Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Technical development, new applications and requests for increased accuracy in georeferencing are setting new demands for accuracy and reliability of reference frames. Due to crustal deformations and local movements of benchmarks, a static reference network deteriorates with time, thus eventually requiring update of the whole system. Technically, renewal of a reference frame is straightforward and should be done whenever enough new data or updated information exist to get an improvement in accuracy. An example is the International Terrestrial Reference Frame, ITRF, which is renewed regularly. The situation is more complicated with national reference frames which may have been given a legal status, and parameters defined by the national legislation. Even without that, renewal and implementation of such a frame is a multi-million euro project taking years to complete. Crustal deformations and movements deteriorate static reference frames (defined by fixed/static coordinates of benchmarks) with time. Eventually, distortions in a static reference frame will become bigger than the uncertainties of GNSS measurements, thus deteriorating the obtainable accuracy of the measurement technique. Instead of a static reference frame, one can use semi-kinematic or kinematic approach where either the transformation from global to the national reference frame or the coordinates of reference frame benchmarks are time-dependent. In this paper we give a short overview of the topic, and discuss on technical issues and future aspects of the reference frames in the viewpoint of National Mapping and Cadastre Authorities (NMA) with an example on the national strategy in Finland.
Go to article

Authors and Affiliations

Markku Poutanen
Pasi Häkli
Download PDF Download RIS Download Bibtex

Abstract

The article presents the reviewed and summarised research activities of Polish research groups on reference frames and reference networks in a period of 2019–2022. It contains the results on the implementation of latest resolutions on reference systems of the International Union of Geodesy and Geophysics and the International Astronomical Union focusing on changes in the consecutive issues of the Astronomical Almanac of the Institute of Geodesy and Cartography, Warsaw. It further presents the status of the implementation of the European Terrestrial Reference System 1989 (ETRS89) in Poland, monitoring the terrestrial reference frame, including research on global terrestrial reference frames, GNSS data analysis within the EUREF Permanent Network, research on GNSS receiver antenna phase centres, research on impact of non-tidal loading effects on position solutions, and on station velocities. Then the activities concerning the realization of ITRS and ETRS89 in Poland are discussed, including operational work of GNSS IGS/EPN stations as well as operational work of the laser ranging station of the International Laser Ranging Service, with special emphasis on the Polish active GNSS network for the realization of ETRS89 and maintenance of the vertical control network. Extensive research activities are observed in the field of implementation of the International Terrestrial Gravity Reference Frame in Poland, maintenance and modernization of gravity control network in Poland but also in Sweden, establishment of gravity control network in Ireland based on absolute gravity survey as well as maintenance of the national magnetic control network in Poland which is traditionally performed on a regular basis.
Go to article

Authors and Affiliations

Jan Kryński
1
ORCID: ORCID
Tomasz Liwosz
2
ORCID: ORCID

  1. Institute of Geodesy and Cartography, Warsaw, Poland
  2. Warsaw University of Technology, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The European reference frame ETRF2000 was introduced on the territory of Poland on 1 July 2013, named PL-ETRF2000, as a result of the appropriate measurement campaign 2008-2011. The new PL-ETRF2000 reference frame has replaced the previously used PL-ETRF89 frame, which had more than 10 years of history in Poland until 2013, implemented in almost all geodetic and cartographic “products”, in geodetic networks, economic map systems and databases. The relationship of the new reference frame with the previously used PL-ETRF89 frame has become an important practical issue. Currently, all position services of the ASG-EUPOS (Active Geodetic Network – EUPOS) system use only the PL-ETRF2000 reference frame, which also results from the relevant legal and technical regulations. The relationships between the frames was considered in two aspects: “theoretical”, expressed by conformal (Helmert, 7-parameter) transformation, and “empirical”, based on an interpolation grid that allows to take into account local distortions of the PL-ETRF89 frame. The estimation of the parameters of the conformal transformation model was based on 330 points of the POLREF network, while to create an interpolation grid approximately 6500 points of the old triangulation network were additionally used, after new adjustment in PL-ETRF200 reference frame. Basic algorithms for the transformation between two frames and mapping systems are implemented in the new version of the TRANSPOL program, which is available on the web ( www.gugik.gov.pl).
Go to article

Bibliography

Balcerzak, J. (1994). Odwzorowanie Gaussa-Krügera w szerokiej 12° strefie dla obszaru Polski. IX Szkoła Kartograficzna. Komorowo, 10–14.10.1994.

Bosy, J. (2011). Weryfikacja wyników integracji podstawowej osnowy geodezyjnej na obszarze kraju ze stacjami referencyjnymi systemu ASG-EUPOS. Wrocław, 30.11.2011. Raport dla GUGiK Warszawa.

Deakin, R.E. (1998). 3D Coordinate transformations. Survey. Land Inf. Systems. 58, 4, pp. 223–234.

Deutsch, R. (1965). Estimation Theory. Englewood Cliffs: Prentice-Hall, Inc.

Jaworski, L. (2011). Zintegrowanie podstawowej osnowy geodezyjnej na obszarze Polski ze stacjami referencyjnymi systemu ASG-EUPOS ETAP IV. Opracowanie i wyrównanie obserwacji GNSS. Raport CBK dla GUGiK, lipiec 2011, Warszawa (Pomiary wykonane przez konsorcjum firm geodezyjnych).

Hausbrandt, S. (1971). Rachunek wyrównawczy i obliczenia geodezyjne. Tom I i II. Warszawa: PPWK. Transformation between the PL-ETRF89 and PL-ETRF2000 frames 19

Kadaj, R. (2001). Formuły odwzorowawcze i parametry układów współrzędnych (Mapping formulas and parameters of coordinate systems). Wytyczne Techniczne G-1.10. GUGiK 2001, ISBN-83-239- 1473-7.

Kadaj, R. and Świętoń, T. (2012). TRANSPOL wersja 2.06 – program do transformacji współrzędnych i wysokości w państwowym systemie odniesień przestrzennych – metody, algorytmy i opis programu (TRANSPOL version 2.06 – a program for the transformation of coordinates and heights in the state system of spatial references – methods, algorithms and description of the program). Internet publication of GUGiK – Head of the Office of Geodesy and Cartography, www.gugik.gov.pl.

Kadaj R. (2013). Skutki metryczne zmiany układów odniesienia: PL-ETRF89 na PL-ETRF2000 oraz PLKRON86- NH na PL-EVRF2007-NH w obszarze Polski (Metric effects of change of reference systems: PL-ETRF89 on PL-ETRF2000 and PL-KRON86-NH on PL-EVRF2007-NH in the area of Poland). In conf. Sekcji Geod. Sat. Komitetu Badań Kosmicznych i Satelitarnych PAN “Satelitarne metody wyznaczania pozycji we współczesnej geodezji i nawigacji”. AGH, Cracow, 24–27.09.2013.

Kozakiewicz, W. (1998). Wyrównanie pierwsza klasa. Geodeta, no. 2(33).

Liwosz, T., Rogowski, J., Kruczyk, M. et al. (2011). Wyrównanie kontrolne obserwacji satelitarnych GNSS wykonanych na punktach ASG-EUPOS, EUREF-POL, EUVN, POLREF i osnowy I klasy wraz z ocena wyników. Katedra Geodezji i Astronomii Geodezyjnej Wydział Geodezji i Kartografii Politechnika Warszawska. Warszawa, 15.12.2011. Raport dla GUGiK Warszawa.

Watson, G.A. (2006). Computing Helmert transformation. J. Comput. Appl. Math., 197, 387–394.

Zawadzki, J. (2011). Metody geostatyczne (Geostatic methods).Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej.
Go to article

Authors and Affiliations

Roman Kadaj
1
ORCID: ORCID

  1. Rzeszów University of Technology, Rzeszów, Poland

This page uses 'cookies'. Learn more