Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Porous asphalt mixture (PA), known as open-graded surfaces over a stone bed underneath, allows water to go through. These factors can affect the porous asphalt mixture adhesive strength. The high amount of course aggregate promotes the structure of air voids have certain impacts on the acoustic properties of porous asphalt. The materials properties are consisting of both aggregate and bitumen tests. This study also details out the aggregates sieve analysis test to develop new aggregate gradation for PA. According to five ASEAN countries’ specifications, the sieve analysis test was done. The countries included are Malaysia, Vietnam, Thailand, Singapore, and Indonesia. The test for the binder includes the softening point, penetration, and ductility. This study also investigates the addition of kenaf fiber in the mixture as an additive. Mechanical performance test for PA using Marshall Stability test to identify the strength and the properties of the conventional PA with the addition of kenaf fiber compared to the new gradation of PA incorporating kenaf fiber. From the results, the addition of 0.3% kenaf modified PA improved the performance of PA in terms of Marshall Stability and volumetric properties.
Go to article

Authors and Affiliations

Nur Ezreen Jasni
1
ORCID: ORCID
Khairi Azman Masri
1
ORCID: ORCID
Ramadhansyah Putra Jaya
1
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
2
ORCID: ORCID
Rafiza Abd Razak
3
ORCID: ORCID
Marcin Nabiałek
4
ORCID: ORCID
Katarzyna Błoch
4
ORCID: ORCID
Agata Śliwa
5
ORCID: ORCID

  1. Department of Civil Engineering, College of Engineering, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang, Malaysia
  2. Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
  3. Center of Excellence Geopolymer and Green Technology, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia
  4. Department of Physics, Czestochowa University of Technology, 42-201 Czestochowa, Poland
  5. Division of Materials Processing Technology and Computer Techniques in Materials Science, Silesian21 University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

Porous asphalt has excellent permeability and larger air voids. Due to the low stability strength of asphalt binder with aggregates, Malaysia uses porous asphalt roads for lightweight vehicle road transportation. Numerous studies indicate utilizing Recycled High-Density Polyethylene in porous asphalt road surface. As a result, it was utilised as an additional binder material to enhance the asphalt binder. The main purpose of this study is to investigate the stability of modified porous asphalt samples and evaluate the optimum percentage of HDPE plastic waste from 3%, 6% and 9%. The aggregates, asphalt properties, Marshall Parameters and waster absorption test are in comply with JKR Standard and PWD 2008. At 3% of plastic addition has improved the stability of porous asphalt specimens. Adding plastic waste as a binder helps strengthen asphalt binding.
Go to article

Authors and Affiliations

L.A. Sofri
1
ORCID: ORCID
D. Ganesan
2
ORCID: ORCID
M.M. Al B. Abdullah
3
ORCID: ORCID
Chee-Ming Chan
4
ORCID: ORCID
M.H. Osman
4
ORCID: ORCID
J. Garus
5
ORCID: ORCID
S. Garus
5
ORCID: ORCID

  1. Universiti Malaysia Perlis (UniMAP), Faculty of Civil Engineering Technology, Kompleks Pusat Pengajian Jejawi 3, 02600 Arau, Perlis, Malaysia; Universiti Malaysia Perlis (UniMAP), Centre of Excellence Geopolymer and Green Technology, (CEGeoGTech), 01000 Perlis, Malaysia
  2. Universiti Malaysia Perlis (UniMAP), Faculty of Civil Engineering Technology, Kompleks Pusat Pengajian Jejawi 3, 02600 Arau, Perlis, Malaysia
  3. Universiti Malaysia Perlis (UniMAP), Centre of Excellence Geopolymer and Green Technology, (CEGeoGTech), 01000 Perlis, Malaysia; Universiti Malaysia Perlis (UniMAP), Fac ult y of Chemical Engineering and Technology, 01000 Perlis, Malaysia
  4. Universiti Tun Hussein Onn, Fac ult y of Engineering Technology, Pagoh, Johor, Malaysia
  5. Częstochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Department of Mechanics and Fu ndamentals of Machinery Design, 73 Dąbrowskiego Av., 42-201 Częstochowa, Poland

This page uses 'cookies'. Learn more