Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 9
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Water scarcity is a phenomenon that is occurring more and more frequently in larger areas of Europe. As a result of drought, there are significant drops in yields. As demand for food continues to rise, it is becoming necessary to bring about a substantial increase in crop production. The best solution to water scarcity appears to be irrigation for crops that are particularly sensitive to drought. Today, many technical solutions are used to supply and distribute water to crops. The optimal solution is drip irrigation, which makes it possible to deliver water directly to the plant root system to save melting freshwater resources. In the article special attention was paid to methods of supplying electricity to power irrigation pumps. The analysis was made for areas with a significant distance between the agricultural land and the urbanised area (which has water and electricity). The authors have selected the parameters of an off-grid photovoltaic mini-hydropower plant with energy storage (with a power of 1.36 kW). An analysis was made of the profitability of such an investment and a comparison with other types of power supply. Based on the performed calculations, a prototype power supply system equipped with photovoltaic panels was made to show the real performance of the proposed system. The tests carried out showed that the irrigation pump will be powered most of the time with a voltage whose parameters will be very close to the nominal ones.
Go to article

Authors and Affiliations

Zbigniew Skibko
1
ORCID: ORCID
Wacław Romaniuk
2
ORCID: ORCID
Andrzej Borusiewicz
3
ORCID: ORCID
Stanisław Derehajło
3
ORCID: ORCID

  1. Bialystok University of Technology, Faculty of Electrical Engineering, Wiejska 45 D, 15-351 Białystok, Poland
  2. Institute of Technology and Life Sciences – National Research Insitute, Falenty, Poland
  3. The Higher School of Agribusiness in Łomża, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of analyses of structure, volume and trends of demand for selected major critical raw materials (CRMs) suitable for the EU’s photovoltaic industry (PV). In order to achieve the EU’s goals in terms of the reduction of greenhouse gas emission and climate neutrality by 2050, the deployment of energy from renewable sources is of key importance. As a result, a substantial development of wind and solar technologies is expected. It is forecasted that increasing the production of PV panels will cause a significant growth in the demand for raw materials, including CRMs. Among these, silicon metal, gallium, germanium and indium were selected for detailed analyses while boron and phosphorus were excluded owing to small quantities being utilized in the PV sector. The estimated volume of the apparent consumption in the EU does not usually exceed 0.1 million tonnes for high purity silicon metal, a hundred tonnes for gallium and indium and several dozen tonnes for germanium. The major net-importers of analyzed CRMs were Germany, France, Spain, Czech Republic, the Netherlands, Slovakia and Italy. The largest quantities of these metals have been utilized by Germany, France, Belgium, Slovakia and Italy. The PV applications constitute a marginal share in the total volume of analyzed metal total end-uses in the EU (10% for silicon metal, 5% for gallium, 13% for germanium and 9% for indium). As a result, there is a number of applications that compete for the same raw materials, particularly including the production of electronic equipment. The volume of the future demand for individual CRMs in PV sector will be strictly related to trends in the development of PV-panel production with crystalline silicon technology currently strongly dominating the global market.
Go to article

Authors and Affiliations

Katarzyna Guzik
1
ORCID: ORCID
Anna Burkowicz
1
ORCID: ORCID
Jarosław Szlugaj
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a novel fault detection algorithm for a three-phase interleaved DC–DC boost converter integrated in a photovoltaic system. Interleaved DC–DC converters have been used widely due to their advantages in terms of efficiency, ripple reductions, modularity and small filter components. The fault detection algorithm depends on the input current waveform as a fault indicator and does not require any additional sensors in the system. To guarantee service continuity, a fault tolerant topology is achieved by connecting a redundant switch to the interleaved converter. The proposed fault detection algorithm is validated under different scenarios by the obtained results.
Go to article

Authors and Affiliations

Bilal Boudjellal
1
ORCID: ORCID
Tarak Benslimane
1
ORCID: ORCID

  1. Laboratory of Electrical Engineering, University of M’sila, Seat of the wilaya of M’sila, M’sila 28000, Algeria
Download PDF Download RIS Download Bibtex

Abstract

Economic dispatch (ED) is an essential part of any power system network. ED is howto schedule the real power outputs from the available generators to get the minimum cost while satisfying all constraints of the network. Moreover, it may be explained as allocating generation among the committed units with the most effective minimum way in accordance with all constraints of the system. There are many traditional methods for solving ED, e.g., Newton-Raphson method Lambda-Iterative technique, Gaussian-Seidel method, etc. All these traditional methods need the generators’ incremental fuel cost curves to be increasing linearly. But practically the input-output characteristics of a generator are highly non-linear. This causes a challenging non-convex optimization problem. Recent techniques like genetic algorithms, artificial intelligence, dynamic programming and particle swarm optimization solve nonconvex optimization problems in a powerful way and obtain a rapid and near global optimum solution. In addition, renewable energy resources as wind and solar are a promising option due to the environmental concerns as the fossil fuels reserves are being consumed and fuel price increases rapidly and emissions are getting higher. Therefore, the world tends to replace the old power stations into renewable ones or hybrid stations. In this paper, it is attempted to enhance the operation of electrical power system networks via economic dispatch. An ED problem is solved using various techniques, e.g., Particle Swarm Optimization (PSO) technique and Sine-Cosine Algorithm (SCA). Afterwards, the results are compared. Moreover, case studies are executed using a photovoltaic-based distributed generator with constant penetration level on the IEEE 14 bus system and results are observed. All the analyses are performed on MATLAB software.
Go to article

Bibliography

[1] Zee-Lee Gaing, Particle swarm optimization to solving the economic dispatch considering the generator limits, IEEE Trans. Power Syst., vol. 18, pp. 1187–1195 (2003).
[2] Nidul Sinha, Chakrabarti R., Chattopadhyay P.K., Evolutionary programming techniques for economic load dispatch, IEEE Transactions on Evolutionary Computation, vol. 7, iss. 1, pp. 83–94 (2003).
[3] Jeyakumar D., Jayabarathi T., Raghunathan T., Particle swarm optimization for various types of economic dispatch problems, International Journal of Electrical Power Energy System, vol. 36, pp. 42–28 (2006).
[4] Leandro dos Santos Coelho, Chu-Sheng Lee, Solving economic load dispatch problems in power system using chaotic and Gaussian particle swarm optimization approaches, Elsevier, International Journal of Electrical Power and Energy Systems (IJEPES), vol. 30, iss. 5, pp. 297–307 (2008).
[5] Vishnu Prasad, Amita Mahor, Saroj Rangnekar, Economic dispatch using particle swarm optimization: A review, Renewable and Sustainable Energy Reviews, vol. 13, pp. 2134–2141 (2009).
[6] Kumar C., Alwarsamy T., Dynamic Economic Dispatch – A Review of Solution Methodologies, European Journal of Scientific Research, ISSN 1450-216X, vol. 64, no. 4, pp. 517–537 (2011).
[7] Deep K., Bansal J.C., Solving Economic Dispatch Problems with Valve-point Effects using Particle Swarm Optimization, J. UCS, vol. 18, no. 13, pp. 1842–1852 (2012).
[8] Timothy Ganesan, Pandian Vasant, Irraivan Elamvazuthy, A hybrid PSO approach for solving nonconvex optimization problems, Archives of Control Sciences, vol. 22 (LVIII) (2012).
[9] Jie Meng, Geng-yin Li, Shi-jun Cheng, Economic Dispatch for Power Generation System Incorporating Wind and Photovoltaic Power, Applied Mechanics and Materials, vol. 441, pp. 263–267 (2014).
[10] Kumar C., Anbarasan A., Karpagam M., Alwarsamy T., Artificial Intelligent Techniques in Economic Power Dispatch Problems, International Journal of Applied Engineering Research, ISSN 0973-4562, vol. 10, no. 9, pp. 23243–23254 (2015).
[11] Zeinab G. Hassan, Ezzat M., Almoataz Y. Abdelaziz, Solving Unit Commitment and Economic Load Dispatch Problems Using Modern Optimization Algorithms, International Journal of Engineering, Science and Technology, vol. 9, no. 4, pp. 10–19 (2017).
[12] Quande Q., Cheng S., Xianghua C., Solving non-convex/non-smooth economic load dispatch problems via an enhanced particle swarm optimization, Applied Soft Computing, vol. 59, no. 1, pp. 229–242 (2017).
[13] Sanjoy R., The maximum likelihood optima for an economic load dispatch in presence of demand and generation variability, Energy, vol. 147, pp. 915–923 (2018).
[14] Jagat Kishore Pattanaik, Mousumi Basu, Deba Prasad Dash, Dynamic economic dispatch: a comparative study for differential evolution, particle swarm optimization, evolutionary programming, genetic algorithm, and simulated annealing, Pattanaik et al., Journal of Electrical Systems and Information Technology (2019).
[15] Bishwajit Dey, Shyamal Krishna Roy, Biplab Bhattacharyya, Solving multi-objective economic emission dispatch of a renewable integrated microgrid using latest bio-inspired algorithms, Engineering Science and Technology, International Journal 22, pp. 55–66 (2019).
[16] Aissa Benchabira, Mounir Khiat, A hybrid method for the optimal reactive power dispatch and the control of voltages in an electrical energy network, Archives of Electrical Engineering, vol. 68, no. 3, pp. 535–551 (2019).
[17] Patel N., Bhattacharjee K., A comparative study of economic load dispatch using sine cosine algorithm, Scientia Iranica International Journal of Science and Technology, vol. 27, no. 3, pp. 1467–1480 (2020).
[18] Tankut Yalcinoz, Halis Altun, Murat Uzam, Economic dispatch solution using a genetic algorithm based on arithmetic crossover, IEEE Porto Power Tech Proceedings (2001).
[19] Anurag Gupta, Himanshu Anand, Analysis of scheduling of solar sharing for economic/environmental dispatch using PSO, INDICON IEEE (2015).
[20] Hafez A.I., Zawbaa H.M., Emary E., Hassanien A.E., Sine cosine optimization algorithm for feature selection, International Symposium on INnovations in Intelligent SysTems and Applications (INISTA) (2016).
[21] Ajay Wadhawan, Preeti Verma, Sonia Grover, Himanshu Anand, Economic Environmental Dispatch with PV Generation Including Transmission Losses using PSO, IEEE Power India International Conference (PIICON) (2016).
[22] Suid M.H., Ahmad M.A., Ismail M.R.T.R., Ghazali M.R., Irawan A., Tumari M.Z., An Improved Sine Cosine Algorithm for Solving Optimization Problems, IEEE Conference on Systems, Process and Control (ICSPC) (2018).
[23] Jiajun Liu, Bo Song,Ye Li, An Optimum Dispatching for Photovoltaic-thermal Mutual-Complementing Power Plant Based on the Improved Particle Swarm Knowledge Algorithm, IEEE Conference on Industrial Electronics and Applications (ICIEA) (2018).
[24] Kennedy J., Particle swarm optimization, Encyclopedia in Machine Learning, pp. 760–766 (2010).
Go to article

Authors and Affiliations

Abrar Mohamed Hafiz
1
ORCID: ORCID
M. Ezzat Abdelrahman
1
Hesham Temraz
1

  1. Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University, Egypt
Download PDF Download RIS Download Bibtex

Abstract

In the last decade, there has been a substantial surge in the advancement of research into the maximum power point tracking (MPPT) controller. The MPPT approaches, on the other hand, continue to be in high demand due to the ease and simplicity with which tracking techniques can be implemented on the maximum power point (MPP). Diverse MPPT approaches and their modifications from various literature are categorized and thoroughly explored in this work, which is divided into two sections. The discussions are centered on the primary goal of attaining the most extraordinary feasible MPPT technique that produces the best results at the lowest possible expense. In order to determine which MPPT approaches to use, evaluations from earlier literature are used to guide the decision. In this section, we will examine the evaluation of the MPPT technique in two sections. Previously, in Part I, we explored the MPPT techniques based on constant parameters and trial-and- error. Part II of this article will examine the MPPT technique, which is based on mathematical computation, measurement, and comparison, and the algorithm development that has occurred in recent years. Furthermore, this section’s assessment for selecting MPPT approaches is based on previous literature reviews. To aid with this selection, the following criteria for the MPPT approach are proposed: sensors and analog/digital requirements, costeffectiveness, simplicity, stability, efficiency, and tracking speed. This enables the reader to select the MPPT technique that is most appropriate for their application.
Go to article

Authors and Affiliations

Tole Sutikno
1
ORCID: ORCID
Arsyad Cahya Subrata
1
ORCID: ORCID
Giovanni Pau
2
ORCID: ORCID
Awang Jusoh
3
ORCID: ORCID
Kashif Ishaque
4
ORCID: ORCID

  1. Department of Electrical Engineering, Universitas Ahmad Dahlan Yogyakarta, Indonesia
  2. Faculty of Engineering and Architecture, Kore University of Enna, Italy
  3. School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
  4. Capital University of Science & Technology, Islamabad, Pakistan
Download PDF Download RIS Download Bibtex

Abstract

The development of research on the maximum power point tracking (MPPT) controller has increased significantly in this decade. The MPPT technique, however, is still demanding because of the ease and simplicity of implementing tracking technique on the maximum power point (MPP). In this paper, MPPT techniques and their modifications from various literature are classified and examined in detail. The discussions are focused on the main objective of obtaining the best possible MPPT technique with the best results at a low cost. The assessment for the selection of MPPT techniques is based on assessments from the previous literature. The discussion of the MPPT technique assessment is divided into two parts. In Part I, the MPPT technique based on constant parameters, and trial-and-error will be discussed in detail, along with its algorithm development in recent times.
Go to article

Authors and Affiliations

Tole Sutikno
1
ORCID: ORCID
Arsyad Cahya Subrata
1
ORCID: ORCID
Giovanni Pau
2
ORCID: ORCID
Awang Jusoh
3
ORCID: ORCID
Kashif Ishaque
4
ORCID: ORCID

  1. Department of Electrical Engineering, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
  2. Faculty of Engineering and Architecture, Kore University of Enna, Italy
  3. School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
  4. Capital University of Science and Technology, Islamabad, Pakistan
Download PDF Download RIS Download Bibtex

Abstract

Photovoltaic (PV) cells are very costly because of the silicon element which is not cheaply available. Usually, PV cells are preferred to be used at maximum efficiency. Therefore, PV plants are emphasized to extract maximum power from PVcells. When inertia free PV plants are integrated into the grid in large numbers, the problem of maintaining system stability subjected to load perturbation is quite difficult. In response to this, a control topology is being an approach to make available the PV cells in maintaining system stability by utilizing the system frequency deviation as feedback to the controller. To implement this, the PVs are operated at Maximum Power Point Tracking (MPPT). This allows the PV to operate at Pseudo Maximum Power Point tracking (PMPPT) which makes it possible to run the PV with reserve power capacity without employing a battery for storage. The control strategy has been implemented over a two-stage power conversion model of the PV system. The simulation results showed that the proposed control PMPPT topology is effective in frequency regulation capability as compared to the MPPT technique.

Go to article

Authors and Affiliations

Ritesh Kumar
Balakrushna Sahu
Chandan Kumar Shiva
B. Rajender
Download PDF Download RIS Download Bibtex

Abstract

The article presents an overview of polymeric materials for flexible substrates in photovoltaic (PV) structures that could be used as power supply in the personal electronic systems. Four types of polymers have been elected for testing. The first two are the most specialized and heat resistant polyimide films. The third material is transparent polyethylene terephthalate film from the group of polyesters which was proposed as a cheap and commercially available substrate for the technology of photovoltaic cells in a superstrate configuration. The last selected polymeric material is a polysiloxane, which meets the criteria of high elasticity, is temperature resistant and it is also characterized by relatively high transparency in the visible light range. For themost promising of these materials additional studies were performed in order to select those of them which represent the best optical, mechanical and temperature parameters according to their usage for flexible substrates in solar cells.

Go to article

Authors and Affiliations

K. Znajdek
Maciej Sibiński
ORCID: ORCID
A. Strąkowska
Z. Lisik
Download PDF Download RIS Download Bibtex

Abstract

This research presents a comparative study for maximum power point tracking (MPPT) methodologies for a photovoltaic (PV) system. A novel hybrid algorithm golden section search assisted perturb and observe (GSS-PO) is proposed to solve the problems of the conventional PO (CPO). The aim of this new methodology is to boost the efficiency of the CPO. The new algorithm has a very low convergence time and a very high efficiency. GSS-PO is compared with the intelligent nature-inspired multi-verse optimization (MVO) algorithm by a simulation validation. The simulation study reveals that the novel GSS-PO outperforms MVO under uniform irradiance conditions and under a sudden change in irradiance.

Go to article

Authors and Affiliations

Hazem H. Mostafa
Amr M. Ibrahim
Wagdi R. Anis

This page uses 'cookies'. Learn more