Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the paper the idea of rational polynomial windows optimised towards low level of Fourier spectrum's sidelobes is presented. A relevant advantage of the polynomial windows family and their modifications is their ability to easily change their properties changing only the values of the polynomial coefficients. The obtained frequency characteristics demonstrate better properties of proposed rational Windows than their standard polynomial equivalents requiring only the additional division operation. Such approach does not increase the computational complexity in significant way and the great advantage of polynomial windows which is their low computational complexity is preserved.

Go to article

Authors and Affiliations

Krzysztof Okarma
Download PDF Download RIS Download Bibtex

Abstract

The development in industrial systems leads to the augmentation in the consumption of the power. Therefore, this development makes use of multiphase machines. The use of multiphase machines caused several problems and defects. Electrical energy is mainly distributed in a three-phase system to provide the electrical power necessary for the electrical engineering equipment and materials. The sinusoidal aspect of the required original voltage primarily preserves its essential qualities for transmitting useful power to terminal equipment. When the voltage waveform is no longer sinusoidal, perturbations are encountered, which generate malfunctions and overheating of the receivers and the equipment connected to the same electrical supply network. The main disturbing phenomena are harmonics, voltage fluctuations, voltage unbalances, electromagnetic fields, and electrostatic discharges. This present work aims to study the effects of harmonic pollution and voltage unbalance on the five-phase permanent magnet synchronous machine using spectrum current analysis and wavelet transform.
Go to article

Authors and Affiliations

Ahmed Amine Kebir
1
ORCID: ORCID
Mouloud Ayad
1
ORCID: ORCID
Saoudi Kamel
1
ORCID: ORCID

  1. LPM3E Laboratory, Faculty of Sciences and Applied Sciences, University of Bouira, Algeria
Download PDF Download RIS Download Bibtex

Abstract

The article is devoted to the development of a method for increasing the efficiency of communication channels of unmanned aerial vehicles (UAVs) in the conditions of electronic warfare (EW). The author analyses the threats that may be caused by the use of electronic warfare against autonomous UAVs. A review of some technologies that can be used to create original algorithms for countering electronic warfare and increasing the autonomy of UAVs on the battlefield is carried out. The structure of modern digital communication systems is considered. The requirements of unmanned aerial vehicle manufacturers for onboard electronic equipment are analyzed, and the choice of the hardware platform of the target radio system is justified. The main idea and novelty of the proposed method are highlighted. The creation of a model of a cognitive radio channel for UAVs is considered step by step. The main steps of modelling the spectral activity of electronic warfare equipment are proposed. The main criteria for choosing a free spectral range are determined. The type of neural network for use in the target cognitive radio system is substantiated. The idea of applying adaptive coding in UAV communication channels using multicomponent turbo codes in combination with neural networks, which are simultaneously used for cognitive radio, has been further developed.
Go to article

Authors and Affiliations

Serhii Semendiai
1
Yuliіa Tkach
1
Mykhailo Shelest
1
Oleksandr Korchenko
2
Ruslana Ziubina
3
Olga Veselska
3

  1. Chernihiv Polytechnic NationalUniversity, Chernihiv, Ukraine
  2. Department of Information Technology Security of National Aviation University, Kyiv, Ukraine
  3. Department of Computer Science andAutomatics of the University of Bielsko-Biala, Bielsko-Biala, Poland
Download PDF Download RIS Download Bibtex

Abstract

Careful selection of the physical model of the material for a specific doping and selected operating temperatures is a non-trivial task. In numerical simulations that optimize practical devices such as detectors or lasers architecture, this challenge can be very difficult. However, even for such a well-known material as a 5 µm thick layer of indium arsenide on a semi-insulating gallium arsenide substrate, choosing a realistic set of band structure parameters for valence bands is remarkable. Here, the authors test the applicability range of various models of the valence band geometry, using a series of InAs samples with varying levels of p-type doping. Carefully prepared and pretested the van der Pauw geometry samples have been used for magneto-transport data acquisition in the 20–300 K temperature range and magnetic fields up to ±15 T, combined with a mobility spectra analysis. It was shown that in a degenerate statistic regime, temperature trends of mobility for heavy- and light-holes are uncorrelated. It has also been shown that parameters of the valence band effective masses with warping effect inclusion should be used for selected acceptor dopant levels and range of temperatures.
Go to article

Authors and Affiliations

Jarosław Wróbel
1
ORCID: ORCID
Gilberto A. Umana-Membreno
2
ORCID: ORCID
Jacek Boguski
1
ORCID: ORCID
Sebastian Złotnik
1
ORCID: ORCID
Andrzej Kowalewski
1
ORCID: ORCID
Paweł Moszczyński
3
ORCID: ORCID
Jarek Antoszewski
2
ORCID: ORCID
Lorenzo Faraone
2
Jerzy Wróbel
1 4
ORCID: ORCID

  1.  Institute of Applied Physics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  2. Dept. of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
  3. Faculty of Cybernetics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  4. Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland

This page uses 'cookies'. Learn more