Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 7
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

The Indian Cave Sandstone (Upper Pennsylvanian, Gzhelian) from the area of Peru, Nebraska, USA, has yielded

numerous isolated chondrichthyan remains and among them teeth and dermal denticles of the Symmoriiformes

Zangerl, 1981. Two tooth-based taxa were identified: a falcatid Denaea saltsmani Ginter and Hansen, 2010,

and a new species of Stethacanthus Newberry, 1889, S. concavus sp. nov. In addition, there occur a few long,

monocuspid tooth-like denticles, similar to those observed in Cobelodus Zangerl, 1973, probably representing

the head cover or the spine-brush complex. A review of the available information on the fossil record of

Symmoriiformes has revealed that the group existed from the Late Devonian (Famennian) till the end of the

Middle Permian (Capitanian).

Przejdź do artykułu

Autorzy i Afiliacje

Michał Ginter

Abstrakt

W artykule opisano wykształcenie litologiczno-facjalne skał złożowych w strefach elewacji stropu białego spągowca oraz relacje między litologią a intensywnością okruszcowania Cu-Ag. Szczególny nacisk położono na charakter enklaw pozbawionych mineralizacji bilansowej (stref bezzłożowych) wewnątrz bryły złożowej. Za strefy bezzłożowe uznaje się przestrzenie, w których mineralizacja siarczkami Cu zazwyczaj występuje, jednak jej ilość nie spełnia kryterium brzeżnego dotyczącego zawartości Cu w kopalinie. Dla zilustrowania zmienności parametrów złożowych ściśle związanych z uwarunkowaniami facjalno-litologicznymi skał goszczących, na podstawie obserwacji terenowych i wyników opróbowania złoża wykonano metodami geostatystycznymi trójwymiarowe modele litologiczne i geochemiczne dla dwóch obszarów badań. Obszary badań obejmują fragmenty Północnej Elewacji Rudnej wraz z otaczającymi elewację depresjami w granicach złóż Sieroszowice i Rudna. Dzięki przekrojom przez modele 3D scharakteryzowano wykształcenie złoża w obszarach elewacji stropu utworów piaskowcowych, gdzie profil litologiczny określany jest jako „nietypowy” z powodu braku serii łupków miedzionośnych, czyli warstwy najbardziej charakterystycznej dla złóż rud miedzi na monoklinie przedsudeckiej. Potwierdzono dużą zmienność kształtu bryły złożowej oraz nieregularność granic stref mineralizacji bilansowej i enklaw skały płonnej w złożu. Stwierdzono obecność wielkoobszarowych enklaw skały płonnej w całym profilu skał dolnego cechsztynu (obszary pozbawione bilansowego okruszcowania miedziowego) i niewielkich stref płonnych piaskowców wzbogaconych w spoiwa anhydrytowe w sąsiedztwie bloków złoża bilansowego ulokowanego w piaskowcach ilastych. Wskazano na możliwość występowania w obrębie złoża bilansowego płatów skał płonnych w stropowej warstwie białego spągowca, bezpośrednio przy granicy z dolomitem wapnistym i nieregularnych przerostów skał płonnych wewnątrz utworów piaskowcowych. Ponadto zaobserwowano niewielkie strefy silnego wzbogacenia w siarczki Cu w strefach kontaktu spoiw siarczanowych i ilastych w serii piaskowcowej białego spągowca.

Przejdź do artykułu

Autorzy i Afiliacje

Wojciech Kaczmarek
Mariusz Dudek
Katarzyna Golda
Monika Wasilewska-Błaszczyk
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The deformation properties of rocks play a crucial role in handling most geomechanical problems. However, the determination of these properties in laboratory is costly and necessitates special equipment. Therefore, many attempts were made to estimate these properties using different techniques. In this study, various statistical and soft computing methods were employed to predict the tangential Young Modulus (Eti, GPa) and tangential Poisson’s Ratio (vti) of coal measure sandstones located in Zonguldak Hardcoal Basin (ZHB), NW Turkey. Predictive models were established based on various regression and artificial neural network (ANN) analyses, including physicomechanical, mineralogical, and textural properties of rocks. The analysis results showed that the mineralogical features such as the contents of quartz (Q, %) and lithic fragment (LF, %) and the textural features (i.e., average grain size, d50, and sorting coefficient, Sc) have remarkable impacts on deformation properties of the investigated sandstones. By comparison with these features, the mineralogical effects seem to be more effective in predicting the Eti and vti. The performance of the established models was assessed using several statistical indicators. The predicted results from the proposed models were compared to one another. It was concluded that the empirical models based on the ANN were found to be the most convenient tools for evaluating the deformational properties of the investigated sandstones.
Przejdź do artykułu

Bibliografia

[1] K . Zorlu, C. Gökçeoglu, F. Ocakoglu, H.A. Nefeslioglu, S. Acikalin, Prediction of uniaxial compressive strength of sandstones using petrography-based models. Eng. Geol. 96, 141-158 (2008). DOI : https://doi.org/10.1016/j.enggeo.2007.10.009
[2] N . Ceryan, Application of support vector machines and relevance vector machines in predicting uniaxial compressive strength of volcanic rocks. J. African Earth. Sci. 100, 634-644 (2014). DOI : https://doi.org/10.1016/j.jafrearsci.2014.08.006
[3] A. Shakoor, R.E. Bonelli, Relationship between petrographic characteristics, engineering index properties, and mechanical properties of selected sandstones. Environ. Eng. Geosci. 28, 55-71 (1991). DOI : https://doi.org/10.2113/gseegeosci.xxviii.1.55
[4] A. Ersoy, M.D. Waller, Textural characterisation of rocks. Eng. Geol. 39, 123-136 (1995). DOI : https://doi.org/10.1016/0013-7952(95)00005-Z
[5] F.G. Bell, P. Lindsay, The petrographic and geomechanical properties of some sandstones from the Newspaper Member of the Natal Group near Durban, South Africa. Eng. Geol. 53, 57-81 (1999). DOI : https://doi.org/10.1016/S0013-7952(98)00081-7
[6] R. Prikryl, Assessment of rock geomechanical quality by quantitative rock fabric coefficients: limitations and possible source of misinterpretations. Eng. Geol. 87, 149-162 2006. DOI : https://doi.org/10.1016/j.enggeo.2006.05.011
[7] J.S. Coggan, D. Stead, J.H. Howe, C.I Faulks, Mineralogical controls on the engineering behavior of hydrothermally altered granites under uniaxial compression. Eng. Geol. 160, 89-102 (2013). DOI : https://doi.org/10.1016/j.enggeo.2013.04.001
[8] C .A. Ozturk, E. Nasuf, S. Kahraman, Estimation of rock strength from quantitative assessment of rock texture. Journal of the Southern African Institute of Mining and Metallurgy 114 (6), 471-480 (2014).
[9] E. Ali, W. Guang, A. Ibrahim, Microfabrics-Based Approach to Predict Uniaxial Compressive Strength of Selected Amphibolites Schists Using Fuzzy Inference and Linear Multiple Regression Techniques, Environ. Eng. Geosci. 21 (3), 235-245 (2015). DOI: https://doi.org/10.2113/gseegeosci.21.3.235
[10] X.A. Cabria, Effects of weathering in the rock and rock mass properties and the influence of salts in the coastal roadcuts in Saint Vincent and Dominica. Master Thesis, Twente University, (2015).
[11] N .Q.A.M. Yusof, H. Zabidi, Correlation of Mineralogical and Textural Characteristics with Engineering Properties of Granitic Rock from Hulu Langat, Selangor. Procedia Chemistry 19, 975-980 (2016). DOI : https://doi.org/10.1016/j.proche.2016.03.144
[12] E. Köken A. Özarslan, G. Bacak, Weathering effects on physical properties and material behavior of granodiorite rocks. In: Rock Mechanics and Rock Engineering – From the past to the future Ulusay et al. (Eds), ISRM International Symposium, EUROCK 2016, 331-336 (2016).
[13] T.K. Koca, M.Y. Koca, Classification of weathered andesitic rock materials from the İzmir Subway line on the basis of strength and deformation. Bull. Eng. Geol. Environ. 78, 3575-3592 (2019). DOI : https://doi.org/10.1007/s10064-018-1346-y
[14] M.N. Bidgoli, Z. Zhao, L. Jing, Numerical evaluation of strength and deformability of fractured rocks. Rock Mech. and Geotech. Eng. 5, 419-430 (2013). DOI: https://doi.org/10.1016/j.jrmge.2013.09.002
[15] H. Xu, W. Zhou, R. Xie, L. Da, C. Xiao, Y. Shan, H. Zhang, Characterization of Rock Mechanical Properties Using Lab Tests and Numerical Interpretation Model of Well Logs. Math. Prob. Eng. 5967159, (2016). DOI : https://doi.org/10.1155/2016/5967159
[16] J. Shu, L. Jiang, P. Kong, Q. Wang, Numerical Analysis of the Mechanical Behaviors of Various Jointed Rocks under Uniaxial Tension Loading. Appl. Sci. 9, 1824 (2019). DOI: https://doi.org/10.3390/app9091824
[17] P. Davy, C. Darcel, R. Le Goc, D. Mas Ivars, Elastic Properties of Fractured Rock Masses With Frictional Properties and Power Law Fracture Size Distributions. J. Geophys. Res. 123 (8), 6521-6539 (2018). DOI : https://doi.org/10.1029/2017JB015329
[18] M. Babaeian, M. Ataei, F. Sereshki, F. Sotoudeh, A new framework for evaluation of rock fragmentation in open pit mines. Rock Mech. Geotech. Eng. 11 (2), 325-336 (2019). DOI : https://doi.org/10.1016/j.jrmge.2018.11.006
[19] A.A. Mahmoud, S. Elkatatny, D.A. Shehri, Application of Machine Learning in Evaluation of the Static Young’s Modulus for Sandstone Formations. Sustainability 12, 1880 (2020). DOI: https://doi.org/10.3390/su12051880
[20] D . Lv, Z. Li, J. Chen, H. Liu, J. Guo, L. Shang, Characteristics of the Permian coal-formed gas sandstone reservoirs in Bohai Bay Basin and the adjacent areas. North China, Petrol. Sci. Eng. 78 (2), 516-528, (2011). DOI : https://doi.org/10.1016/j.petrol.2011.06.018
[21] A. Fan, R. Yang, N. Lenhardt, M. Wang, Z. Han, J. Li, Y. Li, Z. Zhao, Cementation and porosity evolution of tight sandstone reservoirs in the Permian Sulige gasfield, Ordos Basin (central China). Marine Petrol. Geol. 103, 276-293 (2019). DOI: https://doi.org/10.1016/j.marpetgeo.2019.02.010
[22] P. Tan, Y. Jin, L. Yuan, et al., Understanding hydraulic fracture propagation behavior in tight sandstone – coal interbedded formations: an experimental investigation. Pet. Sci. 16, 148-160 (2019). DOI : https://doi.org/10.1007/s12182-018-0297-z
[23] D .G. Roy, T.N. Singh, Predicting deformational properties of Indian coal: Soft computing and regression analysis approach. Measurement 149, 106975 (2020). DOI: https://doi.org/10.1016/j.measurement.2019.106975
[24] R. Koch, R. Sobott, Sandsteine: Entstehung, Eigenschaften, Verwitterung, Konservierung, Restaurierung. In: Siegesmund, Snethlage (eds) Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften 59, 145-174 (2008).
[25] J. Rüdrich, T. Bartelsen, R. Dohrmann, S. Siegesmund, Moisture expansion as a deterioration factor for sandstone used in buildings. Environ. Earth Sci. 63, 1545-1564 (2010). DOI: https://doi.org/10.1007/s12665-010-0767-0
[26] F.J. Pettijohn, Sand and sandstone, Springer-Verlag Berlin, (1973). e-ISBN: 978-1-4615-9974-6
[27] J.R.L Allen, Petrology, origin and deposition of the highest Lower Old Red sandstone of Shropshire, England. J. Sedimen. Res. 32 (4), 657-697 (1962).
[28] D .F. Howarth, J.C. Rowlands, Quantitative assessment of rock texture and correlation with drillability and strength properties. Rock Mech. Rock Eng. 20, 57-85 (1987). DOI: https://doi.org/10.1007/BF01019511
[29] A. Azzoni, F. Bailo, E. Rondena, et al., Assessment of texture coefficient for different rock types and correlation with uniaxial compressive strength and rock weathering. Rock. Mech. Rock. Eng. 29, 39-46 (1996). DOI : https://doi.org/10.1007/BF01019938
[30] M. Alber, S. Kahraman, Predicting the uniaxial compressive strength and elastic modulus of a fault breccia from texture coefficient. Rock Mech. Rock. Eng. 42, 117-127 (2009). DOI : https://doi.org/10.1007/s00603-008-0167-x
[31] F. Arıkan R. Ulusay, N. Aydın, Characterization of weathered acidic volcanic rocks and a weathering classification based on a rating system. Bull. Eng. Geol. Environ. 66, 415-430 (2007). DOI : https://doi.org/10.1007/s10064-007-0087-0
[32] Ö. Ündül, A. Tuğrul, On the variations of geoengineering properties of dunites and diorites related to weathering. Environ. Earth Sci. 75, 1326 (2016). DOI: https://doi.org/10.1007/s12665-016-6152-x
[33] E. Köken, S. Top, A. Özarslan, Assessment of Rock Aggregate Quality Through the Analytic Hierarchy Process (AHP). Geotech. Geol. Eng. 38, 5075-5096 (2020). DOI: https://doi.org/10.1007/s10706-020-01349-8
[34] R.H.C. Wong, K.T. Chau, P. Wang, Microcracking and grain size effect in Yuen Long Marbles. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 33 (5), 479-485 (1996). DOI: https://doi.org/10.1016/0148-9062(96)00007-1
[35] Y.H. Hatzor, V. Palchik, The influence of grain size and porosity on crack initiation stress and critical flaw length in dolomites. Int. J .Rock Mech. Min. Sci. 34 (5), 805-816 (1997). DOI : https://doi.org/10.1016/S1365-1609(96)00066-6
[36] A. Tugrul, I.H. Zarif, Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Eng. Geol. 51 (4), 303-317 (1999). DOI : https://doi.org/10.1016/S0013-7952(98)00071-4
[37] E. Eberhardt, B. Stimpson, D. Stead, Effects of grain size on the initiation and propagation thresholds of stressinduced brittle fractures. Rock Mech. Rock Eng. 32, 81-99 (1999). DOI : https://doi.org/10.1007/s006030050026
[38] R. Přikryl, Some microstructural aspects of strength variation in rocks. Int. J. Rock Mech. Min. Sci. 38 (5), 671-682 (2001). DOI: https://doi.org/10.1016/S1365-1609(01)00031-4
[39] M. Cai, P.K. Kaiser, Y. Tasaka, T. Maejima, H. Morioka, M. Minami, Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations. Int. J. Rock Mech. Min. Sci. 41 (5), 833-847 (2004). DOI: https://doi.org/10.1016/j.ijrmms.2004.02.001
[40] M. Nicksiar, C.D. Martin, Crack initiation stress in low porosity crystalline and sedimentary rocks. Eng. Geol. 154, 64-76 (2013). DOI: https://doi.org/10.1016/j.enggeo.2012.12.007
[41] E. Köken, Investigations on Fracture Evolution of Coal Measure Sandstones from Mineralogical and Textural Points of View. Indian Geotech. J. 50, 1024-1040 (2020). DOI: https://doi.org/10.1007/s40098-020-00427-1
[42] N . Yesiloglu-Gultekin, E.A. Sezer, C. Gokceoglu, H. Bayhan, An application of adaptive neuro fuzzy inference system for estimating the uniaxial compressive strength of certain granitic rocks from their mineral contents. Expert Sys. App. 40 (3), 921-928 (2013). DOI: https://doi.org/10.1016/j.eswa.2012.05.048
[43] N .F. Hassan, O.A. Jimoh, S.A. Shehu, Z. Hareyani, The effect of mineralogical composition on strength and drillability of granitic rocks in Hulu Langat, Selangor Malaysia. Geotech. Geol. Eng. 37, 5499-5505 (2019). DOI : https://doi.org/10.1007/s10706-019-00995-x
[44] R.S. Tandon, V. Gupta, The control of mineral constituents and textural characteristics on the petrophysical & mechanical (PM) properties of different rocks of the Himalaya. Eng. Geol. 153, 125-143 (2013). DOI : https://doi.org/10.1016/j.enggeo.2012.11.005
[45] M. Rӓisӓnen, Relationships between texture and mechanical properties of hybrid rocks from the Jaala-Iitti complex, southeastern Finland. Eng. Geol. 74, 197-211 (2004). DOI: https://doi.org/10.1016/j.enggeo.2004.03.009
[46] E. Cantisani, C.A. Garzonio, M. Ricci, S. Vettori, Relationships between the petrographical, physical and mechanical properties of some Italian sandstones. Int. J. Rock Mech. Min. Sci. 60, 321-332 (2013). DOI : https://doi.org/10.1016/j.ijrmms.2012.12.042
[47] R. Ulusay, K. Tureli, M.H. Ider, Prediction of engineering properties of a selected litharenite sandstone from its petrographic characteristics using correlation and multivariate statistical techniques. Eng. Geol. 38 (1-2), 135-157 (1994). DOI: https://doi.org/10.1016/0013-7952(94)90029-9
[48] S. Kahraman, Evaluation of simple methods for assessing the uniaxial compressive strength of rock. Int. J. Rock Mech. Min. Sci. 38 (7), 981-994 (2001). DOI: https://doi.org/10.1016/S1365-1609(01)00039-9
[49] G.R. Lashkaripour, Predicting mechanical properties of mudrock from index parameters. Bull. Eng. Geol. Environ. 61, 73-77 (2002). DOI: https://doi.org/10.1007/s100640100116
[50] P.A. Hale, A. Shakoor, A Laboratory Investigation of the Effects of Cyclic Heating and Cooling, Wetting and Drying, and Freezing and Thawing on the Compressive Strength of Selected Sandstones. Environ. Eng. Geosci. 9 (2), 117-130 (2003). DOI: https://doi.org/10.2113/9.2.117
[51] C . Gokceoglu, H. Sonmez, K. Zorlu, Estimating the uniaxial compressive strength of some clay bearing rocks selected from Turkey by nonlinear multivariable regression and rule-based fuzzy models. Expert Systems 26 (2), 176-190 (2009). DOI: https://doi.org/10.1111/j.1468-0394.2009.00475.x
[52] M. Khandelwal, T.H. Singh, Correlating static properties of coal measures rocks with P-wave velocity. Int. J. Coal Geol. 79 (1-2), 55-60, (2009). DOI: https://doi.org/10.1016/j.coal.2009.01.004
[53] S. Dehghan, G.H Sattari, S. Chehreh Chelgani, M.A. Aliabadi, Prediction of uniaxial compressive strength and modulus of elasticity for Travertine samples using regression and artificial neural networks. Min. Sci. Tech. (China), 20 (1), 41-46, (2010). DOI: https://doi.org/10.1016/S1674-5264(09)60158-7
[54] S. Yagiz, Correlation between slake durability and rock properties for some carbonate rocks. Bull. Eng. Geol. Environ. 70 (3), 377-383 (2011). DOI: https://doi.org/10.1007/s10064-010-0317-8
[55] T.N. Singh, A.K. Verma, Comparative analysis of intelligent algorithms to correlate strength and petrographic properties of some schistose rocks. Eng. Comput. 28, 1-12 (2012). DOI: https://doi.org/10.1007/s00366-011-0210-5
[56] M. Khandelwal, Correlating P-wave velocity with the physicomechanical properties of different rocks. Pure Appl. Geophys. 170, 507-514 (2013). DOI: https://doi.org/10.1007/s00024-012-0556-7
[57] R. Barzegar, M. Sattarpour, M.R. Nikudel, et al., Comparative evaluation of artificial intelligence models for prediction of uniaxial compressive strength of travertine rocks, Case study: Azarshahr area, NW Iran, Model. Earth Sys. Environ. 2, 76 (2016). DOI: https://doi.org/10.1007/s40808-016-0132-8
[58] A. Teymen, E.C. Mengüç, Comparative evaluation of different statistical tools for the prediction of uniaxial compressive strength of rocks. Int. J. Min. Sci. Tech. 30 (6), 785-797 (2020). DOI : https://doi.org/10.1016/j.ijmst.2020.06.008
[59] M.L. Larrea, S.M. Castro, E.A. Bjerg, A software solution for point counting. Petrographic thin section analysis as a case study. Arab. J. Geosci. 7, 2981-2989 (2014). DOI: https://doi.org/10.1007/s12517-013-1032-0
[60] E. Köken, Size Reduction Characterization of Underground Mine Tailings: A Case Study on Sandstones. Nat. Resour. Res. 30, 867-887 (2021). DOI: https://doi.org/10.1007/s11053-020-09707-2
[61] E.F. McBride, A classification of common sandstones. J. Sediment. Petrol. 33 (3), 664-669, (1963). DOI : https://doi.org/10.1306/74D70EE8-2B21-11D7-8648000102C1865D
[62] R.H. Dott, Wackes, greywacke and matrix: what approach to immature sandstone classification. J. Sedimen. Res. 34, 625-632 (1964).
[63] R.L. Folk, W.C. Ward, Brazos River bar, a study in the significance of grain size parameters. J. Sedimen. Petrol. 27 (1), 3-26 (1957). DOI: https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
[64] R.L. Folk, Petrology of sedimentary rocks. Austin: Hemphill Pub. (1981), ISBN: 0-914696-14-9.
[65] I SRM, The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974-2006. In: Ulusay R, Hudson JA (eds) Suggested methods prepared by the commission on testing methods. (2007) International Society for Rock Mechanics (ISRM), (2007), Ankara, Turkey
[66] D .U. Deere, R.P. Miller, Engineering classification and index properties for intact rock. Technical Report Air Force Weapons Laboratory (Report No, AFWL-TR-65-116), 136-184, New Mexico, (1966).
[67] E. Yasar , Y. Erdoğan, Correlating sound velocity with the density, compressive strength and Young’s modulus of carbonate rocks. Int. J. Rock Mech Min. Sci. 41, 871-875 (2004). DOI : https://doi.org/10.1016/j.ijrmms.2004.01.012
[68] I . Yilmaz, G. Yuksek, Prediction of the strength and elasticity modulus of gypsum using multiple regression, ANN and ANFIS models. Int. J. Rock Mech. Min. Sci. 46, 803-810 (2009). DOI : https://doi.org/10.1016/j.ijrmms.2008.09.002
[69] Z.A. Moradian, M. Behnia, Predicting the Uniaxial Compressive Strength and Static Young’s Modulus of Intact Sedimentary Rocks Using the Ultrasonic Test. Int. J. Geomech. 9 (1), 14-19 (2009). DOI : https://doi.org/10.1061/(ASCE)1532-3641(2009)9:1(14)
[70] G. Pappalardo, Correlation between P-wave velocity and physical-mechanical properties of intensely jointed dolostones, Peloritani Mounts, NE Sicily. Rock Mech. Rock Eng. 48, 1711-1721 (2015). DOI : https://doi.org/10.1007/s00603-014-0607-8
[71] H. Arman, S. Paramban, Correlating natural, dry, and saturated ultrasonic pulse velocities with the mechanical properties of rock for various sample diameters. Appl. Sci. 10, 9134 (2020). DOI : https://doi.org/10.3390/app10249134
[72] N . Sabatakakis, G. Koukis, G. Tsiambos, S. Papanakli, Index properties and strength variation controlled by microstructure for sedimentary rocks. Eng. Geol. 97, 80-90 (2008). DOI: https://doi.org/10.1016/j.enggeo.2007.12.004
[73] R. Singh, A. Kainthola, T.N. Singh, Estimation of elastic constant of rocks using an ANFIS approach, Appl. Soft Comput. J. 12, 40-45 (2012). DOI: https://doi.org/10.1016/j.asoc.2011.09.010
[74] A.I. Lawal, M.A. Idris, An artificial neural network-based mathematical model for the prediction of blast-induced ground vibrations. Int. J. Environmen. Stud. 77 (2), 318-334, (2020). DOI : https://doi.org/10.1080/00207233.2019.1662186.
[75] S.K. Das, Artificial neural networks in geotechnical engineering: modeling and application issues, Metaheuristics in water, geotechnical and transport engineering, 231-270 (2013).
[76] M. Heidari, G.R. Khanlari, A.A. Momeni, Prediction of Elastic Modulus of Intact Rocks Using Artificial Neural Networks and non-Linear Regression Methods. Australian J. Basic Appl. Sci. 4 (12), 5869-5879 (2010).
[77] D .J. Armaghani, E.T. Mohamad, E. Momeni, M.S. Narayanasamy, An adaptive neuro-fuzzy inference system for predicting unconfined compressive strength and Young’s modulus: a study on Main Range granite. Bull. Eng. Geol. Environ. 74, 1301-1319 (2015). DOI: https://doi.org/10.1007/s10064-014-0687-4
[78] S. Yagiz, E.A. Sezer, C. Gokceoglu, Artificial neural networks and nonlinear regression techniques to assess the influence of slake durability cycles on the prediction of uniaxial compressive strength and modulus of elasticity for carbonate rocks. Int. J. Numer Anal. Methods Geomech. 36 (14), 1636-1650 (2012). DOI : https://doi.org/10.1002/nag.1066
[79] S. Aboutaleb, M. Behnia, R. Bagherpour, B. Bluekian, Using non-destructive tests for estimating uniaxial compressive strength and static Young’s modulus of carbonate rocks via some modeling techniques. Bull. Eng. Geol. Environ. 77 (4), 1717-1728 (2018). DOI: https://doi.org/10.1007/s10064-017-1043-2
[80] A. Jamshidi, H. Zamanian, R. Zarei Sahamieh, The Effect of Density and Porosity on the Correlation Between Uniaxial Compressive Strength and P-wave Velocity. Rock Mech. Rock Eng. 51, 1279-1286 (2018). DOI : https://doi.org/10.1007/s00603-017-1379-8
Przejdź do artykułu

Autorzy i Afiliacje

Ekin Köken
1
ORCID: ORCID

  1. Abdullah Gul University, Nanotechnology Engineering Department, 38170, Kayseri, Turkey

Abstrakt

W artykule przedstawiono historię eksploatacji surowców skalnych w okolicach Cieszyna od początku XX w. Dokonano oceny możliwości prowadzenia działalności górniczej w odniesieniu do wciąż powiększanych obszarów ochrony przyrody. Opisano konflikt eksploatacji tych złóż ze środowiskiem.Wyniki analizy pozwoliły na wskazanie potencjalnych miejsc dalszej eksploatacji piaskowców godulskich i wapieni cieszyńskich.W badaniach wykorzystano dane analogowe i cyfrowe, które poddano procedurom specyficznym dla metod GIS (Geographic Information System). W pierwszej połowie XX w. ważną rolę odgrywała eksploatacja łupków i wapieni cieszyńskich, wykorzystywanych na potrzeby produkcji wapna i cementu. Stopniowo jednak znaczenie tego surowca malało, ze względu na słabnącą jakość i popyt. W późniejszych latach, po zamknięciu cementowni w Goleszowie, wapienie wykorzystywano już tylko do produkcji kruszywa. Kruszywo naturalne i surowce ilaste eksploatowane były początkowo w niewielkich wyrobiskach na potrzeby lokalne, a później w sposób zorganizowany z udokumentowanych złóż. Obecnie zaniechano wydobycia tych surowców. Wielowiekowa tradycja produkcji bloków z piaskowców godulskich podtrzymywana była w okresie ostatnich stu lat. W ostatniej dekadzie prowadzono ich wydobycie w dawnych i kilku nowych kamieniołomach. W innych miejscach udokumentowano dodatkowe zasoby. Ze względu na charakter uzyskiwanego produktu eksploatacja tych surowców (w niewielkich łomach, bez użycia technik strzelniczych) nie wpływa znacząco na otaczającą przyrodę. Ponadto miejsca obecnej i dawnej eksploatacji stają się często ważnymi obiektami turystycznymi. Świadczy o tym m.in. fakt ustanawiania stanowisk dokumentacyjnych przyrody nieożywionej wewnątrz wyrobisk. Ustanowione w ostatnich latach liczne obiekty chronione doprowadziły do zwiększenia konfliktu pomiędzy eksploatacją surowców skalnych a środowiskiem. Uniemożliwia to rozwój, a nawet kontynuację eksploatacji. W związku z tym, w przyszłych procesach planistycznych należy dążyć do uwzględnienia złóż kopalin jako elementów środowiska, wymagających ochrony dla możliwości przyszłego wykorzystania.

Przejdź do artykułu

Autorzy i Afiliacje

Beata Figarska-Warchoł
Ewelina Matlak

Abstrakt

Time-dependent behavior of rock mass is important for long-term stability analysis in rock engineering. Extensive studies have been carried out on the creep properties and rheological models for variable kinds of rocks, however, the effects of initial damage state on the time-dependent behavior of rock has not yet been taken into consideration. In the present study, the authors proposed a creep test scheme with controlled initial damage to investigate the influence of initial damage on the time-dependent behavior of sandstone. In the test scheme, the initial states of damage were first determined via unloading the specimen from various stresses. Then, the creep test was conducted under different stress levels with specific initial damage. The experimental results show that there is a stress threshold for the initial damage to influence the behavior of the rock in the uniaxial compressive creep tests, which is the stress threshold of dilatancy of rock. When the creep stress is less than the stress threshold, the effect of the initial damage seems to be insignificant. However, if the creep stress is higher than the stress threshold, the initial damage has an important influence on the time-dependent deformation, especially the lateral and volumetric deformation. Moreover, the initial damage also has great influence on the creep failure stress and long-term strength, i.e., higher initial damage leading to lower creep failure stress and long-term strength. The experimental results can provide valuable data for the construction of a creep damage model and long-term stability analysis for rock engineering.

Przejdź do artykułu

Autorzy i Afiliacje

Rongbin Hou
Kai Zhang
Jing Tao

Abstrakt

The potential of heavy minerals as a provenance tracer in Albian arenites of extra-Carpathian Poland was assessed. Studies in this area have focused on various methods based on heavy mineral chemistry that provide an effective tool for reconstructing the provenance of quartz-rich sediments. The previously suggested division of the study area into two domains with different source areas: the western domain – the Miechów area, and the eastern domain – the Lublin area, was based on geochronological (monazite and muscovite dating) and rutile mineral chemical studies. The mineral chemistry of newly examined heavy minerals supports the previously suggested division. The mineral chemistry of detrital tourmaline suggests medium-grade metamorphic rocks as the main source in both domains. Detrital garnet in the western domain shows affiliation to the Góry Sowie Massif, while garnet in the eastern domain was most probably sourced from southern/central Norway. The western domain was most probably fed from rocks of the Bohemian Massif. The main source area for the eastern domain was most probably located in the Baltic Shield. The distinct division of the study area into two domains was caused by the palaeogeography of the region in the Albian and the action of longshore currents in south-eastward and eastward directions.

Supplementary Material 1
Supplementary Online Material 2






Przejdź do artykułu

Autorzy i Afiliacje

Jakub Kotowski
1
Danuta Olszewska-Nejbert
1
Krzysztof Nejbert
1

  1. University of Warsaw, Faculty of Geology, Żwirki i Wigury 93, 02-089 Warszawa, Poland

Abstrakt

Rock masses, especially those with different pre-existing cracks, are prone to instability and failure under tensile loading, resulting in different degrees of engineering disasters. Therefore, to better understand the effect of pre-existing cracks with different dip angles on the tensile instability failure behaviour of rocks, the mechanism of crack initiation, propagation and coalescence in precracked sandstone under radial compression loading is investigated through numerical simulations. The temporal and spatial evolution of acoustic emission (AE) events is investigated by the moment tensor (MT), and the fracture mode of micro-cracks is determined. The results show that the pre-existing cracks weaken the specimens. The strength, crack initiation points and macro-failure modes of the specimens differ significantly depending on the dip angle of the pre-existing crack. For different dip angles of the pre-existing cracks, all the micro-cracks at the crack initiation point are tensile cracks, which are dominant during the whole loading process, and mixed cracks are mainly generated near the upper and lower loading ends after the peak stress. Of the total number of events, more than 75% are tensile cracks; approximately 15% are shear mode cracks; and the remainder consist of mixed mode cracks. The study reveals the instability and failure mechanism of pre-cracked rock, which is of great significance to ensure the long-term stability of rock mass engineering.
Przejdź do artykułu

Autorzy i Afiliacje

Guozhu Wang
1
ORCID: ORCID
Xulin Luo
2
ORCID: ORCID
Lei Song
3
ORCID: ORCID
Yu Wang
3
ORCID: ORCID
Mouwang Han
3
ORCID: ORCID
Zhaocun Song
3
ORCID: ORCID
Linjun Wu
3
ORCID: ORCID
Zukun Wang
3
ORCID: ORCID

  1. China University of Mining and Technology (CUMT), State Key Laboratory for Geomechanics and Deep Underground Engineering, Xuzhou 221116, China
  2. Zhengzhou University of Industrial Technology, School of Architectural Engineering, Zhengzhou 451150, China
  3. CUMT, Xuzhou 221116, China

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji