Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The ventilation system in underground mine is an important guarantee for workers’ safety and environmental conditions. As the mining activities continue, the mine ventilation system is constantly changing. Therefore, to ensure ventilation on demand, the mine ventilation network regulation and optimization are very important. In this paper, the path method based on graph theory is studied. However, the existing path algorithms do not meet the needs of actual mine ventilation regulation and optimization. Therefore, in this paper, the path algorithm is optimized and improved from four aspects. First, based on the depth-first search algorithm, the independent path search algorithm is proposed to solve the problem of false paths in the independent path searched when there is a unidirectional circuit in the ventilation network. Secondly, the independent path calculation formula is amended to ensure that the number of the independent path for the ventilation network with a downcast and an upcast shaft, multi-downcast and multi-upcast shaft and unidirectional circuits is calculated accurately. Thirdly, to avoid both an increase in the number of control points in the multi-fan ventilation network and disturbances in the airflow distribution by determining the reference path through all the independent paths, all the independent paths with the shared fan must be identified. Fourthly, The number and the position of the regulators in the ventilation network are determined and optimized, and the final optimization of air quantity regulation for the ventilation network is realized. The case study shows that this algorithm can effectively and accurately realize the regulation of air quantity of a multi-fan mine ventilation network.
Go to article

Bibliography

[1] M.J. McPherson, Subsurface Ventilation and Environmental Engineering. 1th edn, Springer Science & Business Media, New York 1993.
[2] K. Chen, J. Si, F. Zhou, R. Zhang, H. Shao, H. Zhao, Optimization of air quantity regulation in mine ventilation networks using the improved differential evolution algorithm and critical path method. Int. J. Min. Sci. Technol 25, 1, 79-84 (2015). DOI: https://doi.org/10.1016/j.ijmst.2014.11.001
[3] J. Huang, A study on optimization of control algorithm and key technologies of 3D visualization for mine ventilation system. PhD. Central South University, 2012.
[4] A.P. Sasmito, E. Birgersson, H.C. Ly, A.S. Mujumdar, Some approaches to improve ventilation system in underground coal mines environment – A computational fluid dynamic study. Tunnelling and Underground Space Technology 34, 82-95 (2013). DOI: https://doi.org/10.1016/j.tust.2012.09.006
[5] C. Xie, H. Nguyen, X. Bui, V. Nguyen, J. Zhou.Predicting roof displacement of roadways in underground coal mines using adaptive neuro-fuzzy inference system optimized by various physics-based optimization algorithms. Journal of Rock Mechanics and Geotechnical Engineering 13 (6), 1452-1465 (2021). DOI: https://doi.org/10.1016/j.jrmge.2021.07.005
[6] E. Acuña, I. Lowndes, A Review of Primary Mine Ventilation System Optimization. Interfaces 44, 163-175 (2014). DOI: https://doi.org/10.1287/inte.2014.0736
[7] H . Si, Dynamic Monitoring of Airflow Parameters and Air Quantity Regulation Optimization for Mine Ventilation System. PhD, University of Mining and Technology, 2012.
[8] L.H. Cheng, T.H. Ueng, C.W. Liu, Simulation of ventilation and fire in the underground facilities. Fire Saf. J 36, 6, 597-619 (2001). DOI: https://doi.org/10.1016/S0379-7112(01)00013-3
[9] T . Isobe, H. Nohara, Y. Tominaga, T. Sato, Y. Ishijima, An Analytical Investigation of Mine Ventilation Network Using a Graph Theory: Calculating method of underground roadway network using graph theory (2nd Report) 95, 337-341 (1979).
[10] A.T.J. Moll, I.S. Lowndes, Graph theory applied to mine ventilation analysis. Bulletin. The Institute of Mathematics and its Applications, 28 1992.
[11] Y. Hu, O.I. Koroleva, M. Krstić, Nonlinear control of mine ventilation networks. Systems & Control Letters 49, 4, 239-254 (2003). DOI: https://doi.org/10.1016/S0167-6911(02)00336-5
[12] T .H. Ueng, Y.J. Wang, Analysis of mine ventilation networks using nonlinear programming techniques. International Journal of Mining Engineering 2, 3, 245-252 (1984).
[13] X.S. Wu, E. Topuz, Analysis of mine ventilation systems using operations research methods. International Transactions in Operational Research 5, 4, 245-254 (1998). DOI: https://doi.org/10.1016/S0969-6016(97)00011-7
[14] G . Xu, J. Huang, B. Nie, D. Chalmers, Z. Yang, Calibration of Mine Ventilation Network Models Using the Non- Linear Optimization Algorithm. Energies 11, 1, 31 (2017).
[15] M.O. Bustamante-Rúa, A.J. Daza-Aragón, P. Bustamante-Baena, Simulation software VENTSIM™ the influence of implementation of work abandoned sealings ventilation of an underground coal mine. Boletín de Ciencias de la Tierra 90, 43, 5-13 (2018).
[16] C. Pritchard, Validation of the Ventgraph program for use in metal /non-metal mines. Proceedings of the 13th U.S./ North American Mine Ventilation Symposium, Sudbury, Ontario, Canada, 455-462 (2010).
[17] F. Wei, F. Zhu, H. Lv, The Use of 3D Simulation System in Mine Ventilation Management. Procedia Eng. 26, 1370-1379 (2011). DOI: https://doi.org/10.1016/j.proeng.2011.11.2313
[18] A. Krach, Determining diagonal branches in mine ventilation networks. Arch. Min. Sci. 59, 4, 1097-1105 (2014). DOI: https://doi.org/10.2478/amsc-2014-0076
[19] G . Pach, Optimization of forced air flow by the comparison of positive and negative regulations in mine ventilation network. Arch. Min. Sci. 63, 4, 853-870 (2018). DOI: https://doi.org/10.24425/ams.2018.124980
[20] S.J. Bluhm, W.M. Marx, F.H. Von Glehn, et al. VUMA mine ventilation software [J]. J. Mine Vent. Soc. S. Afr. 54 (3), 65-72 (2001).
[21] A. Chatterjee, L. Zhang, X. Xia, Optimization of mine ventilation fan speeds according to ventilation on demand and time of use tariff Applied. Energy 146, 65-73 (2015). DOI: https://doi.org/10.1016/j.apenergy.2015.01.134
[22] D.R. Scott, F.B.Hinsley, Ventilation Network Theory. Colliery Eng. 28, 326, 159-66 (1951).
[23] W. Trutwin, Use of Digital Computers for the Study of Non-Steady States and Automatic Control Problems in Mine Ventilation Networks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 9 (2), 289-323 (1972).
[24] Y .J. Wang, A critical path approach to mine ventilation networks with controlled flow. Society Mining Engineering AIME 1981 272,1862-72 (1977).
[25] R.L. Xu, S.R. Shi, The path method of the regulation of air quantity in the mine ventilation network. Journal FuXin Mining Institute 3, 3, 21-30 (1984).
[26] W. Hu, I. Longson, A computer method for the generalized controlled flow problem in ventilation networks. Min. Sci. Technol. 8 (2), 153-167 (1989). DOI: https://doi.org/10.1016/S0167-9031(89)90563-X
[27] H . Wang, Theory and algorithm of mine ventilation network. University of Mining and Technology press, Xu Zhou 1996.
[28] K.Y. Volokh, On foundations of the Hardy Cross method. Int. J. Solids Struct. 39, 16, 4197-4200 (2002). DOI: https://doi.org/10.1016/S0020-7683(02)00345-1
[29] Y .J. Wang, Solving mine ventilation networks with fixed and non-fixed branches. Mining Engineering (Littleton, Colorado) 42, 12 (1990).
[30] E. Acuña, S. Hall, I. Lowndes, Free and semi controlled splitting network optimisation using gas to justify the use of regulators. IV International Conference of Mining Innovation, 369-393 (2010).
[31] W. Dziurzyński, A. Krach, T. Pałka, Airflow Sensitivity Assessment Based on Underground Mine Ventilation Systems Modeling. Energies 10, 10, 1451 (2017). DOI: https://doi.org/10.3390/en10101451
[32] Y . Li, X.Pan, The algorithm research of demand sub-wind based on path. Mod. Min. 6, 60-61 (2010).
[33] H . An, J. Shi, X. Wang, L. Lyu, Application Of Depth – First Search Method In Finding Recirculation In Mine Ventilation System. Stavební obzor – Civil Engineering Journal 26, 286-295 (2017). DOI: https://doi.org/10.14311/CEJ.2017.03.0024
[34] J. Liu, J. Jia, B. Yu, Algorithm of ventilation network with unidirectional circuit. Journal of Liaoning Technical University 23, 721-724 (2013).
[35] I . Lowndes, G.C. Dandy, T.S. Marshall, T.B. Schmidt, N.G. Simpson, G.P. Raynor, Optimization of mine ventilation networks using genetic algorithms and artificial neural networks. Paper presented at the US/North American Mine Ventilation Symposium, Sudbury, Ontario, Canada, 441-447 (2010).
[36] X. She, Y. Sun, Research on optimization algorithm wind quantity distribution in ventilation networks based on generic algorithm. International Conference on Computational Intelligence & Natural Computing, 154-158 (2010). DOI: https://doi.org/10.1109/CINC.2010.5643869
[37] M.C. Luvar, C. Lupu, V.Arad, D. Cioclea, V.M. Păsculescu, N. Mija, Computerized simulation of mine ventilation networks for sustainable decision making process. Environ. Eng. Manage. J. 13, 1445-1451 (2014).
[38] L. Wei, F. Zhou, H. Zhu, Topology theory of ventilation network and path algorithm. J. China Coal Soc. 3, 926-930 (2008). DOI: https://doi.org/10.1109/CINC.2010.5643869
[39] J. Liu, Fluid network theory. China Coal Industry Publishing House, Beijing 2002. [40] D.Y. Zhong, L.G. Wang, L. Bi, J.M. Wang, Z.H. Zhu, Algorithm of complex ventilation network solution based on circuit air-quantity method. J. China Coal Soc. 40 (02), 365-370 (2015).
Go to article

Authors and Affiliations

Jinmiao Wang
1 2
ORCID: ORCID
Mingtao Jia
1
ORCID: ORCID
Lin Bin
1
ORCID: ORCID
Liguan Wang
1
ORCID: ORCID
Deyun Zhong
1
ORCID: ORCID

  1. School of Resources and Safety Engineering, Central South University, Changsha 410083, China
  2. School of Environment and Resources, Xiangtan University, Xiangtan 411105, China

This page uses 'cookies'. Learn more