Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Polyphenol oxidase partial gene PG-PPO was cloned and characterized from Pennisetum glaucum (pearl millet) which showed 42% identity to a PPO sequence isolated from wheat at the region of Copper B with a score of 40 and e-value of 2.8. Multiple sequence alignment results revealed similarity to polyphenol oxidase (PPO) sequences from wheat, trifolium, lettuce, apricot, tobacco, tomato, pokeweed, apple, grape and poplar especially at the Copper B region of PPO. The 395 bp pearl millet PPO sequence was AT rich (53.3%) and contained the highly conserved amino acids of histidine-rich copper binding sites similar to PPO sequences from other crops. Results also indicated that PPO in pearl millet exists in multi copy. The role of the isolated PPO gene during pearl millet-downy mildew interaction was analyzed and the results showed significantly higher and rapid accumulation of PPO mRNAs in resistant pearl millet seedlings inoculated with Sclerospora graminicola in comparison to the susceptible control, demonstrating that the PPO plays a prominent role in pearl millet defense against pathogens, particularly downy mildew pathogen.

Go to article

Authors and Affiliations

Sathyanarayana Niranjan-Raj
Senapathyhally Nagaraju Lavanya
Siddaiah Chandra Nayaka
Download PDF Download RIS Download Bibtex

Abstract

Fall armyworm ( Spodoptera frugiperda) (FAW) is an important invasive pest of maize. The young FAW larva disrupts the photosynthetic system by feeding on the leaves. The older caterpillar interferes with pollination and fertilization processes, destroying the tassel and silks, or it bores into the maize cob, reducing harvest quality and predisposing the cob to secondary infections. The infested plant responds by channeling or converting the primary metabolites into secondary metabolites for plant defense, further reducing crop yield. The devastating feeding effect on maize becomes even more severe when maize plants are exposed to prolonged drought, during which the production of secondary metabolites is optimum. These secondary metabolites are food for herbivorous insects like the fall armyworm. Naturally, plants possess several adaptive features which enable them to cope and survive herbivorous insect attacks without compensating yield for plant defense. Such features include: thickening of the leaf cuticle of the epidermal cell walls, production of certain allelochemicals, defense proteins and the toxic chemical compound, favone glycoside (silk maysin). This review attempts to critically appraise the physiological implications of fall armyworm damage on developmental processes and maize yield. Understanding the mechanisms of various adaptive traits that confer resistance to maize against herbivorous insect damage would assist greatly in crop improvement processes.
Go to article

Authors and Affiliations

Folake Bosede Anjorin
1
Oluwaseyi Oluwakemi Odeyemi
1
Olufolake Adenike Akinbode
1
Kehinde Tolulope Kareem
1

  1. Institute of Agricultural Research and Training, Obafemi Awolowo University, Ibadan, Nigeria

This page uses 'cookies'. Learn more