Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In two field experiments, the effect of some weed control treatments (citric acid at the rate of 10, 15 and 20%, acetic acid at the rate of 20, 30 and 40%, oxadiargyl, oxyflurfen, rice straw mulch, hand hoeing and an unweeded check control treatment) on weed growth and onion productivity in sandy soils at the Agricultural Experimental Station of the National Research Centre, Egypt was studied. The results indicated that all weeded treatments reduced the dry weight of broadleaf, grassy and total weeds as compared with the weedy check. Oxadiargyl, followed by two hand hoeing, rice straw mulch and acetic acid 40% recorded the greatest weed control efficiency. Insignificant differences were noticed between these treatments. Applying rice straw mulch increased bulb length, bulb diameter, bulb weight and onion yield by 67.52, 57.55, 45.74 and 66.22% over the weedy check, respectively. The highest values of N, P and K were obtained from rice straw mulch treatment followed by hand hoeing, oxadiargyl and acetic acid 40% treatments. It may be concluded that farmers can certainly depend on mulching or acetic acid at 40% instead of using chemical herbicides especially in organic farm systems for controlling onion weeds.

Go to article

Authors and Affiliations

Ibrahim El-Metwally
Shehata Shalaby
Download PDF Download RIS Download Bibtex

Abstract

Malaysia’s construction industry is experiencing rapid growth, translating into increased demand for cement. However, cement production pollutes the air to the detriment of the climate via CO2 emission, making research into a cementitious replacement in concrete a necessity. This paper details an experimental study of self-compacting concrete (SCC) with partial replacement of cement by rice straw ash (RSA), which is expected to result in environmental preservation due to the green materials being used in cement production. The physicomechanical properties of the SCC with RSA replacement were determined via its compressive strength, water absorption, self-workability, and fire resistance (residual strength after exposure to high temperatures). The proportion of RSA replacement used were 0%, 5%, 10%, 15%, 20%, and 25%, and all passed the slump flow test, except the 20% and 25% samples. The SCC samples with 15% of RSA replacement reported the highest compressive strength at 7 and 28 curing days and the highest residual strength post-exposure to high temperatures. The lowest percentage of water absorption was reported by the 15% of RSA replacement, with a density of 2370 kg/m3.
Go to article

Authors and Affiliations

Rafiza Abd Razak
1 2
ORCID: ORCID
Yi Qin Chin
1
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
3 2
ORCID: ORCID
Zarina Yahya
1
ORCID: ORCID
Mokhzani Khair Ishak
1
ORCID: ORCID
Sebastian Garus
4
ORCID: ORCID
Marcin Nabiałek
5
ORCID: ORCID
Warid Wazien Ahmad Zailani
6
ORCID: ORCID
Khairil Azman Masri
7
ORCID: ORCID
Andrei Victor Sandu
8
ORCID: ORCID
Agata Śliwa
9
ORCID: ORCID

  1. Universiti Malaysia Perlis, Faculty of Civil Engineering Technology, 02100 Padang Besar, Perlis, Malaysia
  2. Centre of Excellence Geopolymer and Green Technology (CEGeoGTech)
  3. Universiti Malaysia Perlis, Faculty of Chemical Engineering, 01000, Kangar, Perlis, Malaysia
  4. Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, Czestochowa, Poland
  5. Department of Physics, Czestochowa University of Technology, Czestochowa, Poland
  6. UniversitiTeknologi MARA, School of Civil Engineering, College of Engineering, 40450 ShahAlam, Selangor, Malaysia
  7. 1 Department of Civil Engineering, College of Engineering, Universiti Malaysia Pahang, 26300 Gambang Kuantan Pahang, Malaysia
  8. Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iasi, 71 D. Man-geron Blv., 700050 Iasi, Romania
  9. Division of Materials Processing Technology and Computer Techniques in Materials Science, Silesian University of Technology, 44-100 Gliwice, Poland

This page uses 'cookies'. Learn more