Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 10
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Author presents an analytical method of calculation of unit power losses in magnetic laminations used in electrical machines and transformers. The idea of this method, based on the solution of Maxwell's equations in the lamination material, was described by the author in the previous work [3], taking into account approximation of constitutive static hysteresis loop by elliptic form of the function B = f(H) depending on magnetic saturation. In the previous formula for new isotropic and anisotropic materials it is needed to introduce so called "anomaly coefficient" deduced from the comparison of measured and calculated value of power losses in arbitrary excitation frequency for assumed induction. The method was tested by comparison with the results of experiments presented in commercial catalogues [1, 2]. Assuming superposition of harmonic power losses it is possible to enlarge this method for the estimation of overloss coefficient in dynamo sheet during axial magnetization with nonsinusoidal flux generated e.g. by PWM voltage supply.
Go to article

Authors and Affiliations

Kazimierz Zakrzewski
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the application of Flexible Alternating Current Transmission System (FACTS) devices based on heuristic algorithms in power systems. The work proposes the Autonomous Groups Particle Swarm Optimization (AGPSO) approach for the optimal placement and sizing of the Static Var Compensator (SVC) to minimize the total active power losses in transmission lines. A comparative study is conducted with other heuristic optimization algorithms such as Particle Swarm Optimization (PSO), Timevarying Acceleration Coefficients PSO (TACPSO), Improved PSO (IPSO), Modified PSO (MPSO), and Moth-Flam Optimization (MFO) algorithms to confirm the efficacy of the proposed algorithm. Computer simulations have been carried out on MATLAB with the MATPOWER additional package to evaluate the performance of the AGPSO algorithm on the IEEE 14 and 30 bus systems. The simulation results show that the proposed algorithm offers the best performance among all algorithms with the lowest active power losses and the highest convergence rate.
Go to article

Bibliography

[1] Vera S.M., Nuez I., Hernandez-Tejera M., A FACTS devices allocation procedure attending to load share, Energies, vol. 13, no. 8 (2020), DOI: 10.3390/en13081976.
[2] Singh B., Kumar R., A comprehensive survey on enhancement of system performances by using different types of FACTS controllers in power systems with static and realistic load models, Energy Reports, vol. 6, pp. 55–79 (2020).
[3] Shehata A.A., Ahmed M.K., State estimation accuracy enhancement for optimal power system steady state modes, IOP Conference Series: Materials Science and Engineering, vol. 643 (2019), DOI: 10.1088/1757-899X/643/1/012049.
[4] Sreedharan S., Joseph T., Joseph S., Chandran C.V., Vishnu J., Das V., Power system loading margin enhancement by optimal STATCOM integration – A case study, Computers and Electrical Engineering, vol. 81, no. 106521 (2019).
[5] Al Ahmad A., Sirjani R., Optimal placement and sizing of multi-type FACTS devices in power systems using metaheuristic optimisation techniques: An updated review, Ain Shams Engineering Journal (2019), DOI: 10.1016/j.asej.2019.10.013.
[6] Belazzoug M., Boudour M., Sebaa K., FACTS location and size for reactive power system compensation through the multi-objective optimization, Archives of Control Sciences, vol. 20, no. 4, pp. 473–489 (2010).
[7] Kotsampopoulos P., Georgilakis P., Lagos D.T., Kleftakis V., Hatziargyriou N., FACTS providing grid services: applications and testing, Energies, vol. 12, no. 13 (2019), DOI: 10.3390/en12132554
[8] Kavitha K.,Neela R., Optimal allocation of multi-type FACTS devices and its effect in enhancing system security using BBO, WIPSO & PSO, Journal of Electrical Systems and Information Technology, vol. 5, no. 3, pp. 777–793 (2018).
[9] Shehata A.A., Korovkin N.V., An accuracy enhancement of optimization techniques containing fractional-polynomial relationships, 2020 International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE), pp. 1–5 (2020).
[10] Dash S.P., Subhashini K.R., Satapathy J.K., Optimal location and parametric settings of FACTS devices based on JAYA blended moth flame optimization for transmission loss minimization in power systems, Microsystem Technologies, vol. 26, no. 5, pp. 1543–1552 (2020).
[11] Saurav S., Gupta V.K., Mishra S.K., Moth-flame optimization based algorithm for FACTS devices allocation in a power system, 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), pp. 1–7 (2017).
[12] Jyotshna D.K., Madhuri N., Optimal allocation of SVC for enhancement of voltage stability using harmony search algorithm, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, vol. 4, no. 7, pp. 6693–6701 (2015).
[13] Ravi K., Rajaram M., Optimal location of FACTS devices using Improved Particle Swarm Optimization, International Journal of Electrical Power and Energy Systems, vol. 49, pp. 333–338 (2013).
[14] Mathad V.G., Ronad B.G., Jangamshetti S.H., Review on comparison of FACTS controllers for power system stability enhancement, International Journal of Scientific and Research Publications, vol. 3, no. 3, pp. 2250–3153 (2013).
[15] Murali D., Rajaram M., Reka N., Comparison of FACTS devices for power system stability enhancement, International Journal of Computer Applications, vol. 8, no. 4, pp. 30–35 (2010).
[16] Rezaee J.A., Particle swarm optimisation (PSO) for allocation of FACTS devices in electric transmission systems: A review, Renewable and Sustainable Energy Reviews, vol. 52, pp. 1260-1267 (2015).
[17] Shaheen A.M., Spea S.R., Farrag S.M., Abido M.A., A review of meta-heuristic algorithms for reactive power planning problem, Ain Shams Engineering Journal, vol. 9, no. 2, pp. 215–231 (2018).
[18] Suresh V., Janik P., Jasinski M., Metaheuristic approach to optimal power flow using mixed integer distributed ant colony optimization, Archives of Electrical Engineering, vol. 69, no. 2, pp. 335–348 (2020).
[19] Benchabira A., Khiat M., A hybrid method for the optimal reactive power dispatch and the control of voltages in an electrical energy network, Archives of Electrical Engineering, vol. 68, no. 3, pp. 535–551 (2019).
[20] Ziyu T., Dingxue Z., A modified particle swarm optimization with an adaptive acceleration coefficient, 2009 Asia-Pacific Conference on Information Processing, vol. 2, pp. 330–332 (2009).
[21] Mirjalili S., Lewis A., Sadiq A.S., Autonomous particles groups for particle swarm optimization, Arabian Journal for Science and Engineering, vol. 39, no. 6, pp. 4683–4697 (2014). [22] The IEEE 14 and 30 Bus Test Systems, available online at: http://labs.ece.uw.edu/pstca.
[23] Cui Z., Zeng J., Yin Y., An improved PSO with time-varying accelerator coefficients, 2008 8th International Conference on Intelligent Systems Design and Applications, vol. 2, pp. 638–643 (2008).
[24] Bao G.Q., Mao K.F., Particle swarmoptimization algorithm with asymmetric time varying acceleration coefficients, 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO), no. 3, pp. 2134–2139 (2009).
[25] Mirjalili S., Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm, Knowledge-Based Systems, vol. 89, pp. 228–249 (2015).
Go to article

Authors and Affiliations

Ahmed A. Shehata
1
ORCID: ORCID
Ahmed Refaat
2
ORCID: ORCID
Mamdouh K. Ahmed
1
ORCID: ORCID
Nikolay V. Korovkin
1
ORCID: ORCID

  1. Institute of Energy, Peter the Great Saint-Petersburg Polytechnic University, Russia
  2. Electrical Engineering Department, Port-Said University, Egypt
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an analytical solution of levitation problem for conductive, dielectric and magnetically anisotropic ball. The levitation exerts either an AC or impulse magnetic field. Both the Lorentz and material electromagnetic forces (of magnetic matter) could lift the ball in a gravitational field. The electromagnetic field distribution is derived by means of variables separation method. The total force is evaluated by Maxwell stress tensor (generalized), co-energy and Lorentz methods. Additionally, power losses are calculated by means of Joule density and the Poynting vector surface integrals. High frequency asymptotic formulas for the Lorentz force and power losses are presented. All analytical solutions derived could be useful for rapid analysis and design of levitations systems. Finally, some remarks about considered levitations are formulated.
Go to article

Bibliography

  1.  K.J. Binns, P.J. Lawrenson, and C.W. Trowbridge, The analytical and numerical solution of electric and magnetic fields, John Wiley & Sons, 1992.
  2.  B.S. Guru and H.R. Hiziroglu, Electromagnetic field theory fundamentals, University Press, Cambridge, 2004.
  3.  V. Dolga and L. Dolga, “Modeling and simulation of a magnetic levitation system”, Annals of the Oradea University of Timisoara, Romania, VI (XVI) (2007).
  4.  H. Górecki and M. Zaczyk, “Determination of optimal controllers. Comparison of two methods for electric network chain”, Bull. Pol. Ac.: Tech.66 (3), 267–273 (2018).
  5.  E. Fromm and H. Jehn, “Electromagnetic forces and power absorption in levitation melting”, British Journal of Applied Physics, 16, 653–663 (1965).
  6.  M. Zdanowski and R. Barlik, “Analytical and experimental determination of the parasitic parameters in high-frequency inductor”, Bull. Pol. Ac.: Tech.65 (1), 107–112 (2017).
  7.  E.C. Okress, D.M. Wroughton, G. Comenetz, P.H. Brace, J.C.R. Kelly, “Electromagnetic levitation of solid and molten metals”, J. Appl. Phys. 23 (5), 545–552 (1952).
  8.  D. Spałek, “Theorem about electromagnetic force surface representation in anisotropic region”, J. Tech. Phys.XLVIII (3-4), 135–145 (2007).
  9.  W.R. Smythe, Static and dynamic electricity, McGraw–Hill Book Company, New York, 1950.
  10.  D. Spałek, “Electromagnetic torque components in synchronous salient-pole machine”, COMPEL. Int. J. Comput. . Math. Electr. Electron. Eng. 16 (3), 129–143 (1997).
  11.  D. Spałek, “Two theorems about surface-integral representation of electromagnetic force and torque”, IEEE Trans. Magn. 53 (7), 1–10 (2017).
  12.  W. He, J. Zhang, S. Yuan, A. Yang, and Ch. Qu, “Threedimensional magneto-electric vibration energy harvester based on magnetic levitation”, IEEE Magn. Lett. 8, 6104703 (2017).
  13.  L. Ułanowicz and G. Jastrze˛bski, “The analysis of working liquid flow in a hydrostatic line with the use of frequency characteristics”, Bull. Pol. Ac.: Tech. 68 (4), 949–956, (2020).
  14.  T. Kaczorek, “Stability analysis of positive linear systems by decomposition of the state matrices into symmetrical and antisymmetrical parts”, Bull. Pol. Ac.: Tech. 67 (4), 761–768 (2019).
  15.  B.P. Mann and N.D. Sims, “Energy Harvesting from the Nonlinear Oscillations of Magnetic Levitation”, Universities of Leeds, Sheffield and York (promoting access to White Rose research papers http://eprints.whiterose.ac.uk/), 2017.
  16.  D. Spałek, “Analytical electromagnetic field and forces calculation for linear, cylindrical and spherical electromechanical converters”, Bull. Pol. Ac.: Tech. 52 (3), 239–250 (2004).
  17.  D. Spałek, “Levitation of Conductive and Magnetically Anisotropic Ball”, IEEE Trans. Magn. 55 (3), 1000406 (2019).
  18.  D. Spałek, “Generalization of Maxwell Stress Tensor Method for Magnetically Anisotropic Regions”, IEEE Trans. Magn. 55 (12), 1000406 (2019).
  19.  J.R. Wait, “A conductive sphere in a time varying magnetic field”, Geophysics, 16 (4), 666–672 (1951).
  20.  K. Jayasekera and I. Ciric, “Benchmark Computations of the Fields, Losses, and Forces for Conducting Spheroids in the Proximity of Current- Carrying Turns”, IEEE Trans Magn. 42 (7), 1802–1811 (2006).
  21.  I.S. Gradshteyn and I.M. Ryzhik, Tables of Integrals, Series, and Products, Academic Press, 2015.
  22.  D. Spałek, “Fourth boundary condition for electromagnetic field problems”, J. Tech. Phys. XLI (2), 129–144 (2000).
  23.  D. Spałek, “Anisotropy component of electromagnetic force and torque”, Bull. Pol. Ac.: Tech. 58 (1), 107–117 (2010).
Go to article

Authors and Affiliations

Dariusz Spałek
1
ORCID: ORCID

  1. Silesian University of Technology, Electrical Engineering Faculty, ul. Akademicka 10, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the implementation of a thermal camera for the quantitative estimation of power losses in a high frequency planar transformer (100 kHz/ 5600 VA). The methodology is based on the observation of the transient temperature rise and determination of the power losses by means of curves representing the derivative of temperature as a function of power losses dissipated in the transformer. First, the thermal calibration characteristics had to be obtained from a simple experiment, where power losses are generated by DC current in the ferrite core and windings. Next, experimental investigations focused on the determination of the transformer power losses for a short circuit and no load, with a resistive load and with the rectifier as a load were carried out. Finally, to verify the obtained results, analytical calculations based on Dowell’s and modified Steinmetz’s equations were additionally made, which showed a good convergence. The proposed method is easy to implement and can be used as an alternative to the calorimetric method which is time-consuming and requires a complicated measurement setup.

Go to article

Authors and Affiliations

Roman Barlik
Mieczysław Nowak
Piotr Grzejszczak
Mariusz Zdanowski
Download PDF Download RIS Download Bibtex

Abstract

The work is intended to extend the application of a smart transformer on a radial distribution system. In this paper, an updated algorithm on the backward/forward power flow is introduced. The so-called direct approach of power flow is employed and analyzed. In addition, the paper focused on integrating a smart transformer to the network and solving the updating network also using the direct approach load flow. The solution of the smart transformer using the direct approach power flow method is quite straightforward. This model is applied to radial distribution systems which are the IEEE 33- and IEEE 69-bus systems as a case study. Also, the paper optimizes the best allocation of the smart transformer to reduce the power losses of the grid.
Go to article

Bibliography

[1] Coster E., Myrzik J.M., Kruimer J., Kling W., Integration Issues of Distributed Generation in Distribution Grids, Proceedings of the IEEE, vol. 99, no. 1 (2011).
[2] Sood K., HVDC and FACTS Controllers: Applications of Static Converters in Power Systems, Springer (2004).
[3] Anan V., Sanjeev Kumar Mallik S.K., Power flow analysis and control of distributed FACTS devices in power system, Archives of Electrical Engineering, vol. 67, no. 3, pp. 545–561 (2018).
[4] Wang J., Huang A., Sung W., Liu Y., Baliga B., Smart grid technologies, IEEE Industrial Electronics Magazine, vol. 3, no. 2, pp. 16–23 (2009).
[5] Liserre M., Buticchi G., Andresen M., De Carne G., Costa L., Zou Z., The Smart Transformer: Impact on the Electric Grid and Technology Challenges, IEEE Industrial Electronics Magazine, vol. 10, no. 2, pp. 46–58 (2016).
[6] Freedman D., Smart transformers-controlling the flow of electricity to stabilize the grid, MIT Technology Review, 10 Emerging Technologies Breakthroughs, pp. 44–45 (2011).
[7] Pournaras E., Vasirani M., Kooij R., Aberer K., Decentralized planning of energy demand for the management of robustness and discomfort, IEEE Transactions on Industrial Informatics, vol. 10, no. 4, pp. 2280–2289 (2014).
[8] Belivanis M., Bell K., Coordination of phase-shifting transformers to improve transmission network utilisation, in 2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe), IEEE, pp. 1–6 (2010).
[9] Teng J.-H., A direct approach for distribution system load flow solutions, IEEE Trans Power Delivery, vol. 18, no. 3, pp. 882–887 (2003).
[10] Shirmohammadi D., Hong H.W., Semlyen A., Luo G.X. , A compensation-based power flow method for weakly meshed distribution and transmission networks, IEEE Transactions on Power Systems, vol. 3, no. 2, pp. 753–62 (1988).
[11] Cano J.M., Rejwanur M., Mojumdar R., Norniella J.G., Orcajo G.A., Phase shifting transformer model for direct approach power flow studies, International Journal of Electrical Power and Energy Systems, vol. 91, pp. 71–79 (2017).
[12] Mahmoud I.M., Swief R., Abdelsalam T., Tuned Hyper Reconfiguration Analysis applying Plant Growth Algorithm, 2019 21st International Middle East Power Systems Conference (MEPCON), Tanta University, Cairo, Egypt, pp. 884–889 (2019).
[13] Baran M.E., Wu F.F., Network reconfiguration in distribution systems for loss reduction and load balancing, IEEE Trans Power Delivery, vol. 4, no. 2, pp. 1401–1407 (1989).
[14] Samman M.A., Mokhlis H., Mansor N., Mohamad H., Suyono H., Sapari N.M., Fast Optimal Network Reconfiguration with Guided Initialization Based on a Simplified Network Approach, IEEE Access, vol. 8, pp. 11948–11963 (2020).
Go to article

Authors and Affiliations

Ibrahem Mohamed A. Mahmoud
1 2
Tarek Saad Abdelsalam
2
Rania Swief
2

  1. Faculty of Energy and Environmental Engineering, The British University in Egypt, Cairo, Egypt
  2. Electrical Power and Machine Engineering Department, Ain Shams University, Cairo, Egypt
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the article is a comparison between DC/DC topologies with a wide input voltage range. The research also explains how the implementation of GaN E‑HEMT transistors influences the overall efficiency of the converter. The article presents a process of selection of the most efficient topology for stabilization of the battery storage voltage (9 V – 36 V) at the level of 24 V, which enables the usage of ultracapacitor energy storage in a wide range of applications, e.g., in automated electric vehicles. In order to choose the most suitable topology, simulation and laboratory research were conducted. The two most promising topologies were selected for verification in the experimental model. Each of the converters was constructed in two versions: with Si and with GaN E-HEMT transistors. The paper presents experimental research results that consist of precise power loss measurements and thermal analysis. The performance with an increased switching frequency of converters was also examined.
Go to article

Bibliography

[1] M. Nowak and R. Barlik, „Poradnik inżyniera energoelektronika,” in WNT, Warszawa, pp.161-194, 1998. (in Polish)
[2] N. Mohan, W. P. Robbins, T. M. Undeland, and N. Mohan, “Solutions manual: power electronics: converters, applications, and design,” New York: Wiley, 1989.
[3] L. Wuidart, “Topologies For Switched Mode Power Supplies,” STMicroelectronics, 1999.
[4] M. Zehendner and M. Ulmann, “Power Topologies Handbook,” Texas Instrument, pp.23-171, 2016.
[5] X. Weng, X. Xiao, W. He, Y. Zhou, Y. Shen, W. Zhao, and Z. Zhao, "Comprehensive comparison and analysis of non-inverting buck boost and conventional buck boost converters" The Journal of Engineering, vol. 2019, no. 16, pp. 3030–3034, 2019. DOI: 10.1049/joe.2018.8373
[6] M. Luthfansyah, S. Suyanto, and A. Bakarr Momodu Bangura, "Evaluation and Comparison of DC-DC Power Converter Variations in Solar Panel Systems Using Maximum Power Point Tracking (MPPT) Flower Pollination Algorithm (FPA) Control" E3S Web of Conferences, vol. 190, p. 00026, 2020. DOI: 10.1051/e3sconf/202019000026
[7] B. Amri and M. Ashari, "The comparative study of Buck-boost, Cuk, Sepic and Zeta converters for maximum power point tracking photovoltaic using P&O method" 2015 2nd International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), pp. 327-332, 2015. DOI: 10.1109/ICITACEE.2015.7437823
[8] M. V. D. de Sá and R. L. Andersen, "Dynamic modeling and design of a Cúk converter applied to energy storage systems" 2015 IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference (COBEP/SPEC), pp. 1-6. DOI: 10.1109/COBEP.2015.7420080, 2015
[9] B. M. M. Mwinyiwiwa and J. Dunia, "Performance Comparison between ĆUK and SEPIC Converters for Maximum Power Point Tracking Using Incremental Conductance Technique in Solar Power Applications," World Academy of Science, Engineering and Technology International Journal of Computer and Systems Engineering , vol. 7, no. 12. DOI: 10.5281/zenodo.1089293, 2013.
[10] Y. Attia and M. Youssef, "GaN on silicon E-HEMT and pure silicon MOSFET in high frequency switching of EV DC/DC converter: A comparative study in a nissan leaf," 2016 IEEE International Telecommunications Energy Conference (INTELEC), pp. 1-6, 2016. DOI: 10.1109/INTLEC.2016.7749112
[11] S. K. Pullabhatla, P. B. Bobba, and S. Yadlapalli, "Comparison of GAN, SIC, SI Technology for High Frequency and High Efficiency Inverters," E3S Web of Conferences, vol. 184, p. 01012, 2020. DOI: 10.1051/e3sconf/202018401012
[12] A. Deihimi and M. E. Mahmoodieh, "Analysis and control of battery‐integrated dc/dc converters for renewable energy applications" IET Power Electronics, vol. 10, no. 14, pp. 1819–1831, 2017. DOI: 10.1049/iet-pel.2016.0832
[13] R. Nowakowski and N. Tang, "Efficiency of synchronous versus nonsynchronous buck converters, " Texas Instruments, 2009. [14] Gan Systems, “GS61008T datasheet, ”, 2021 online: www.gansystems.com (2021).
[15] Infineon, “IPP030N10N5 datasheet”, Rev.2.3,2016-10-03, 2021. online: www.infineon.com.
[16] P. Grzejszczak , A. Czaplicki , M. Szymczak , R. Barlik „The impact of snubber circuits on switching energy losses in high frequency converters” Przeglad Elektrotechniczny, vol. 96, no. 06, pp 93-97, 2020, (in Polish). DOI: 10.15199/48.2020.06.17
[17] GN012 Application Guide Design with GaN Enhancement Mode HEMT, , 2021 online: www.gansystems.com (2021).
[18] M. Koszel and P. Grzejszczak, "Power loss estimating in GaN E-HEMT based synchronous buck-boost converter," 2020 Progress in Applied Electrical Engineering (PAEE), 2020, pp. 1-6. DOI: 10.1109/PAEE50669.2020.9158576
[19] D. Craig, "Common misconceptions about the MOSFET body diode," GaN Systems, 23-Oct-2019. online: https://gansystems.com/newsroom/common-misconceptions-about-the-mosfet-body-diode/ (2021)
Go to article

Authors and Affiliations

Mikołaj Koszel
1
Piotr Grzejszczak
1
Bartosz Nowatkiewicz
2
Kornel Wolski
1

  1. Warsaw University of Technology, Institute of Control and Industrial Electronics, Poland
  2. Wibar Technology Ltd., Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a proposition of the theoretical-experimental method of determination of power losses in the transversely vibrating rubber V-belt of continuously variable transmission. The article comprises the results of experimental tests conducted on a special test stand with a complete scooter drivetrain powered by a small two-stroke internal combustion engine. Such a configuration allows ensuring real CVT working conditions. A high-speed camera was used for the contactless measurement of belt vibrations and time-lapse image analysis was performed in dedicated software. An axially moving Euler–Bernoulli beam was assumed as the mathematical model. Longitudinal vibrations and nonlinear effects were omitted. Additionally, it was assumed that the belt material behaves according to the Kelvin–Voigt rheological model. Analysis of the damped free vibrations of the cantilever beam, made of the belt segment, allowed to determine the equivalent bending damping coefficient. The CVT power losses, due to bending in the rubber transmission belt, were obtained for the fixed working conditions after numerical calculations. The proposed methodology is a new approach in this research area, which allows to obtain results impossible to achieve with other measurement methods.
Go to article

Authors and Affiliations

Waldemar Łatas
1
ORCID: ORCID
Adam Kot
2
ORCID: ORCID

  1. Department of Applied Mechanics and Biomechanics, Faculty of Mechanical Engineering, Cracow University of Technology, Poland
  2. Department of Automotive Vehicles, Faculty of Mechanical Engineering, Cracow University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

Feeder reconfiguration (FR), capacitor placement and sizing (CPS) are the two renowned methods widely applied by the researchers for loss minimization with node voltage enrichment in the electrical distribution network (EDN), which has an immense impact on economic savings. In recent years, optimization of FR and CPS together can proficiently yield better power loss minimization and save costs compared to the individual optimization of FR and CPS. This work proposes an application of an improved salp swarm optimization technique based on weight factor (ISSOT-WF) to solve the cost-based objective function using CPS with and without FR for five different cases and three load levels, subject to satisfying operating constraints. In addition, to ascertain the impact of real power injection on additional power loss reduction, this work considers the integration of dispersed generation units at three optimal locations in capacitive compensated optimal EDN. The effectiveness of ISSOT-WF has been demonstrated on the standard PG&E-69 bus system and the outcomes of the 69-bus test case have been validated by comparing with other competing algorithms. Using FR and CPS at three optimal nodes and due to power loss reduction, cost-saving reached up to a maximum of 71%, and a maximum APLR of 26% was achieved after the installation of DGs at three optimal locations with the significant improvement in the bus voltage profile.
Go to article

Authors and Affiliations

G. Srinivasan
ORCID: ORCID
K. Amaresh
1
Kumar Reddy Cheepathi
1

  1. Department of Electrical & Electronics Engineering, KSRM College of Engineering, Yerramasupalli, Kadappa – 516003, Andhra Pradesh, India
Download PDF Download RIS Download Bibtex

Abstract

Hybridization of meta-heuristic algorithms plays a major role in the optimization problem. In this paper, a new hybrid meta-heuristic algorithm called hybrid pathfinder algorithm (HPFA) is proposed to solve the optimal reactive power dispatch (ORPD) problem. The superiority of the Differential Evolution (DE) algorithm is the fast convergence speed, a mutation operator in the DE algorithm incorporates into the pathfinder algorithm (PFA). The main objective of this research is to minimize the real power losses and subject to equality and inequality constraints. The HPFA is used to find optimal control variables such as generator voltage magnitude, transformer tap settings and capacitor banks. The proposed HPFA is implemented through several simulation cases on the IEEE 118-bus system and IEEE 300-bus power system. Results show the superiority of the proposed algorithm with good quality of optimal solutions over existing optimization techniques, and hence confirm its potential to solve the ORPD problem.
Go to article

Bibliography

  1.  M. Gwozd and L. Ciepliński, “Power supply with parallel reactive and distortion power compensation and tunable inductive filter-part 1”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, pp. 401–408, 2020, doi: 10.24425/BPASTS.2020.133383.
  2.  M.N. Acosta, D. Topic, and M.A. Andrade, “Optimal Microgrid–Interactive Reactive Power Management for Day–Ahead Operation”, Energies, vol. 14, no. 5, p. 1275, 2021, doi: 10.3390/en14051275.
  3.  A.M. Tudose, I.I. Picioroaga, D.O. Sidea, and Co. Bulac, “Solving Single- and Multi-Objective Optimal Reactive Power Dispatch Problems Using an Improved Salp Swarm Algorithm”, Energies, vol. 14, no. 5, p. 1222, 2021, doi: 10.3390/en14051222.
  4.  E. Canelas, T. Pinto-Varela, and B. Sawik, “Electricity Portfolio Optimization for Large Consumers: Iberian Electricity Market Case Study”, Energies, vol. 13, no. 9, p. 2249, 2020, doi: 10.3390/en13092249.
  5.  V. Suresh and S.S. Kumar, “Optimal reactive power dispatch for minimization of real power loss using SBDE and DE-strategy algorithm”, J. Ambient Intell. Hum. Comput., 2020, doi: 10.1007/s12652-020-02673-w.
  6.  H. Yapici and N. Cetinkaya, “A new meta-heuristic optimizer: pathfinder algorithm”, Appl. Soft Comput., vol. 78, pp. 545–568, 2019, doi: 10.1016/j.asoc.2019.03.012.
  7.  R. Storn and K. Price, “Differential evolution – A simple and efficient adaptive scheme for global optimization over continuous spaces,” J. Global Optim., vol. 11, pp. 341– 359, 1997, doi: 10.1023/A:1008202821328.
  8.  R.P. Singha and S.P. Ghoshal, “Optimal reactive power dispatch by particle swarm optimization with an aging leader and challengers”, Appl. Soft Comput., vol. 29, pp. 298–309, 2015, doi: 10.1016/j.asoc.2015.01.006.
  9.  M. Ghasemi et. al, “A new hybrid algorithm for optimal reactive power dispatch problem with discrete and continuous control variables,” Appl. Soft Comput., vol. 22, pp. 126–140, 2014, doi: 10.1016/j.asoc.2014.05.006.
  10.  M. Ghasemi and M. Ghanbarian, “Modified teaching learning algorithm and double differential evolution algorithm for optimal reactive power dispatch problem: A comparative study”, Inf. Sci., vol. 278, pp. 231–249, 2014, doi: 10.1016/j.ins.2014.03.050.
  11.  B. Mandal and P.K. Roy, “Optimal reactive power dispatch using quasi-oppositional teaching learning based optimization”, Electr. Power Energy Syst., vol. 53, pp. 123–134, 2013, doi: 10.1016/j.ijepes.2013.04.011.
  12.  S Mouassa and A. Salhi, “Ant lion optimizer for solving optimal reactive power dispatch problem in power systems”, Eng. Sci. Technol., vol. 20, pp 885–895, 2017, doi: 10.1016/j.jestch.2017.03.006.
  13.  S. Mugemanyi et. al., “Optimal Reactive Power Dispatch Using Chaotic Bat Algorithm”, IEEE Access, vol. 8, pp. 65830–65867, 2020, doi: 10.1109/ACCESS.2020.2982988.
  14.  W.M. Villa-Acevedo and J.M. Lopez-Lezama, “A novel constraint handling approach for the optimal reactive power dispatch problem”, Energies, vol. 11, p. 2352, 2018, doi: 10.3390/en11092352.
  15.  R. Zimmerman, C.E. Murillo-Sanchez, and D. Gan, “MATPOWER 6.0, power systems engineering research center (PSERC)”, 2005, [Online]. Available: https://matpower.org/docs/MATPOWER-manual-6.0.pdf.
Go to article

Authors and Affiliations

V. Suresh
1
S. Senthil Kumar
1

  1. Department of Electrical and Electronics Engineering, Government College of Engineering, Salem-11, India
Download PDF Download RIS Download Bibtex

Abstract

This article presents a new efficient optimization technique namely the Multi- Objective Improved Differential Evolution Algorithm (MOIDEA) to solve the multiobjective optimal power flow problem in power systems. The main features of the Differential Evolution (DE) algorithm are simple, easy, and efficient, but sometimes, it is prone to stagnation in the local optima. This paper has proposed many improvements, in the exploration and exploitation processes, to enhance the performance of DE for solving optimal power flow (OPF) problems. The main contributions of the DE algorithm are i) the crossover rate will be changing randomly and continuously for each iteration, ii) all probabilities that have been ignored in the crossover process have been taken, and iii) in selection operation, the mathematical calculations of the mutation process have been taken. Four conflicting objective functions simultaneously have been applied to select the Pareto optimal front for the multi-objective OPF. Fuzzy set theory has been used to extract the best compromise solution. These objective functions that have been considered for setting control variables of the power system are total fuel cost (TFC), total emission (TE), real power losses (RPL), and voltage profile (VP) improvement. The IEEE 30-bus standard system has been used to validate the effectiveness and superiority of the approach proposed based on MATLAB software. Finally, to demonstrate the effectiveness and capability of the MOIDEA, the results obtained by this method will be compared with other recent methods.
Go to article

Authors and Affiliations

Murtadha Al-Kaabi
1
ORCID: ORCID
Jaleel Al Hasheme
2
ORCID: ORCID
Layth Al-Bahrani
3
ORCID: ORCID

  1. Ministry of Education Baghdad, Iraq
  2. University Politehnica of Bucharest, Bucharest, Romania
  3. Al-Mustansiriyah University Baghdad, Iraq

This page uses 'cookies'. Learn more