Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 11
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Water extractsfrom selected Geraniaceae plants, to which paraffin oil was added as adjuvant, were tested. It was observed that the plant extracts researched limited Colorado potato beetle feeding and development and adding adjuvant increased the effects. The highest antifeedant activity towards Colorado potato beetlesand their larvae wasobs erved in extractsobtained from Pelargonium × hortorum Bailey and Geranium pusillum L. The extract from Pelargonium × hortorum Bailey added to food showed a negative effect on the development of female reproductive organs and embryo development and showed the highest effectiveness in field conditions.

Go to article

Authors and Affiliations

Robert Lamparski
Maria Wawrzyniak
Download PDF Download RIS Download Bibtex

Abstract

The insecticidal and antifeedant activity of extracts derived from different plants of the Liguidamber orientalis Mill. (Hamamelidaceae), Tanacetum vulgare L. (Compositae), Achillea coarctata Willd. (Compositae), Buxus sempervirens L. (Buxaceae), Diospyros kaki L. (Ebenaceae), Arum italicum Mill. (Araceae), Achilea biebersteinii Willd. (Compositae), Origanum vulgare L. (Labiatae), Hypericum androsaemum L. (Hypericaceae) and Ocimum basilicum L. (Labiatae). are reported. The 70% alcohol extracts of plants were tested for toxicity against the 3–4th instar larvae of the Yponomeuta malinellus Zell. (Lepidoptera.: Yponomeutidae). Antifeedant activity of the extracts was assessed through tests conducted on the larvae of Y. malinellus by the feeding protection bioassay. In tests carried out on the larvae of Y. malinellus, L. orientalis, O. basilicum and A. coarctata extracts showed high toxicity within 48 hour LC50’s of 75, 75 and 65% respectively. The toxicity effects of the other extracts were determined as 60, 50, 50, 50, 45, 45 and 40% within the same period, respectively. No mortality was noticed in control groups. Alcohol extract from L. orientalis, T. vulgare and B. sempervirens showed high antifeedant activity (80.90, 46.12) on the larvae of Y. malinellus. In addition to both T. vulgare and L. orientalis extracts caused decrease consumption of food per 1 mg of larvae body weight decrease showed high –8.465, –0.845, mg respectively. The highest consumption (557.6 mg) was observed with alcohol extract from, D. kaki whereas the minimum one was using alcohol extract from L. orientali. The other tested extracts showed similar activity.

Go to article

Authors and Affiliations

Ömer Ertürk
Vedat Şekeroğlu
Ahmet Koç Yavuz Kalkan
Download PDF Download RIS Download Bibtex

Abstract

The antifungal effect of twenty powdered spice plants and their extracts at concentrations of 2, 4, 8 and 1, 3, 6%, respectively was evaluated in relation to the radial mycelial growth of various soilborne fungi causing damping-off disease. The spice powder or extract were added to the culture medium PDA to obtain the proposed concentrations. Concentration of 8% of powdered spices and 6% of their extracts were able to cause complete growth inhibition of major tested fungi. High significant inhibitory effect on radial fungal growth was observed for different concentrations of carnation (Dianthus caryophyllus), cinnamon (Cinnamomum burmannil), garlic (Allium sativum) and thyme (Thymus vulgaris). Meanwhile, fennel (Foeniculum vulgare), marjoram (Origanum majorana) and chamomile (Matricaria hamomilla) showed a low inhibitory effect on tested fungi. Moderate inhibitory effect was observed with the other tested spices. In the greenhouse, efficacy of spice plants as powder or their extracts in addition to the fungicide Rizolex-T used as seed dressings against faba bean damping-off incidence was evaluated in pot experiment using soil artificially infested with the disease agents (Fusarium solani and Rhizoctonia solani). Spice extracts showed superior reducing effect on damping-off disease incidence at pre-emergence growth stage to that of powder treatments and Rizolex-T as well, while an opposite effect was observed at post-emergence growth stage. Carnation and cinnamon spices showed the highest protecting effect against disease incidence when applied as powder or extracts. It is interesting to note that spice plants as powder or extracts gave a similar effect to the fungicide Rhizolex-T in reducing damping-off incidence either at pre- or post-emergence stages of faba bean growth. Promising applicable technique could be suggested in the light of the results obtained. The use of spice plants as powder or extract for seed dressing might be considered as safe, cheep and easily applied method for controlling soilborne plant pathogens considering the avoidance of environmental pollution and the side effect of pesticide application.

Go to article

Authors and Affiliations

Nehal S. El-Mougy
Mokhtar M. Abdel-Kader
Download PDF Download RIS Download Bibtex

Abstract

The effect of crude extracts of neem (Azadirachta indica) leaf, neem seed and garlic (Allium sativum) at concentrations ranging from 5% to 30% of the material in 100 ml of Potato Dextrose Agar on mycelial growth of Fusarium oxysporum f. sp. lycopersici was assessed. All the extracts inhibited mycellial growth at various levels. Dry neem seed extract gavel 100% inhibition of mycelial growth. Fresh neem leaf extract reduced mycelial growth with increasing concentration while in garlic there were no differences in growth inhibition among the various concentrations used. However garlic extracts decreased sporulation with increasing concentration and cultures grown on extract amended agar plates remained viable.

Go to article

Authors and Affiliations

Ogechi N. Agbenin
P.S. Marley
Download PDF Download RIS Download Bibtex

Abstract

The efficacy of some plant extracts on the control of potato tuber soft rot caused by Erwinia carotovora ssp. carotovora was evaluated in the laboratory conditions. Neem leaf and seed aqueous extracts significantly reduced the incidence and severity of tuber soft rot, while ironweed and Siamese cassia aqueous leaf extracts gave moderate control of the disease. Tuber treatment with river redgum aqueous leaf extract did not control tuber soft rot.

Go to article

Authors and Affiliations

Bulus S. Bdliya
Bashir Dahiru
Download PDF Download RIS Download Bibtex

Abstract

The tuber necrotic strain of Potato virus Y (PVYNTN) causes widespread disease and has severe negative effects on the growth and yields of plants, especially those of the Solanaceae family. The consequences of residual toxicity and non-biodegradation of synthetic chemicals and pollution of the environment has led to investigations into new non-toxic and biological treatments to control plant viral diseases. Ethanolic extracts of Bowiea volubilis (bulbs), Cotyledon orbiculata (leaves), Gomphocarpus fruticosus (leaves), Merwilla plumbea (dry and fresh bulbs), Nerium oleander (leaves), and the fruits and leaves of Strophanthus speciosus, were evaluated against PVYNTN in vivo and in vitro. At a concentration of 20 mg · ml−1, ethanolic extracts of Strophanthus speciosus (leaves) and fruits (50 mg · ml−1) significantly reduced the expression of PVYNTN symptoms on tobacco plants in vitro without affecting the normal growth and development of the plant. Similarly, at 50 mg · ml−1, N. oleander, C. orbiculata and B. volubilis (fresh bulbs) and S. speciousus leaves at 20 mg · ml−1 extracts showed significant differences in PVYNTN symptoms in the in vivo experiment. Strophanthus speciosus leaf and fruit extracts showed significant inhibition in the in vitro and in vivo assays and demonstrated that S. speciosus has potential to be used as an antiphytoviral treatment.

Go to article

Authors and Affiliations

Simin Emamzadeh Yazdi
Julia Mulabisana
Gerhard Prinsloo
Michele Cloete
Quenton Kritzinger
Download PDF Download RIS Download Bibtex

Abstract

Antibiotics are used for postsurgical wound healing purposes but unfortunately, resistance against them demands some alternatives for quick recovery. Sepsis of wounds is a challenge for medical as well as veterinary professionals. Nanoparticles have significant advantages in wound treatment and drug resistance reversal. This study was conducted to appreciate emerging alternates of antibiotics like zinc oxide nanoparticles and plant extracts in topical application. Zinc oxide is considered a good wound healer and its nanoparticles are easy to access. So, the efficacies of zinc oxide nanoparticles and sweet flag plant extract ointments were tested to compare modern and traditional therapeutics as sweet flag is considered a pure medicinal plant. Rabbits were selected for this study due to the healing properties of their skin. Wounds were inflicted on the thoracolumbar region and treated for 29 days post-surgically daily with normal saline and the ointment of zinc oxide nanoparticles and sweet flag extract ointment, prepared in a hydrophilic solvent. Wound shrinkage was observed daily and histopathological analysis was made and results were compared. Zinc oxide nanoparticles ointment showed the most satisfactory results for every parameter included in the study. No side effects of its topical application were observed. Healing was normal without any complications. The preparations of zinc oxide nanoparticles may help in the era of antibiotic resistance as topical drugs in the future.
Go to article

Authors and Affiliations

A. Abbas
1 2
S.A. Muhammad
3
A. Ashar
4
S.A. Mehfooz
2
A. Rauf
3
M. Bakhsh
3
T. Nadeem
5
H. Fu
1

  1. Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
  2. Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad 38000, Pakistan
  3. University of Veterinary and Animal Sciences, Lahore, CVAS Jhang 35200, Pakistan
  4. Wilson College of Textiles, North Carolina State University, North Carolina, USA
  5. University of Veterinary and Animal Sciences, Lahore, Para Veterinary Institute (PVI), Karor 31100, Layyah, Pakistan
Download PDF Download RIS Download Bibtex

Abstract

Herpesviruses (HV) are pathogens causing infections in humans and animals worldwide. Since it shares many common features with other HV, bovine HV type 1 (BoHV-1) was selected as a model to test the anti-herpesviral activity of medicinal plants.

Fifteen plants were chosen in this study for their medical, antibacterial and antiviral properties. The aim was to investigate ethanolic extracts from the selected medicinal plants for anti-BoHV-1 activity. The virucidal activities were evaluated by comparing the effect of noncytotoxic concentrations of extracts on BoHV-1 strain 1640 replication in Madin-Darby bovine kidney (MDBK) cells. Virucidal activity was determined by means of virus titration after exposure to the extracts. The extract of Desmodium canadense was found to be the most effective virucide – the 50% tissue culture infective dose (TCID50) after exposure was 3.75 log10 and the virus reduction factor was ≥5.0±0.25 log10. The extract of D. canadense was therefore chosen for further studies. Virus yield reduction assays showed that D. canadense extract had time-dependent and dose-dependent effects. It effectively reduced virus titre from 8.33 log10 to 4.67 log10 (p<0.01). The virucidal activity was also confirmed by real-time polymerase chain reaction (real-time PCR), where the number of threshold cycles (Ct) was inversely proportional to the virus titre in TCID50 The virucidal activity was also confirmed by real-time polymerase chain reaction (real-time PCR). This method showed that the number of threshold cycles (Ct) was inversely proportional to the virus titre (direct correlation with exposure time R=0.9321). The extract of D. canadense showed a high virus reduction capacity. In future, such active substances should be identified for the development of effective antivirals.

Go to article

Authors and Affiliations

R. Lelešius
P. Girdauskaitė
A. Karpovaitė
R. Mickienė
T. Drevinskas
N. Tiso
O. Ragažinskienė
L. Kubilienė
A. Maruška
A. Šalomskas
Download PDF Download RIS Download Bibtex

Abstract

Despite many phytochemical and pharmacological investigations, to date, there are no reports concerning the antibabesial activity of extracts of A. millefolium against B. canis. This study was aimed at investigating the biological activities of A. millefolium against the Babesia canis parasite and to identify its chemical ingredients. The water (WE), ethanol (EE) and hexane/acetone (H/AE) extracts of plant aerial parts were screened for total phenolic content (TPC), total flavo- noid compound (TFC), DPPH free radical-scavenging activity and its antibabesial activity assay. In this study, imidocarb diproprionate was used as a positive control. The H/AE and EE extracts were analysed using gas chromatography–mass spectroscopy (GC–MS).

In the EE extract, the main compounds were 17.64% methyl octadec-9-ynoate, 16.68% stigmast-5-en-3-ol(3α,24S) and 15.17% hexadecanoic acid. In the H/AE extract, the main com- pounds were 34.55% 11-decyldocosane, 14.31% N-tetratetracontane, 8.22% β-caryophyllene, and 7.69% N-nonacosane. Extract of EE contained the highest content of phenolics followed by H/AE and WE. The concentration of flavonoids in EE, H/AE and WE extracts showed that TFC was higher in the EE samples followed by H/AE and WE. The antioxidant activities were highest for AA, followed by EE, WE and H/AE. The antibabesial assay showed that the WE, EE and H/AE extracts of A. millefolium were antagonistic to B. canis. At a 2 mg/mL concentration, it showed 58.7% (± 4.7%), 62.3% (± 5.5%) and 49.3% (± 5.1%) inhibitory rate in an antibabesial assay, respectively.

Considering these results, the present findings suggest that A. millefolium extracts may be a potential therapeutic agent and that additional studies including in vivo experiments are essential.

Go to article

Authors and Affiliations

L. Guz
Ł. Adaszek
J. Wawrzykowski
J. Ziętek
S. Winiarczyk
Download PDF Download RIS Download Bibtex

Abstract

The free-living Acanthamoeba sp. causes various diseases. Treatment of them is very difficult and not always effective because of encystation, making it highly resistant to antiamoebic drugs. Gram-positive bacteria Staphylococcus aureus, Gram-negative bacteria Escherichia coli, and an yeast Candida albicans also exhibit outstanding resistance to antimicrobial substances. The search for new natural amoebicidal and antimicrobial agents of plant origin is still of current interest. The aim of the study was to investigate the amoebicidal activity of the extracts obtained from tissue culture and a field-grown plant of Chaenomeles japonica against pathogenic trophozoites of Acanthamoeba spp. and antimicrobial effect against S. aureus, E. coli, and C. albicans. The extracts of C. japonica had an inhibitory effect on the proliferation of Acanthamoeba trophozoites as compared to the non-treated control. Among the crude extracts tested, the extract of leaves, from both shoot culture and the field-grown plant had remarkable amoebicidal action against the trophozoites but also antibacterial activity against Gram-positive bacteria Staphylococcus aureus. The extract from leaves from shoot culture, already on the second and third days of treatment, showed an antiamoebicidal effect at a concentration of 1 mg mL-1 (inhibition of trophozoites 87.5% and 91.8%, respectively). In addition to leaves from shoot culture (a conc. 5 mg mL-1, 2nd day inhibition of trophozoites 85.7% and 3rd day 97.2%), leaves from a field-grown plant (a conc. 5 mg mL-1, 2nd day 91.0% and 3rd day 94.4%) and callus (a conc. 5 mg mL-1, 2nd day 90.0% and 3rd day – 95.4%) also exhibited a good antiamoebicidal activity. Out of the four extracts, the extracts from leaves from both shoot culture and a field-grown plant were reported to be the most active against Gram-positive S. aureus, which was determined by the values of MIC = 5.0 mg mL-1 and MIC = 2.5 mg mL-1, respectively. The inhibitory potential depends on the yield and composition of mainly bioactive compounds: pentacyclic terpenoids (mainly betulinic, ursolic, and oleanolic acids) and polyphenols (mainly chlorogenic acid and its isomers, epicatechin, dimeric, and trimeric proanthocyanidins, quercetin and kaempferol derivatives).

Go to article

Authors and Affiliations

Małgorzata Kikowska
Monika Derda
Barbara Thiem
Agata Włodarczyk
Jolanta Długaszewska
Anna Stochmal
Jerzy Żuchowski
Edward Hadaś
Download PDF Download RIS Download Bibtex

Abstract

Candida albicans, a polymorphic yeast, is a physiological component of the human and animal commensal microbiome. It is an etiological factor of candidiasis, which is treated by azole antifungals. Growing resistance to azoles is a reason to look for other alternative treatment options. The pharmacotherapeutic use of plant extracts and essential oils has become increasingly important. In our experiment, C. albicans showed susceptibility to four observed plant extracts and essential oils from peppermint ( Mentha piperita), thyme ( Thymus vulgaris), sage ( Salvia officinalis), and oregano ( Origanum vulgare). Oregano plant extract and essential oil showed the highest antifungal activity, at MIC values of 4.9 mg/mL and 0.4 mg/mL respectively. Therefore, it was subjected to further research on the influence of virulence factors – biofilm formation, extracellular phospholipase production and germ tube formation. Oregano plant extract and essential oil showed an inhibitory effect on the observed C. albicans virulence factors at relatively low concentrations. The extract inhibited the adherence of cells at MIC 12.5 mg/mL and essential oil at MIC 0.25 mg/mL. Degradation of the formed biofilm was detected at MIC 14.1 mg/mL for plant extract and at MIC 0.4 mg/mL for essential oil. Extracellular phospholipase production was most effectively inhibited by the essential oil. In particular, the number of isolates with intensive extracellular phospholipase production decreased significantly. Of the 12 isolates intensively producing extracellular phospholipase, only 1 isolate (4.5%) retained intense production. Essential oil caused up to a 100 % reduction in germ tubes formation and plant extract reduced their formation depending on the concentration as follows: 2.6% (0.8 mg/mL), 21.2 % (6.25 mg/mL), and 64.5 % (12.5 mg/mL) compared to the control.
Go to article

Bibliography

1. Brondani LP, da Silva Neto TA, Freitag RA, Lund RG (2018) Evaluation of anti-enzyme properties of Origanum vulgare essential oil against oral Candida albicans. J Mycol Med 28: 94-100.
2. CLSI, Clinical and Laboratory Standards Institute (2017) M27-A3: Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard. 4th ed. USA: Wayne, PA.
3. de Souza Ramos L, Barbedo LS, Braga-Silva LA, dos Santos AL, Pinto MR, da Graça Sgarbi DB (2015) Protease and phospholipase activities of Candida spp. isolated from cutaneous candidiasis. Rev Iberoam Micol 32: 122-125.
4. Doke SK, Raut JS, Dhawale S, Karuppayil SM (2014) Sensitization of Candida albicans biofilms to fluconazole by terpenoids of plant origin. J Gen Appl Microbiol 60: 163-168.
5. Edelmann A, Krüger M, Schmid J (2005) Genetic relationship between human and animal isolates of Candida albicans. J Clin Micro-biol 43: 6164-6166.
6. Ellepola AN, Samaranayake LP, Khan ZU (2016) Extracellular phospholipase production of oral Candida albicans isolates from smok-ers, diabetics, asthmatics, denture wearers and healthy individuals following brief exposure to polyene, echinocandin and azole antimy-cotics. Braz J Microbiol 47: 911-916.
7. Fule SR, Das D, Fule RP (2015) Detection of phospholipase activity of Candida albicans and non albicans isolated from women of reproductive age with vulvovaginal candidiasis in rural area. Indian J Med Microbiol 33: 92-95.
8. Jin Y, Yip HK, Samaranayake YH, Yau JY, Samaranayake LP (2003) Biofilm-forming ability of Candida albicans is unlikely to con-tribute to high levels of oral yeast carriage in cases of human immunodeficiency virus infection. J Clin Microbiol 41: 2961-2967.
9. Kumamoto CA, Gresnigt MS, Hube B (2020) The gut, the bad and the harmless: Candida albicans as a commensal and opportunistic pathogen in the intestine. Curr Opin Microbiol 56: 7-15.
10. Lee H, Woo ER, Lee DG (2018) Apigenin induces cell shrinkage in Candida albicans by membrane perturbation. FEMS Yeast Res 18: 10.1093.
11. Martins N, Ferreira IC, Barros L, Silva S, Henriques M (2014) Candidiasis: predisposing factors, prevention, diagnosis and alternative treatment. Mycopathologia 177: 223-240.
12. Mattei AS, Alves SH, Severo CB, da Silva Guazzelli L, de Mattos Oliveira F, Severo LC (2013) Determination of germ tube, phos-pholipase, and proteinase production by bloodstream isolates of Candida albicans. Rev Soc Bras Med Trop 46: 340-342.
13. Mohandas V, Ballal M (2011) Distribution of Candida species in different clinical samples and their virulence: biofilm formation, pro-teinase and phospholipase production: a study on hospitalized patients in southern India. J Glob Infect Dis 3: 4-8.
14. Nagy M, Mučaji P, Grančai D (2017) Pharmacognosy. Biologically active plant metabolites and their sources, 2nd ed., Bratislava, Herba.
15. Pozzatti P, Loreto ES, Nunes Mario DA, Rossato L, Santurio JM, Alves SH (2010) Activities of essential oils in the inhibition of Can-dida albicans and Candida dubliniensis germ tube formation. J Mycol Med 20: 185-189.
16. Pristov KE, Ghannoum MA (2019) Resistance of Candida to azoles and echinocandins worldwide. Clin Microbiol Infect 25: 792-798.
17. Raut JS, Karuppayil SM (2014) A status review on the medicinal properties of essential oils. Ind Crop Prod 62: 250-264.
18. Rossoni RD, Barbosa JO, Vilela SF, dos Santos JD, Jorge AO, Junqueira JC (2013) Correlation of phospholipase and proteinase pro-duction of Candida with in vivo pathogenicity in Galleria mellonella. Braz J Oral Sci 12: 199-204.
19. Ruchi T, Sujata B, Anuradha D (2015) Comparison of phenotypic methods for the detection of biofilm production in uro-pathogens in a tertiary care hospital in India. Int J Curr Microbiol App Sci 4: 840-849.
20. Seyedmousavi S, Bosco SM, de Hoog S, Ebel F, Elad D, Gomes RR, Jacobsen ID, Jensen HE, Martel A, Mignon B, Pasmans F, Piecková E, Rodrigues AM, Singh K, Vicente VA, Wibbelt G, Wiederhold NP, Guillot J (2018) Fungal infections in animals: a patch-work of different situations. Med Mycol 56 (Suppl 1): 165-187.
21. Silva S, Rodrigues CF, Araújo D, Rodrigues ME, Henriques M (2017) Candida species biofilms’ antifungal resistance. J Fungi (Ba-sel) 3: 8.
22. Vitális E, Nagy F, Tóth Z, Forgács L, Bozó A, Kardos G, Majoros L, Kovács R (2020) Candida biofilm production is associated with higher mortality in patients with candidaemia. Mycoses 63: 352-360.
Go to article

Authors and Affiliations

P. Váczi
1
M. Proškovcová
1
E. Čonková
1
D. Marcinčáková
1
M. Bačkorová
2
M. Harčárová
3

  1. Department of Pharmacology and Toxicology
  2. Department of Pharmaceutical Technology, Pharmacognosy and Botany
  3. Department of Animal Nutrition and Husbandry, University of Veterinary Medicine and Pharmacy, Komenského 73, Košice, 041 81, Slovakia

This page uses 'cookies'. Learn more