Endophytic establishment of the fungal entomopathogen, Beauveria bassiana (Bals.) Vuil., in cucumber plants. Egyptian Journal of Biological Pest Control 30: 143. DOI: https://doi.org/10.1186/s41938-020-00344-8
Raps A., Vidal S. 1998. Indirect effects of an unspecialized endophytic fungus on specialized plant-herbivorous insect interactions. Oecologia 114 (4): 541–547. DOI: 10.1007/s004420050478
Rebijith K.B., Asoka R., Krishna V., Krishna Kumar N.K., Ramamurth V.V. 2012. Development of species-specific markers and molecular differences in mitochondrial and nuclear DNA sequences of Aphis gossypii and Myzus persicae (Hemiptera: Aphididae). Florida Entomologist 95 (3): 674−682. DOI: 10.1653/024.095.0318
Rodriguez R.J., White Jr. J.F., Arnold A.E., Redman R.S. 2009. Fungal endophytes: Diversity and functional roles. New Phytologist 182 (2): 314–330. DOI: http://dx.doi.org/10.1111/j.1469-8137.2009.02773.x
Russo M.L., Pelizza S.A., Cabello M.N., Stenglein S.A., Scorsetti A.C. 2015. Endophytic colonisation of tobacco, corn, wheat and soybeans by the fungal entomopathogen Beauveria bassiana (Ascomycota, Hypocreales). Biocontrol Science and Technology 25 (4): 475−480. DOI: 10.1080/09583157.2014.982511
Saari S., Helander M., Faeth S.H. 2010. The effects of endophytes on seed production and seed predation of tall fescue and meadow fescue. Microbial Ecology 60: 928–934. DOI: https://doi.org/10.1007/s00248-010-9749-8
Saikkonen K., Lehtonen P., Helander M., Koricgeva J., Faeth S.H. 2006. Model systems in ecology: dissecting the endophyte grass literature. Trends in Plant Science 11 (9): 428−433. DOI: 10.1016/j.tplants.2006.07.001
Sánchez-Rodríguez A.R., Del Campillo M.C., Quesada-Moraga E. 2015. Beauveria bassiana: An entomopathogenic fungus alleviates Fe chlorosis symptoms in plants grown on calcareous substrates. Scientia Horticulturae 197: 193–202. DOI: https://doi.org/10.1016/j.scienta.2015.09.029
Sasan R.K., Bidochka M.J. 2012. The insect-pathogenic fungus Metarhezium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. American Journal of Botany 99 (1): 101−107. DOI: 10.3732/ajb.1100136
Schulz B., Boyle C. 2005. Fungal endophyte continuum. Mycological Research 109 (6): 661–686. DOI: https://doi.org/10.1017/S095375620500273X
Shaalan R., Ibrahim L. 2019. Entomopathogenic fungal endophytes: can they colonize cucumber plants? p. 853−860. In: “Book of Proceedings of the IX International Scientific Agriculture Symposium AGROSYM 2018”. 04−07 October 2018, Bosnia and Herzegovina.
Shi X.G., Zhu Y.K., Xia X.M., Qiao K., Wang HY., Wang KY. 2012. The mutation in nicotinic acetylcholine receptor β1 subunit may confer resistance to imidacloprid in Aphis gossypii (Glover). Journal of Food, Agriculture and Environment 10 (2): 1227−1230.
Skinner M., Parker B.L., Kim J.S. 2014. Role of entomopathogenic fungi in integrated pest management. p. 169–191. In: “Integrated Pest Management: Current Concepts and Ecological Perspectives” (D.P. Abrol, ed.). Academic Press, San Diego. DOI: https://doi.org/10.1016/B978-0-12-398529-3.00011-7
Song H., Chen J., Staub J., Simon P. 2010. QTL analyses of orange color and carotenoid content and mapping of carotenoid biosynthesis genes in cucumber (Cucumis sativus L.). Acta Horticulturae 871: 607−614. DOI: 10.17660/ACTAHORTIC.2010.871.83
Stoetzel M.B., Miller G.L., O’Brien P.J., Graves J.B. 1996. Aphids (Homoptera: Aphididae) colonizing cotton in the United States. Florida Entomologist 79 (2): 193−205. DOI: 10.2307/3495817
Tefera T., Vidal S. 2009. Effect of inoculation method and plant growth medium on endophytic colonization of sorghum by the entomopathogenic fungus Beauveria bassiana. BioControl 54: 663−669. DOI: 10.1007/s10526-009-9216-y
Tucker S.L., Talbot N.J. 2001. Surface attachment and pre- -penetration stage development by plant pathogenic fungi. Annual Review of Phytopathology 39: 385–417. DOI: 10.1146/annurev.phyto.39.1.385
Ullrich C.I., Koch E., Matecki C., Schäfer J., Burkl T., Rabenstein F., Kleespies R.G. 2017. Detection and growth of endophytic entomopathogenic fungi in dicot crop plants. Journal für Kulturpflanzen 69 (9): 291–302. DOI: 10.1399/JfK.2017.09.02
Umboh S.D., Salaki C.L., Tulung M., Mandey L.C., Maramis R.T.D. 2016. The isolation and identification of fungi from the soil in gardens of cabbage were contaminated with pesticide residues in subdistrict Modoinding. International Journal of Research in Engineering and Science 4 (7): 25−32.
Vandre W. 2013. Cucumber production in greenhouses. University of Alaska Fairbanks Cooperative Extension Service. Available on: www.uaf.edu/ces
Vega F.E. 2018. The use of fungal entomopathogens as endophytes in biological control: a review. Mycologia 110 (1): 4–30. DOI: https://doi.org/10.1080/00275514.2017.1418578
Vega F.E., Goettel M.S., Blackwell M., Chandler D., Jackson M.A., Keller S., Koike M., Maniania N.K., Monzón A., Ownley B.H. et al. 2009. Fungal entomopathogens: New insights on their ecology. Fungal Ecology 2 (4): 149–159. DOI: https://doi.org/10.1016/j.funeco.2009.05.001
Vega F.E., Meyling N.V., Luangsa-Ard J.J., Blackwell M. 2012. Fungal entomopathogens. p. 171–220. In: “Insect Pathology” 2nd ed. (F.E. Vega, H.K. Kaya, eds.). Academic Press, San Diego. DOI: 10.1016/B978-0-12-384984-7.00006-3
Vega F.E., Posada F., Aime M.C., Pava-Ripolli M., Infante F., Rehner S.A. 2008. Entomopathogenic fungal endophytes. Biological Control 46 (1): 72–82. DOI: https://doi.org/10.1016/j.biocontrol.2008.01.008
Vidal S., Jaber L. 2015. Entomopathogenic fungi as endophytes: plant–endophyte–herbivore interactions and prospects for use in biological control. Current Science 109 (1): 46−54. Vincent C., Goettel M.S., Lazarovits G. (eds.) 2007. Biological Control: A Global Perspective. CAB International/ AAFC, Wallingford, United Kingdom. DOI: 10.1079/9781845932657.0000
Wagner B.L., Lewis L.C. 2000. Colonization of corn, Zea mays, by the entomopathogenic fungus Beauveria bassiana. Applied and Environmental Microbiology 66 (8): 3468−3473. DOI: 10.1128/aem.66.8.3468-3473.2000
White T.J., Bruns T.D., Lee S.B., Taylor J.W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. p. 315–322. In: “PCR Protocols: A Guide to Methods and Applications” (M.A. Innis, D.H. Gelfand, J.J. Sninsky, T.J. White, eds.). Academic Press, San Diego. DOI: http://dx.doi.org/10.1016/B978-0-12-372180-8.50042-1
Wilson D. 1995. Endophyte – the evolution of a term, and clarification of its use and definition. Oikos 73: 274−276. DOI: https://doi.org/10.2307/3545919
Wraight S.P., Inglis G.D., Goettel M.S. 2007. Fungi. p. 223−248. In: “Field Manual of Techniques in Invertebrate Pathology: Application and Evaluation of Pathogens for Control of Insects and other Invertebrate Pest”. 2nd ed. (L.A. Lacey, H.K. Kaya, eds.). Springer, Dordrecht, the Netherlands.
Wu Z.H., Wang T.H., Huang W., Qu Y.B. 2001. A simplified method for chromosome DNA preparation from filamentous fungi. Mycosystema 20 (4): 575–577.
Go to article

Authors and Affiliations

Roshan S. Shaalan
1 2
ORCID: ORCID
Elvis Gerges
3
Wassim Habib
3
Ludmilla Ibrahim
2

  1. Department of Plant Protection, University of Forestry, Sofia, Bulgaria
  2. Department of Plant Protection, Lebanese University, Beirut, Lebanon
  3. Department of Plant Protection, Lebanese Agricultural Research Institute, Lebanon
Download PDF Download RIS Download Bibtex

Abstract

This study is the evaluation of the coagulation efficiency of the aluminum sulfate on the removal of catechol and pyrogallol. The study has focused on the impact of inorganic components of hardness Algerian waters. Jar-test trials were conducted on the two phenolic compounds dissolved in distilled water only, which was later enriched with minerals. Several reaction parameters varied, including the effect of pH and the influence of the salt content, and this approach yielded a better understanding of interaction between phenolic compounds and calcium/magnesium salts. The results indicate that the process efficiency depends on the number and position of OH in molecules. The main mechanisms would be either a physical adsorption, an exchange of ligand, or complexation on the floc surface of aluminum hydroxide. Moreover, the addition of inorganic salts appears to improve removal efficiency of tested phenolic compounds and have an effect on the optimal pH range for coagulation.
Go to article

Authors and Affiliations

Lynda Hecini
1
ORCID: ORCID
Hassen Boukerker
2
ORCID: ORCID
Wahida Kherifi
1
ORCID: ORCID
Abdelkarim Mellah
1
ORCID: ORCID
Samia Achour
2
ORCID: ORCID

  1. Scientific and Technical Research Center for Arid Areas (CRSTRA), M.B. 1682 Biskra 07000, Algeria
  2. University of Biskra, Laboratory in Underground and Surface Hydraulics (LARHYSS), Faculty of Science and Technology, Department of Civil Engineering and Hydraulics, Biskra, Algeria
Download PDF Download RIS Download Bibtex

Abstract

The paper presents data on the total phenolic and flavonoid content in Deschampsia antarctica È. Desv. plants collected from natural habitats, plants cultured in vitro, regenerated plants, and plants cultivated in a growth chamber. It was found that the shoots (aerial parts) had higher phenolic and flavonoid contents compared to the roots. The largest amount of these substances was found in wild plants from Great Yalour Island. The content of phenolics and flavonoids in plants cultured in vitro was generally comparable to that in plants collected from natural habitats except for some clones. HPLC analysis revealed five main metabolites present in similar ratios in the studied samples of wild and in vitro plants. Minor substances varied slightly in different extracts, however their presence did not depend on plant growth conditions. No significant qualitative differences in HPLC profiles were found between the wild and in vitro plants. The studied samples did not contain quercetin, kaempferol and luteolin, whereas orientin was found in all studied samples of D. antarctica.
Go to article

Authors and Affiliations

Maryana Twardovska
1
ORCID: ORCID
Iryna Konvalyuk
1
ORCID: ORCID
Kateryna Lystvan
2
Igor Andreev
1
ORCID: ORCID
Ivan Parnikoza
1 3
ORCID: ORCID
Viktor Kunakh
1
ORCID: ORCID

  1. Department of Cell Population Genetics, Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine,150 Acad. Zabolotnogo Str., 03143, Kyiv, Ukraine
  2. Department of Genetic Engineering, Institute of Cell Biology and Genetic, Engineering of the National Academy of Sciences of Ukraine, 148 Acad. Zabolotnogo Str., 03143, Kyiv, Ukraine
  3. State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, 16 Shevchenko Ave., 01601, Kyiv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The goal of this study was to evaluate the effectiveness of aqueous extracts from five traditional Egyptian medicinal plants in preventing Sphaerotheca fuliginea’s powdery mildew disease, which affects cucumber plants. Aqueous extracts from each of the examined plants suppressed the pathogen’s conidia germination in vitro. In trials using detached leaves and greenhouses, these extracts lessened the severity of the disease. Compared to other plant extracts, Curcuma longa rhizome extract showed the greatest potency against the pathogen. The aqueous extract of Curcuma longa showed the largest improvement in disease suppression compared to the control in the greenhouse experiment. The results showed that total phenol and associated defense enzyme levels (POD and PPO) were elevated by plant extracts from all studied plants. These findings might suggest that total phenol and associated defense enzymes strengthen the cucumber’s resistance to the disease. The C. longa extract had more total phenol than the extracts from the other plants. The phenolic components in the C. longa rhizome extract were varied, and these variations were detected and quantified using high-performance liquid chromatography (HPLC). The content of curcumin (3220.8 μg · g –1 dry weight) was the highest. In comparison to the control, the foliar application of the C. longa extract considerably increased the cucumber fruit yield and its constituent parts. This is the first time, to my knowledge, that the C. longa rhizome extract has been utilized to improve cucumber plants’ production and its constituent parts. The pathogen appeared as small colonies with fewer mycelia and immature conidia in the treated cucumber leaves with 20% of C. longa rhizome extract according to an examination by SEM. Overall, the results indicated that the extract of C. longa rhizome, was a promising, effective, and environmentally friendly management measure against powdery mildew disease of cucumbers, and thus could be used in the production of organically grown vegetables.
Go to article

Authors and Affiliations

Zakaria Awad Baka
1

  1. Department of Botany and Microbiology, Faculty of Science, University of Damietta, New Damietta, Egypt
Download PDF Download RIS Download Bibtex

Abstract

Since silver nanoparticles (AgNPs) are used as nanofungicides and nanopesticides in agriculture, the toxicity of AgNPs as well as AgNO3 must be determined. Besides this, we evaluated the combined effects of salicylic acid (SA) and nitric oxide (NO) on responses of Phlomis tuberosa plants to Ag-induced stress. The results of growth parameters together with measurement of malondialdehyde (MDA) indicated that exposure to 1000 mg L–1 of AgNPs or AgNO3 exerted more toxicity, which was closely associated with the over– accumulation of ROS and the reduction of photochemical functioning. However, SNP (NO) and SA addition successfully alleviated adverse impact of AgNPs on Phlomis seedlings. Maximum amelioration of Ag-induced stress was found by combined treatments of SA+NO. Phlomis plants primed with SA+NO exhibited higher synthesis of chlorophyll b and carotenoid pigments to ameliorate AgNP-induced adverse effects on chlorophyll fluorescence parameters. SA+NO led to high levels of proline under both AgNPs and AgNO3 treatments. A further increase in antioxidants (phenolic compounds) was observed in NO-primed plants under AgNPs- induced stress, which was attendant with the high level of CAT and APX activities. Increase in total Ag translocation into shoot organs and cell survival were also enhanced by SA+NO under AgNPs stress. We concluded that SA+NO mitigated the inhibitory effects of AgNPs stress on the photosynthetic apparatus by increasing the phenolic compounds and carotenoids as well as by regulating accumulation of Ag, ROS and antioxidants. The present findings provide important knowledge to design strategies that minimize the negative impact of AgNPs and AgNO3 on crops.
Go to article

Authors and Affiliations

Elham Ghasemifar
1
Ghader Habibi
1
Golamreza Bakhshi-Khaniki
1

  1. Department of Biology, Payame Noor University (PNU), PO BOX 19395-3697 Tehran, Iran
Download PDF Download RIS Download Bibtex

Abstract

Rumex thyrsiflorus Fingerh. is mentioned as a European folk medicinal plant. This species has also been traditionally used as an edible plant in Eastern Europe because of its nutritional value. During the study, qualitative and quantitative sex-related differences of phenolic constituents in methanolic leaf extracts of R. thyrsiflorus were evaluated. The presence of the same substances (nine phenolic acids before, and six phenolic acids after acid hydrolysis, nine flavonoids, and a catechin) was estimated in both female and male specimens, using the HPLC-DAD method. A statistically significant higher content of eleven constituents in female plant extracts (acids: chlorogenic, p-coumaric, cryptochlorogenic, gallic, protocatechuic, neochlorogenic, vanillic; flavonoids: quercitrin, rhamnetin, rutoside; and catechin) was shown. This is the first report concerning the relation between the sex and the content of biologically active phenolic secondary metabolites in leaf extracts of R. thyrsiflorus. Female plants of R. thyrsiflorus could be useful for pharmaceutical purposes as a preferential source of bioactive phenolic acids, flavonoids and especially catechin.

Go to article

Authors and Affiliations

Katarzyna Dziedzic
Agnieszka Szopa
Piotr Waligórski
Halina Ekiert
Halina Ślesak

This page uses 'cookies'. Learn more