Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 38
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

With widespread use of pesticides in modern agriculture, the impacts of spray drift have become a topic of considerable interest. The drifting of sprays is a highly complex process influenced by many factors. The paper presents results of experimental research on a drifting cloud of droplets dispersing from aircraft. Experiments were conducted to quantify spray drift from aerial applications of pesticide. Parallel to the blowing wind, the measurement line 800 m long was disposed. The relationships between the relative dose and the distance of drift as well as spray density and its structure on the measuring length have been established.

Go to article

Authors and Affiliations

Tomasz Seredyn
Robert Rowiński
Download PDF Download RIS Download Bibtex

Abstract

There is an ongoing search for technologies that guarantee soybean productivity. Among them, the application of phytosanitary products stands out, since the sprayer is the most required implement during the agricultural production cycle and each error, in practice, represents a loss in the production process. With this in mind, the objective of this work was to evaluate the volume captured and the characteristics of the application in the different thirds of soybean plants with variations in hydraulic nozzles and spray volumes, as well as the use of electrification of the drops. To this end, a field experiment was conducted during the 2018/2019 summer harvest in an experimental area at the University of Rio Verde. The experimental design used was randomized blocks in a factorial scheme (3 × 4), with four repetitions, in which the first factor consisted of three variations of spray nozzles (simple fan, hollow cone and hollow cone with electrification of the drops). The second factor involved four application rates (50, 100, 150 and 200 l · ha–1). The variables evaluated were the number of drops per cm–2, percentage of coverage, volume median diameter (VMD) and the captured volume (μl · cm–2). According to the results, for the upper thirds, an increase in the application rate increased the volume of captured syrup. However, for the lower third, the factors evaluated did not interfere in this characteristic. The hydraulic tips influenced the density of droplets in the three thirds and the coverage only in the lower one. The increasing rates of application, increases the density of drops and percentage of coverage in the different thirds of the plants. The evaluated factors had no effect on the syrup distribution on the median abaxial surface of the leaves.
Go to article

Bibliography


Baldin E.L.L., Cruz P.L., Morando R., Silva I.F., Bentivenha J.P.F., Tozin L.R.S., Rodrigues T.M. 2017. Characterization of antixenosis in soybean genotypes to Bemisia tabaci (Hemiptera: Aleyrodidae) biotype B. Journal of Economic Entomology 110 (4): 1869–1876. DOI: 10.1093/ jee/tox143
Bayer T., Costa I.F.D., Lenz G., Zemolin C., Marques L.N., Stefanelo M.S. 2011. Equipamento de pulverização aérea e taxas de aplicação de fungicida na cultura do arroz irrigado. [Spraying equipment and rates of fungicide application in irrigated rice]. Revista Brasileira de Engenharia Agrícola e Ambiental 15 (2): 192–198. DOI: https://doi.org/10.1590/ S1415-43662011000200007
Belo M.S.S.P., Pignati W., Dores E.F.G.C., Moreira J.C.M., Peres F. 2012. Uso de agrotóxicos na produção de soja do Estado do Mato Grosso: um estudo preliminar de riscos ocupacionais e ambientais. [Pesticide use in soybean pro-duction in Mato Grosso state, Brazil: A preliminary occupational and environmental risk characterization]. Revista Brasileira Saude Ocupacional 37 (125): 78–88. DOI: https://doi.org/10.1590/S0303-76572012000100011
Boschini L., Robinson L.C., Macedo Junior E.K., Guimaraes V.F.G. 2008. Avaliacao da deposicao da calda de pulverizacao em funcao da vazao e do tipo de bico hidraulico na cultura da soja. [Evaluation the spraying syrup deposition in function of the beak type and the flow, in soybean]. Acta Scientiarum. Agronomy 30 (2): 171–175. DOI: https://doi.org/10.4025/actasciagron.v30i2.1789
Chaim A., Camargo Neto J., Pessoa M.C.P.Y. 2006. Uso do programa computacional Gotas para avaliacao da deposicao de pulverizacao aerea sob diferentes condicoes climaticas. [Use of the gotas software for evaluation of the deposition of aerial spraying under different climatic conditions]. Research and Development Bulletin 39: 18. Climate data. 2020. Climate Rio Verde. Available on: https://pt.climate-data.org/america-do-sul/brasil/goias/rio-verde- 4473/. [Accessed: 13 July 2020]
Cunha J.P.A.R., Marques R.S., Alves G.S. 2016. Deposicao da calda na cultura da soja em funcao de diferentes pressoes de trabalho e pontas de pulverizacao. [Spray deposition on soybean crop as a function of different service pressures and spray nozzles]. Revista Ceres 63 (6): 761–768. DOI: https://doi.org/10.1590/0034-737x201663060003
Cunha J.P.A.R., Reis E.F., Santos R.O. 2006. Controle quimico de ferrugem asiatica da soja em funcao de ponta de pulverizacao e de volume de calda. [Chemical control of Asian soybean rust due to spray tip and spray volume]. Ciencia Rural 36 (5): 1360–1366. DOI: https://doi.org/10.1590/ S0103-84782006000500003
Czaczyk Z., Kruger G., Hewitt A. 2012. Droplet size classification of air induction flat fan nozzles. Journal of Plant Protection Research 52 (4): 415–420. DOI: https://doi.org/10.2478/10045-012-0068-6
Durao C.F., Boller W. 2017. Spray nozzles performance in fungicides applications for Asian soybean rust control. Engenharia Agricola 37 (4): 709–716. DOI: http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v37n4p709-716/2017
Farinha J.V., Martins D., Costa N.V., Domingos V.D. 2009. Deposicao da calda de aplicacao em cultivares de soja no estadio R1. Ciencia Rural 39 (6): 1738–1744. DOI: https://doi.org/10.1590/S0103-84782009000600016
Fehr W.R., Caviness C.E. 1997. Stages of Soybean Development. Ames: Iowa State University, USA, 12 pp. (Special Report, 80).
Fritz B.K., Hoffman W.C., Czaczyk Z., Bagley W., Kruger G., Henry R. 2012. Measurement and classification methods using the ASAE S572.1 reference nozzles. Journal of Plant Protection Research 52 (4): 447–457. DOI: https://doi.org/10.2478/v10045-012-0072x
Furlan S.H., Carvalho F.K., Antuniassi U.R. 2018. Strategies for the control of Asian soybean rust (Phakopsora pachyrhizi) in Brazil: fungicide resistance and application efficacy. Outlooks on Pest Management 29 (3): 120–123. DOI: https://doi.org/10.1564/v29_jun_05
Law S.E. 2014. Electrostatically charged sprays. In: “Pesticide Application Methods” (G.A. Matthews, ed.). 4th ed. Chichester: John Wiley & Sons, USA, 545 pp. DOI: https://doi.org/10.1590/ S1415-43662011000200007
Negrisoli M.M., Raetano C.G., Souza D.M., Souza F.M.S., Bernardes L.M., Bem Junior L., Rodrigues D.M., Sartori M.M.P. 2019. Performance of new flat fan nozzle design in spray deposition, penetration and control of soybean rust. European Journal of Plant Pathology 155 (7): 1–13. DOI: http://doi.org/10.1007/s10658-019-01803-1
Nidera. 2020. NS 7709 IPRO. Available on: http://www.niderasementes. com.br/produto/ns-7709-ipro.aspx. [Accessed: 13 July 2020]
Omoto P.H., Tomaz R.S., Prado E.P. 2017. Quantificacao dos depositos da pulverizacao em funcao da tecnica de aplicacao na cultura da soja. [Quantification of spray deposits as a function of soybean application technique]. Forum Ambiental da Alta Paulista 13 (7): 120–134. DOI: http://dx.doi.org/10.17271/1980082713720171732
Patel M.K., Praveen B., Sahoo H.K., Patel B., Kumar A., Singh M., Nayak M.K., Rajan P. 2017. An advance air-induced air-assisted electrostatic nozzle with enhanced performance. Computers and Electronics in Agriculture 135 (4): 280–288. DOI: https://doi.org/10.1016/j.compag.2017.02.010
Sasaki R.S., Teixeira M.M., Fernandes H.C., Monteiro P.M.B., Rodrigues D.E. 2013. Deposicao e uniformidade de distribuicao de calda de aplicacao em plantas de cafe utilizando a pulverizacao eletrostatica. [Deposition and uniformity of spray syrup distribution in coffee plants using electrostatic spraying]. Ciencia Rural 43 (9): 1605–1609. DOI: https://doi.org/10.1590/S0103-84782013000900011
Scudeler F., Raetano C.G. 2006. Spray deposition and losses in potato as a function of air-assistance and sprayer boom angle. Scientia Agricola 63 (6): 515–521. DOI: https://doi.org/10.1590/S0103-90162006000600001
Silva J.E.R., Cunha J.P.A.R., Nomelini Q.S.S. 2014a. Deposicao de calda em folhas de cafeeiro e perdas para o solo com diferentes taxas de aplicacao e pontas de pulverizacao. [Deposition of spray applied in coffee leaves with different rates and spray nozzles]. Revista Brasileira de Engenharia Agricola e Ambiental 18 (12): 1302–1306. DOI: https://doi. org/10.1590/1807-1929/agriambi.v18n12p1302-1306
Silva B.M.B., Ruas R.D.A., Sichocki D., Dezordi L.R., Caixeta L.F. 2014b. Deposicao da calda de pulverizacao aplicada com pontas de jato plano em diferentes partes da planta de soja (Glycine max) e milho (Zea mays). [Spray spray deposition applied with flat spray tips to different parts of the soybean plant (Glycine max) and corn (Zea mays)]. Engenharia na Agricultura 22 (1): 17–27. DOI: https://doi.org/10.13083/reveng.v22i1.406
Souza D.M., Raetano C.G., Moreira C.A.F., Burno R.C.O.F., Carvalho M.M. 2019. Effects of news sowing arrangements and air assistance on fungicide spray distribution on soybean crop. Acta Scientiarum. Agronomy 41 (1): e42700. DOI: https://doi.org/10.4025/actasciagron.v41i1.42700
Tavares R.M., Silva J.E.R., Alves G.S., Alves T.C., Silva S.M.,
Cunha J.P.A.R. 2017. Tecnologia de aplicacao de inseticidas no controle da lagarta-do-cartucho na cultura do milho. [Insecticide application technology on fall armyworm control in corn]. Revista Brasileira de Milho e Sorgo 16 (1): 30–42. DOI: https://doi.org/10.18512/1980-6477/rbms.v16n1p30-42%20
Van Zyl J.G., Fourie P.H., Schutte G.C. 2013. Spray deposition assessment and benchmarks for control of Alternaria brown spot on mandarin leaves with copper oxychloride. Crop Protection 46 (4): 80–87. DOI: https://doi.org/10.1016/j. cropro.2012.12.005
Viana R.G., Ferreira L.R., Ferreira M.C., Teixeira M.M., Rosell J.R., Tuffi-Santos L.D., Machado A.F.L. 2010. Distribuicao volumetrica e espectro de gotas de pontas de pulverizacao de baixa deriva. [Volumetric distribution and droplet spectrum by low drift spray nozzles]. Planta Daninha 28 (2): 439–446. DOI: https://doi.org/10.1590/S0100-83582010000200024
Zhou Y., Qi L., Jia S., Zheng X., Meng X., Tang Z., Shen C. 2012. Development and application prospects of pneumatic electrostatic sprayer in orchard. Asian Agricultural Research 4 (1): 78–80. DOI: 10.22004/ag.econ.133110
Go to article

Authors and Affiliations

Carlos Eduardo Leite Mello
1
ORCID: ORCID
Eduardo Lima do Carmo
1
ORCID: ORCID
Guilherme Braga Pereira Braz
1
ORCID: ORCID
Gustavo André Simon
1
ORCID: ORCID
João Vitor Alves de Sousa
1
Ana Carolina Pereira dos Reis
1
Marco Túlio Moura Leite
1
Gabriel Elias Soares de Araújo
1

  1. Agronomia, Universidade de Rio Verde, Rio Verde, Brazil
Download PDF Download RIS Download Bibtex

Abstract

MoO3 thick film was manufactured by using a thermal spray process (Atmospheric Plasma Spray, or APS) and its microstructure, phase composition and properties of the coating layer were investigated. Initial powder feedstock was composed of an orthorhombic α-MoO3 phase, and the average powder particle size was 6.7 μm. As a result of the APS coating process, a MoO3 coating layer with a thickness of about 90 μm was obtained. Phase transformation occurred during the process, and the coating layer consisted of not only α-MoO3 but also β-MoO3, MoO2. Phase transformation could be due to the rapid cooling that occurred during the process. The properties of the coating layer were evaluated using a nano indentation test. Hardness and reduced modulus were obtained as 0.47 GPa and 1.4 GPa, respectively. Based on the above results, the possibility of manufacturing a MoO3 thick coating layer using thermal spray is presented.
Go to article

Authors and Affiliations

Yu-Jin Hwang
1
ORCID: ORCID
Kyu-Sik Kim
1 2
ORCID: ORCID
Jae-Sung Park
3
Kee-Ahn Lee
1
ORCID: ORCID

  1. Inha University, Department of Materials Science and Engineering, Incheon, Korea
  2. Agency for Defense Development, Daejeon, Korea
  3. LT Metal, Seoul, Korea
Download PDF Download RIS Download Bibtex

Abstract

A pure molybdenum (Mo) coating layer was manufactured by using the atmospheric plasma spray (APS) process and its wear and corrosion characteristics were investigated in this study. A Mo coating layer was prepared to a thickness of approximately 480 μm, and it had sound physical properties with a porosity of 2.9% and hardness of 434 Hv. Room temperature dry wear characteristics were measured through a ball-on-disk test under load conditions of 5 N, 10 N and 15 N. Based on the coefficient of friction graph at 5 N and 10 N, the oxides formed during wear functioned as a wear lubricant, thereby confirming an increase in wear resistance. However, at 15 N, wear behavior changed, and wear occurred due to splat pulling out. A potentiodynamic polarization test was conducted under an artificial seawater atmosphere, and Ecorr and Icorr measured 0.717 V and 7.2E-5 A/cm2, respectively. Corrosion mainly occurred at the splat boundary and pores that were present in the initial state. Based on the findings above, the potential application of APS Mo coating material was also discussed.
Go to article

Authors and Affiliations

Yu-Jin Hwang
1
ORCID: ORCID
Yurian Kim
1
ORCID: ORCID
Soon-Hong Park
2
ORCID: ORCID
Sung-Cheol Park
3
ORCID: ORCID
Kee-Ahn Lee
1
ORCID: ORCID

  1. Inha University, Department of Materials Science and Engineering, Incheon, 22212, Republic of Korea
  2. POSCO Technical Research Laboratories, Gwangyang 57807, Republic of Korea
  3. Surface Treatment R&D Group, Korea Institute of Industrial Technology, Incheon, 21999, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

Improving application efficiency is crucial for both the economic and environmental aspects of plant protection. Mathematical models can help in understanding the relationships between spray application parameters and efficiency, and reducing the negative impact on the environment. The effect of nozzle type, spray pressure, driving speed and spray angle on spray coverage on an artificial plant was studied. Artificial intelligence techniques were used for modeling and the optimization of application process efficiency. The experiments showed a significant effect of droplet size on the percent area coverage of the sprayed surfaces. A high value of the vertical transverse approach surface coverage results from coarse droplets, high driving speed, and nozzles angled forward. Increasing the vertical transverse leaving surface coverage, as well as the coverage of the sum of all sprayed surfaces, requires fine droplets, low driving speed, and nozzles angled backwards. The maximum coverage of the upper level surface is obtained with coarse droplets, low driving speed, and a spray angle perpendicular to the direction of movement. The choice of appropriate nozzle type and spray pressure is an important aspect of chemical crop protection. Higher upper level surface coverage is obtained when single flat fan nozzles are used, while twin nozzles produce better coverage of vertical surfaces. Adequate neural models and evolutionary algorithms can be used for pesticide application process efficiency optimization.

Go to article

Authors and Affiliations

B. Cieniawska
K. Pentoś
D. Łuczycka
Download PDF Download RIS Download Bibtex

Abstract

Nanostructured, biocompatible, TiC/Ti Supersonic Cold Gas Sprayed coatings were deposited onto a Ti6Al4V alloy and their microstructure, wear resistance and hardness were investigated. The starting nanostructured powder, containing a varied mixture of Ti and TiC particles, was produced by high energy ball milling. Scanning and transmission electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction were used for structural and chemical analyses of powder particles and coatings. Coatings, 250-350 μm thick, preserving the nanostructure and chemical powder composition, with low porosity and relatively high hardness (~850 HV), were obtained. These nanostructured TiC/Ti coatings exhibited better tribological properties than commonly used biomedical benchmark materials, due to an appropriate balance of hard and soft nano-phases.
Go to article

Authors and Affiliations

J. Kusiński
S. Kac
K. Kowalski
S. Dosta
E.P. Georgiou
J. Garcia-Forgas
P. Matteazzi
Download PDF Download RIS Download Bibtex

Abstract

In this study T6 heat treated 6063 aluminum alloys were used as substrate material. In order to form a bond between the substrate and the

main coating, all samples were coated with Ni-Cr-Al powders. 8 wt% Yttria Stabilized Zirconia powders (YSZ) were coated with plasma

spray technique. Thickness of YSZ was 150 m and bond coating was 36 m. XRD and SEM-EDS analyses were performed to characterize

the coating layers. These YSZ coated and uncoated samples were subjected to wear testing under different spindle speed, loading and

working distance. Wear test results were compared with the kinetic friction coefficients and weight loss values. Wear marks on YSZ

coated and uncoated samples were investigated by SEM analysis. By coating with plasma spray technique, the wear resistance of Al alloys

was increased without changing the friction coefficient. It was found that spindle speed had significant effect over the wear properties than

the load applied. By YSZ coating, wear properties were increased 10 times.

Go to article

Authors and Affiliations

E. Erzi
D. Dispinar
S. Yilmaz
Download PDF Download RIS Download Bibtex

Abstract

Surface water retention of leaves and fruits of apple ( Malus domestica Borkh.) and sweet cherry ( Prunus avium L.), was evaluated under controlled environmental conditions in order to determine the retention potential at different growth stages. Dipping and spraying, with and without non-ionic surfactant, were used as application systems. Water retention was expressed as the ratio between the weight difference of the organ before and post application and organ weight before application. Leaf water retention by dipping was 62 and 64% for ‘Royal Gala’ and ‘Fuji’ apples, respectively, and 37 and 50% by spraying. The surfactant tended to reduce foliar water retention by spraying on both species. An exponential reduction of fruit water retention was observed during their growth. Fruit dipping generated the highest water retention, with values of 50% at the earliest stage. Then, water retention stabilized at 1–2%, when the apples and sweet cherries diameter reached 25 and 15 mm, respectively, despite dipping or spraying. The surfactant tended to increase water retention at early fruit stages and to reduce it with fruit growth. These results can be useful for estimating the potential residue on leaves and fruits in apple and sweet cherry trees, in both the orchard (spraying) and the packing house (dipping).
Go to article

Authors and Affiliations

José Antonio Yuri
1
ORCID: ORCID
Miguel Palma
1
Álvaro Sepúlveda
1
Mariana Moya
1

  1. Centro de Pomáceas, Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
Download PDF Download RIS Download Bibtex

Abstract

In this case ceramic layers from Metco ZrO2 and Al2O3 powders mixture (25/75; 50/50 and 75/25) were obtained through atmospheric plasma spraying (APS) after five passes on low carbon steel substrate. The sample surfaces mechanically grinded (160-2400) before and after ceramic layer deposition. Powder’s mixtures and the surface of ceramic thin layers were analyzed through: scanning electron microscopy (SEM). In order to understand the effect of surface wettability of the ceramic layers, before and after grinding the surface, three different liquids were used. Experimental results confirm the modification of the steel substrate surface characteristic from hydrophilic to hydrophobic when the ceramic layer was deposited. Surface free energy of hydration increases for all the samples with zirconia percentage addition before polishing process.
Go to article

Authors and Affiliations

M. Luțcanu
1 2
ORCID: ORCID
M. Coteață
3
ORCID: ORCID
M.A. Bernevig
1
ORCID: ORCID
C.D. Nechifor
2
ORCID: ORCID
M.M. Cazacu
2
ORCID: ORCID
P. Paraschiv
4
ORCID: ORCID
B. Istrate
5
ORCID: ORCID
G. Bădărău
1
ORCID: ORCID
I.G. Sandu
1
ORCID: ORCID
N. Cimpoeșu
1
ORCID: ORCID

  1. Gheorghe Asachi Technical University of Iasi, Faculty of Materials Science and Engineering, Prof.dr.doc. D. Mangeron no. 41 Street, 700050 Iasi, Romania
  2. "Gheorghe Asachi” Technical University of Iasi, Department of Physics, 700050 Iasi, Romania
  3. Gheorghe Asachi Tech Univ Iasi, Dept Machine Mfg Technol, 59A D Mangeron Blvd, Iasi 700050, Romania
  4. “Gheorghe Asachi” Technical University of Iasi, Department of Sport, 700050 Iasi, Romania
  5. Gheorghe Asachi Tech Univ Iasi, Fac Mech Engn 43 D Mangeron St, Iasi 700050, Romania
Download PDF Download RIS Download Bibtex

Abstract

As in many thermal processing technologies, there is a delicate balance between productivity and quality during ingot cooling process. Higher cooling velocities increase productivity but also create higher temperature gradients inside the ingot. Such a fast cooling does not leave sufficient time to establish the equilibrium within the solid, thus the final metal structure is strongly affected by the set up cooling mode throughout the liquid metal solidification. The first intention in this paper is to compare between three cooling modes in order to identify the required mode for a continuous casting process. Then, we study the influence of heat transfer coefficient on metal liquid-to-solid transition through the spray-cooled zone temperature and the metal latent heat of solidification. A gray iron continuous casting process subjected to water-sprays cooling was simulated using the commercial software for modeling and simulating multiphysics and engineering problems. The primary conclusions, from the obtained results, show the forcefulness of water spray cooling regarding standard cooling. Afterward, we highlight the great influence of heat transfer coefficient on the location of transition region as well as the relationship between heat transfer coefficient, wall outer temperature, latent heat dissipation, and the solidification time.

Go to article

Authors and Affiliations

Hocine Mzad
Abdessalam Otmani
Download PDF Download RIS Download Bibtex

Abstract

It is challenging to obtain proper leaf wetting. An angled spray could overcome this impediment, but which spray angle is best suited to droplet size is still unknown. In an outdoor pot experiment, seven doses of cycloxydim and sethoxydim were sprayed with single-orifice standard, anti-drift, and air induction (having a fine, medium, and extremely coarse spray quality, respectively) flat fan nozzles, using spray angles of 10°, 20° backward, 0° (vertical), 10°, 20°, 30°, 40°, 50°, and 60° forward relative to the direction of nozzle trajectory on wild barley at the three-leaf stage. Generally, the forward angled spray was better than the backward angled spray. With a standard flat fan nozzle, the forward angling of spray from 0° to 20° reduced the ED50 from 60.24 to 39.85 g a.i. ⋅ ha−1 for cycloxydim and from 150.51 to 81.13 g a.i. ⋅ ha−1 for sethoxydim. With an anti-drift flat fan nozzle, the forward angling of spray from 0° to 30° reduced the ED50 from 72.57 to 50.20 g a.i. ⋅ ha−1 for cycloxydim and from 181.94 to 104.51 g a.i. ⋅ ha−1 for sethoxydim. With an air induction flat fan nozzle, the forward angling of spray from 0° to 40° reduced the ED50 from 102.96 to 45.52 g a.i. ⋅ ha−1 for cycloxydim and from 209.91 to 92.80 g a.i. ⋅ ha−1 for sethoxydim. More angling did not improve the efficacy of these herbicides. Our results revealed that larger spray droplets needed more spray angle than smaller spray droplets to achieve an equal control.

Go to article

Authors and Affiliations

Akbar Aliverdi
ORCID: ORCID
Mojtaba Zarei
Download PDF Download RIS Download Bibtex

Abstract

An efficient application of phytosanitary products depends, among other factors, on a good selection of nozzles and the application volume rate of the solution used. Thus, the objective of this work was to evaluate the efficiency of different models of hydraulic tips and application volume rates on spray coverage on targets positioned in the upper, middle and lower thirds of corn plants. The application volume rates evaluated were: 50 l · ha −1; 100 l · ha −1; 150 l · ha −1; 200 l · ha −1; 300 l · ha −1 and 400 l · ha −1. The following nozzles were used: TT 11001, TTJ60 11002, TXA 8003, 30HCX 12, GRD120 02 and GAT11002. Applications were carried out in phenological stages V6–V7 of corn plants. There was a directly proportional relationship between an increase in application volume rate and the levels of spray coverage and droplet density in the three thirds of corn plants. The application volume rate evaluated, except for 50 l · ha −1 in the lower third, provided a number of droplets compatible with the literature recommendations for the application of systemic fungicides. All tips evaluated provided a number of droplets compatible with the recommendations in the literature for the application of systemic fungicides, therefore, they can be recommended for use in spraying on corn crops.
Go to article

Authors and Affiliations

Roxana Stefane Mendes Nascimento
1
ORCID: ORCID
Douglas Ferreira Parreira
2
Juliana Souza Milagres
3
Danilo Felipe Afonso
3
Pedro Luid de Sousa Oliveira
4
Rafael Guimarães Silva Moraes
4

  1. Fitotecnia, Universidade Federal de Viçosa, Viçosa, Brazil
  2. Fitopatologia, Universidade Federal de Viçosa, Viçosa, Brazil
  3. Agronomia, Universidade Federal de Viçosa, Viçosa, Brazil
  4. Agronomia, Universidade Estadual da Região Tocantina do Maranhão, Imperatriz, Brazil
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the concept of new swirl inserts. An empty two-phase swirl flow atomizer, and three atomizers with inserts were designed, manufactured and tested. The tested atomizers did not differ in terms of their geometric dimensions, with the only variable being the type swirl chamber filling. Flow resistance and spray angle values were analysed for all the evaluated structures. It was shown that the presence of a swirl insert does not significantly increase flow resistance, but instead results in larger spray angles. Taking into account the values of flow resistance and spray angles, the best design solution turned out to be the set of inserts No. 2.
Go to article

Authors and Affiliations

Sylwia Włodarczak
1
Daniel Janecki
2
Bartosz Czajkowski
1
Adam Szmyt
1
Andżelika Krupińska
1
Magdalena Matuszak
1
Marek Ochowiak
1

  1. Department of Chemical Engineering and Equipment, Poznan University of Technology, M. Sklodowska-Curie 5, 60-965 Poznan, Poland
  2. Institute of Environmental Engineering and Biotechnology, University of Opole, 45-032 Opole, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper analyses the possibility of applying thermal barrier coatings (TBCs) onto a substrate made of the AlSi7Mg alloy, intended for, among other things, internal combustion engine components. Engine components made of aluminum-silicon alloys, especially pistons and valve heads, are exposed to high temperature, pressure and thermal shock resulting from the combustion of the fuel-air mixture. These factors cause degradation of these components and can lead to damage. To minimize the risk of damage to engine components caused by heat stress, one way is to apply TBCs. Applying TBCs coatings to engine components improves their durability, increases power output and reduces fuel consumption. The research scope includes the application of an Al2O3-TiO3 coating via the APS (Air Plasma Spraying or Atmospheric Plasma Spraying) method onto a substrate of the AlSi7Mg alloy, analysis of the microstructure and chemical composition of the substrate and coating material, and assessment of the quality of the coating's bond with the AlSi7Mg alloy substrate using the scratch test method.
Go to article

Bibliography

[1] Chen, C., Sun, C., Wang, W., Qi, M., Han, W., Li, Y., Liu, X., Yang, F., Gou, L. & Guo, Z. (2022). Microstructure and mechanical properties of in-situ TiB2/AlSi7Mg composite via powder metallurgy and hot extrusion. Journal of Materials Research and Technology. 19, 1282-1292. https://doi.org/10.1016/j.jmrt.2022.05.117.
[2] Rambabu, P., Eswara Prasad, N., Kutumbarao, V.V., Wanhill, R.J.H. (2017). Aluminium Alloys for Aerospace Applications. In: Prasad, N., Wanhill, R. (eds) Aerospace Materials and Material Technologies . Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-10-2134-3_2.
[3] Sonsino, C.M. & Franz, R. (2017). Multiaxial fatigue assessment for automotive safety components of cast aluminium EN AC-42000 T6 (G-AlSi7Mg0. 3 T6) under constant and variable amplitude loading. International Journal of Fatigue. 100(2), 489-501. https://doi.org/10.1016/j.ijfatigue.2016.10.027.
[4] Dolata, A.J., Dyzia, M., Jaworska, L. & Putyra, P. (2016). Cast hybrid composites designated for air compressor pistons. Archives of Metallurgy and Materials. 61(2A), 705-708. http://dx.doi.org/10.1515%2Famm-2016-0120.
[5] Siadkowska, K. & Czyż, Z. (2019). Selecting a material for an aircraft diesel engine block. Combustion Engines. 58(3), 4-8. DOI: http://dx.doi.org/10.19206/CE-2019-301.
[6] Floweday, G., Petrov, S., Tait, R.B. & Press, J. (2011). Thermo-mechanical fatigue damage and failure of modern high performance diesel pistons. Engineering Failure Analysis. 18(7), 1664-1674. https://doi.org/10.1016/j.engfailanal.2011.02.002.
[7] Azadi, M., Mafi, A., Roozban, M. & Moghaddam, F. (2012). Failure analysis of a cracked gasoline engine cylinder head. Journal of Failure Analysis and Prevention. 12, 286-294. https://doi.org/10.1007/s11668-012-9560-6.
[8] Krstic, B., Rasuo, B., Trifkovic, D., Radisavljevic, I., Rajic, Z. & Dinulovic, M. (2013). Failure analysis of an aircraft engine cylinder head. Engineering Failure Analysis. 32, 1-15. https://doi.org/10.1016/j.engfailanal.2013.03.004.
[9] Jing, G.X., Zhang, M.X., Qu, S., Pang, J.C., Fu, C.M., Dong, C., Li, S. X., Xu, C.G. & Zhang, Z.F. (2018). Investigation into diesel engine cylinder head failure. Engineering Failure Analysis. 90, 36-46. https://doi.org/10.1016/j.engfailanal.2018.03.008.
[10] Sharma, P., Dwivedi, V.K. & Kumar, D. (2021). A review on thermal barrier coatings (TBC) usage and effect on internal combustion engine. Advances in Fluid and Thermal Engineering: Select Proceedings of FLAME 2020, 77-85. https://doi.org/10.1007/978-981-16-0159-0_8.
[11] Dhomne, S. & Mahalle, A.M. (2019). Thermal barrier coating materials for SI engine. Journal of materials research and technology. 8(1), 1532-1537. https://doi.org/10.1016 /j.jmrt.2018.08.002.
[12] Gürbüz, H. (2022). Experimental investigation of the effects of ethanol‐diesel mixture on the performance and emissions of the thermal barrier coated diesel engine. Environmental Progress & Sustainable Energy. 41(1), e13718. https://doi.org/10.1002/ep.13718.

Go to article

Authors and Affiliations

Marek Mróz
ORCID: ORCID
Patryk Rąb
ORCID: ORCID

Download PDF Download RIS Download Bibtex

Abstract

In this study, Ni20Cr coatings were obtained by cold spraying on an aluminum alloy 7075 substrate. The obtained coatings were characterized by a uniform microstructure and low porosity. The sprayed coating has the same phase composition as the powder used. Next, the cold sprayed coatings were heat treated using a TRUMPF TLF 6000 TURBO (4 kW) CO2 laser. The laser surface melting of the coatings resulted in the formation of a columnar structure and an improvement in their mechanical properties. The Ni20Cr cold sprayed coatings after additional laser melting showed lower porosity and an increase in microhardness and Young`s modulus.
Go to article

Bibliography

[1] L. Pawlowski, The science and engineering of thermal spray coatings, J. Willey & Sons Ltd, Chichester, II ed. (2008).
[2] D. Tejero-Martin, M. Rezvani Rad, A. McDonald, T. Hussain, J. Therm. Spray Technol. 28 (4), 598-644 (2019).
[3] G. Di Girolamo, E. Serra, Thermally Sprayed Nanostructured Coatings for Anti-wear and TBC Applications: State-of-the-art and Future Perspectives, Anti-Abrasive Nanocoatings, Ed., Woodhead Publishing Limited, 513-541 (2015). DOI: https://doi.org/10.1016/B978-0-85709-211-3.00020-0
[4] A . Góral, L. Lityńska-Dobrzyńska, W. Żórawski, K. Berent, J. Wojewoda-Budka, Arch. Metall. Mater. 58 (2), 335-339 (2013).
[5] C.M. Kay, J. Karthikeyan, High Pressure Cold Spray, ASM International 2016.
[6] H. Assadi, H. Kreye, F. Gartner, T. Klassen, Acta Materialia 116, 382-407 (2016).
[7] M.R. Rokni, S.R. Nutt, C.A. Widener, G.A. Crawford, V.K. Champagne, Springer. 5, 143-192 (2018).
[8] A . Góral, W. Żórawski, P. Czaja, L. Lityńska-Dobrzyńska, M. Makrenek, S. Kowalski, J. Mater. Res. 110, 49-59 (2019), DOI: 10.3139/146.111698
[9] Q. Wang, N. Birbilis, X. Zahang, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 43, 1395-1399 (2012),
[10] C.W. Ziemian, M.M. Sharma, B.D. Bouffard, T. Nissly, T. Eden, Mater. Des. 54, 212-221(2014)
[11] L. Ajdelsztajn, B. Jodoin, J.M. Schoenung, Surf. Coat. Tech. 201, 1166-1172 (2006).
[12] M. Scendo, W. Żórawski, A. Góral, Metals 9, 890-910 (2019). DOI: 103390/met9080890
[13] E. Qin, B. Wang, W. Li, Ma, H. Lu, S. Wu, J. Therm. Spray Technol. 28, 1072-1080 (2019).
[14] D. Kong, B. Zhao, J. Alloys Compd. 705, 700-707 (2017).
[15] T . Otmianowski, B. Antoszewski, W. Żórawski, Proceesing of 15th International Thermal Spray Conference, 25-29 May, Nice, France, 1333-1336 (1998).
[16] B . Antoszewski, P. Sęk, Proc. SPIE 8703, 8703-8743 (2012). DOI: https://doi.org/10.1117/12.2015240
[17] P. Sęk, Open Eng. 10, 454-461 (2020).
[18] M. Tlotleng, M. Shukla, E. Akinlabi, S. Pityana, Surface Engineering Techniques and Application: Research Advancements 177- 221 (2014). DOI: https://doi.org/10.4018/978-1-4666-5141-8.ch006
[19] D.K. Christoulis, M. Jeandin, E. Irissou, J.G. Legoux, W. Knapp, Laser-Assisted Cold Spray (LACS) InTech. 59-96 (2012). DOI: https://doi.org/10.5772/36104
[20] S.B. Mishra, K. Chandra, S. Prakash, J. Tribol. 128, 469-475 (2006) DOI: 10.1115/1.2197843
[21] A. Mangla, V. Chawla, G. Singh, Int. J. Eng. Sci. Res. Technol. 6, 674-686 (2017).
[22] N. Abu-Warda, A.J. López, M.D. López, M.V. Utrilla, Surf. Coat. Tech. 381, 125133 (2020).
[23] EN ISO 6507-1: 2018.
[24] https://www.scribd.com/document/423195204/DSMTS-0109-2- Ni20Cr-Powders
Go to article

Authors and Affiliations

D. Soboń
1
ORCID: ORCID

  1. Kielce University of Technology, 7 Tysiąclecia Państwa Polskiego Av., 25-314 Kielce, Poland
Download PDF Download RIS Download Bibtex

Abstract

This study examines the optimal parameters for obtaining fluorine-doped SnO 2 (FTO) films with promising potential for photovoltaic applications. Due to its properties, tin oxide is used in a wide range of technologies, among which the manufacture of solar cells is one of the most important. Being doped with fluorine, tin dioxide becomes a good transparent and conductive electrode, suitable for solar cell applications. The chemical stability and low cost of the doped SnO 2 makes it an advantageous alternative to tin-doped indium oxide (ITO). Among the most important characteristics of FTO thin films are high photoconductivity under sunlight irradiation and strong UV absorption. The SnO 2 compound, doped with fluorine, exhibits a considerable chemical and physical stability, good electrical conductivity and high transmission (over 85%) in the visible range. The spray pyrolysis technique is the most preferable and efficient deposition method of fluorine-doped SnO2 thin films. This work aims to identify the optimal parameters for the spray pyrolysis of SnO 2:F films and to analyze the morphology, transparency and strength of as obtained films in relation to the doping amount in the precursor solution, spraying distance and film thickness.
Go to article

Authors and Affiliations

P. Lisnic
1
ORCID: ORCID
L. Hrostea
2
ORCID: ORCID
L. Leontie
1
ORCID: ORCID
M. Girtan
3
ORCID: ORCID

  1. Alexandru Ioan Cuza University of Iasi, Faculty of Physics Bulevardul Carol I, nr.11, 700506, Iasi, Romania
  2. Alexandru Ioan Cuza University of Iasi, Institute of Interdisciplinary Research, Research Center on Advanced Materials and Technologies, Science Department, Bulevardul Carol I, nr. 11, 700506 Iasi, Romania
  3. Angers University, Faculty of Sciences, Photonics Laboratory, (LPhiA) E.A. 4464, SFR Matrix, 2 Bd Lavoisier, 49000 Angers, France
Download PDF Download RIS Download Bibtex

Abstract

Plasma sprayed ceramic coatings serve as protective layers and are frequently exposed to aggressive wear, corrosion, or high-temperature environment. Currently, alumina and alumina-titania are some of the most popular protective ceramic composite coatings used in the industry. The present work deals with the investigation of the influence of TiO₂ content in the feedstock powder on the resulting microstructure and properties of Al₂O₃, Al₂O₃ + 3 wt% TiO₂, Al₂O₃ + 13 wt% TiO₂ and Al₂O₃ + 40 wt% TiO₂ coatings developed via atmospheric plasma spraying (APS). Specifically, the phase composition, morphology, and microstructure, as well as the mechanical and tribological performance of the coatings were examined. Results revealed that higher content of TiO₂ induced the transformation of phases, leading to the formation of intermediary Al₂TiO₅ and Al₂- xTi₁- xO₅ phases. Also, the dominant α–Al₂O₃ to γ–Al₂O₃ transformation confirmed the formulation of well-melted lamellas within the coating structure. It was also shown that the increase in TiO₂ content decreased the micro-hardness of the coatings due to the formation of the intermediary phases as mentioned above and thus, affected their tribological performance. The lowest volumetric wear, equal to 7.2×10⁻⁵ mm³/(N m), was reported for Al₂O₃ + 13 wt% TiO₂ coating.
Go to article

Bibliography

  1.  A. Richter, L.-M. Berger, S. Conze, Y.J. Sohn, and R. Vassen, “Emergence and impact of Al2TiO5 in Al2O3–TiO2 APS coatings”, IOP Conf. Series: Mater. Sci. Eng. 480, 012007 (2019).
  2.  L. Pawłowski, The Science and Engineering of Thermal Spray Coatings, 2nd ed., Wiley, Chichester, 2008.
  3.  S. Islak et al., “Effect on microstructure of TiO2 rate in Al2O3–TiO2 composite coating produced using plasma spray method”, Optoelectron. Adv. Mat. (9–10), 844–849 (2013).
  4.  J. Zimmerman, Z. Lindemann, D. Golan´ski, T. Chmielewski, and Włosiński, “Modeling residual stresses generated in Ti coatings thermally sprayed on Al2O3 substrates”, Bull. Pol. Acad. Sci. Tech. Sci. 61(2), 515–525 (2013)
  5.  K. Kudła and J. Iwaszko, “Surface modification of ZrO2-10 wt.% CaO plasma sprayed coating”, Bull. Pol. Acad. Sci. Tech. Sci. 64(4), 937–942 (2016).
  6.  D. Franco, H. Ageorges, E. Lopez, and F. Vargas, “Tribological performance at high temperatures of alumina coatings applied by plasma spraying process onto a refractory material”, Surf. Coat. Technol. 371, 276–286 (2019).
  7.  S. Mehar, S. Sapate, N. Vashishtha, and P. Bagde, “Effect of Y2O3 addition on tribological properties of plasma sprayed Al2O3–13% TiO2 coating”, Ceram. Int. 46, 1179911810 (2020).
  8.  J. Rolando T. Candidato Jr., P. Sokołowski, L. Łatka, S. Kozerski, L. Pawłowski, and A. Denoirjean, “Plasma spraying of hydroxyapatite coatings using powder, suspension and solution feedstocks”, Weld. Techn. Rev. 87(10), 64–71 (2015).
  9.  M. Winnicki, T. Piwowarczyk, and A. Małachowska, “General description of cold sprayed coatings formation and of their properties”, Bull. Pol. Acad. Sci. Tech. Sci. 66(3), 301–310 (2018).
  10.  K. Pietrzak, A. Strojny-Nędza, A. Gładki, S. Nosewicz, D. Jarząbek, and M. Chmielewski, “The effect of ceramic type reinforcement on structure and properties of Cu-Al2O3 composites”, Bull. Pol. Acad. Sci. Tech. Sci. 66(4), 553–560 (2018).
  11.  M. Michalak, L. Łatka, P. Sokołowski, A. Niemiec, and A. Ambroziak, “The microstructure and selected mechanical properties of Al2O3 + 13 wt.% TiO2 plasma sprayed coatings”, Coatings 10(2), 173 (2020).
  12.  M. Chmielewski and K. Pietrzak, “Metal-ceramic functionally graded materials – manufacturing, characterization, application”, Bull. Pol. Acad. Sci. Tech. Sci. 64(1), 151–160 (2016).
  13.  A. Richter, L.-M. Berger, Y. Sohn, S. Conze, K. Sempf, and  R. Vaßen, “Impact of Al2O3–40 wt.% TiO2 feedstock powder characteristics on the sprayability, microstructure and mechanical properties of plasma sprayed coatings”, J. Eur. Ceram. Soc. 39(16), 5391–5402 (2019).
  14.  Material Product Data Sheet High Purity Aluminum Oxide Thermal Spray Powders – Oxide Ceramic Powder Materials for Thermal Spray – Oerlikon Metco.
  15.  Material Product Data Sheet Alumina 3% Titania Thermal Spray Powders – Oxide Ceramic Powder Materials for Thermal Spray – Oerlikon Metco.
  16.  Material Product Data Sheet Aluminum Oxide 13% Titanium Dioxide Powders – Oxide Ceramic Powder Materials for Thermal Spray – Oerlikon Metco.
  17.  Material Product Data Sheet Aluminum Oxide 40% Titanium Dioxide Powders – Oxide Ceramic Powder Materials for Thermal Spray – Oerlikon Metco.
  18.  H. Li, Z. Ke, J. Li, L. Xue, and Y. Yan, “An effective lowtemperature strategy for sealing plasma sprayed Al2O3-based coatings”, J. Eur. Ceram. Soc. 38(4), 1871–1877 (2018).
  19.  A. Šuopys, L. Marcinauskas, R. Kėželis, M. Aikas, and R. Uscila, “Thermal and chemical resistance of plasma sprayed Al2O3, Al2O3–TiO2 coatings”, Res. Sq., (to be published).
  20.  M. Djendel, O. Allaoui, R. Boubaaya, “Characterization of alumina-titania coatings produced by atmospheric plasma spraying on 304 SS steel”, Acta Phys. Pol. 132 (3), 538–540 (2017).
  21.  S. Yugeswaran, V. Selvarajan, M. Vijay, P. Ananthapadmanabhan, and K. Sreekumar, “Influence of critical plasma spraying parameter (CPSP) on plasma sprayed alumina–titania composite coatings”, Ceram. Int. 36 (1), 141–149 (2010).
  22.  W. Żórawski, A. Góral, O. Bokuvka, L. Lityńska-Dobrzyńska, and K. Berent, “Microstructure and tribological properties of nanostructured and conventional plasma sprayed alumina– titania coatings”, Surf. Coat. Technol. 268, 190–197 (2015).
  23.  W. Tian, Y. Wang, and Y. Yang, “Three body abrasive wear characteristics of plasma sprayed conventional and nanostructured Al2O3–13%TiO2 coatings”, Tribol. Int. 43(5–6), 876–881 (2010).
  24.  T. Rajesh and R. Rao “Experimental investigation and parameter optimization of Al2O3–40%TiO2 atmospheric plasma spray coating on SS316 steel substrate”, Mater. Today: Proc. 5 (2), 5012–5020 (2018).
  25.  E. Song, J. Ahn, S. Lee, and N. Kim, “Effects of critical plasma spray parameter and spray distance on wear resistance of Al2O3–8 wt.% TiO2 coatings plasma-sprayed with nanopowders”, Surf. Coat. Technol. 202(15), 3625–3632 (2008).
  26.  R. Yilmaz, A. Kurt, A. Demir, and Z. Tatli, “Effects of TiO2 on the mechanical properties of the Al2O3–TiO2 plasma sprayed coating”, J. Eur. Ceram. Soc. 27(2–3), 1319–1323 (2007).
  27.  F. Freudenberg, “Study of the reaction to the solid state Al2O3 + TiO2 → Al2TiO5: structure observation”, thesis at University Lausanne (1988) [in French].
  28.  E. Klyatskina et al., “Sliding wear behavior of Al2O3–TiO2 coatings fabricated by the suspension plasma spraying technique”, Tribol. Lett. 59(8), 1–9 (2015).
  29.  H. Ageorges and P. Ctibor, “Comparison of the structure and wear resistance of Al2O3–13 wt.% TiO2 coatings made by GSP and WSP plasma process with two different powders”, Surf. Coat. Technol. 202(18), 4362–4368 (2008).
  30.  N. Dejang, A. Watcharapasorn, S. Wirojupatump, P. Niranatlumpong, and S. Jiansirisomboon, “Fabrication and properties of plasma-sprayed Al2O3/TiO2 composite coatings: a role of nano-sized TiO2 addition”, Surf. Coat. Technol. 204 (9–10), 1651–1657 (2010).
  31.  ASTM B822 – 17 Particle Size Distribution of Metal Powders and Related Compounds by Light Scattering, ASTM International: West Conshohocken, PA, USA (2017).
  32.  ASTM E2109-01 01 Standard Test Methods for Determining Area Percentage Porosity in Thermal Sprayed Coatings, ASTM International: West Conshohocken, PA, USA (2014).
  33.  P.S. Prevéy, “X-ray diffraction characterization of crystallinity and phase composition in plasma-sprayed hydroxyapatite coatings”, J. Therm. Spray. Tech. 9, 369–376 (2000).
  34.  L. Marcinauskas and P. Valatkevičius, “The effect of plasma torch power on the microstructure and phase composition of alumina coatings”, Mat. Sci.–Poland 28, 451–458 (2010).
  35.  EN ISO 4288:1996 Geometrical Product Specifications (GPS) – Surface texture: Profile method – Rules and procedures for the assessment of surface texture (1996).
  36.  EN ISO 4516: 2004 Metallic and other inorganic coatings – Vickers and Knoop microhardness tests (2004).
  37.  ASTM G99-17 Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus,ASTM International: West Conshohocken, PA, USA (2017).
  38.  P. Bandyopadhyay, D. Chicot, B. Venkateshwarlu, V. Racherla, Decoopman and J. Lesage, “Mechanical properties of conventional and nanostructured plasma sprayed alumina coatings”, Mech. Mater. 53, 61–71 (2012).
  39.  M. Wang and L. Shaw, “Effects of the powder manufacturing method on microstructure and wear performance of plasma sprayed alumina–titania coatings”, Surf. Coat. Technol. 202(1), 34-44 (2007).
  40.  I. Ahmed and T. Bergman, “Three-dimensional simulation of thermal plasma spraying of partially molten ceramic agglomerates”, J. Therm. Spray. Tech. 9, 215–224 (2000).
  41.  M. Michalak, F.-L. Toma, L. Latka, P. Sokolowski, M. Barbosa, and A. Ambroziak, “A study on the microstructural characterization and phase compositions of thermally sprayed Al2O3–TiO2 coatings obtained from powders and water-based suspensions”, Materials 13(11), 2638 (2020).
  42.  R. McPherson, “Formation of metastable phases in flameand plasma-prepared alumina”, J. Mater. Sci. 8, 851–858 (1973).
  43.  F.-L. Toma, L.-M. Berger, C. Stahr, T. Naumann, and S. Langner, “Microstructures and functional properties of suspensionsprayed Al2O3 and TiO2 coatings: an overview”, J. Therm. Spray. Tech. 19, 262–274 (2010).
  44.  F. Dachille, P. Simons, and R. Roy, “Pressure-temperature studies of anatase, brookite, rutile and TiO2-II”, Am. Mineral. 53, 1929–1939 (1968).
  45.  D. Goldberg, “Contribution to study of systems formed by alumina and some oxides of trivalent and tetravalent metals especially titanium oxide”, Revue Internationale Des Hautes Temperatures et Des Refractaires 5, 181–182 (1968).
  46.  L.-M. Berger, K. Sempf, Y. Sohn, and R. Vaßen, “Influence of feedstock powder modification by heat treatments on the properties of APS- sprayed Al2O3–40%TiO2 coatings”, J. Therm. Spray. Tech. 27, 654–666 (2018).
  47.  S. Hoffmann, S. Norberg, and M. Yoshimura, “Melt synthesis of Al2TiO5 containing composites and reinvestigation of the phase diagram Al2O3–TiO2 by powder X-ray diffraction”, J. Electroceram. 16, 327–330 (2006).
  48.  S. Goel, S. Björklund, N. Curry, U. Wiklund, and S. Joshi, “Axial suspension plasma spraying of Al2O3 coatings for superior tribological properties”, Surf. Coat. Technol. 315, 80–87 (2017).
  49.  M. Ghazali, S. Forghani, N. Hassanuddin, A. Muchtar, and A. Daud, “Comparative wear study of plasma sprayed TiO2 and Al2O3–TiO2 on mild steels”, Tribol. Int. 93, 681–686 (2016).
  50.  E. Jordan et al., “Fabrication and evaluation of plasma sprayed nanostructured alumina–titania coatings with superior properties”, Mater. Sci. Eng. A 301(1), 80–89 (2001).
  51.  M. Szala, A. Dudek, A. Maruszczyk, M. Walczak, J. Chmiel, and M. Kowal, “Effect of atmospheric plasma sprayed TiO2–10%NiAl cermet coating thickness on cavitation erosion, sliding and abrasive wear resistance”, Acta Phys. Pol. A. 136, 335–341 (2019).
  52.  S. Yao, Y. Su, H. Shu, C. Lee, and Z. You, “Comparative study on nano-structural and traditional Al2O3–13TiO2 air plasma sprayed coatings and their thermal shock performance”, Key Eng. Mater. 739, 103–107 (2017).
Go to article

Authors and Affiliations

Monika Michalak
1
ORCID: ORCID
Leszek Łatka
1
ORCID: ORCID
Paweł Sokołowski
1
ORCID: ORCID
Rolando T. Candidato Jr.
2
ORCID: ORCID
Andrzej Ambroziak
1
ORCID: ORCID

  1. Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
  2. Physics Department, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, A. Bonifacio Avenue, Tibanga, 9200, Iligan, City, Philippines
Download PDF Download RIS Download Bibtex

Abstract

Ice formed on radome surfaces causes communication disruption due to radio-frequency interference (RFI), which reveals the importance of de-icing systems for radomes. As a radome de-icing application, in this work, carbon nanotube (CNT) thin films were fabricated using a spray-coating method, and influence of process parameters on RF transmittance and electrothermal properties was investigated. With the increase of spraying time, sheet resistance of the fabricated film decreases, which results in a decrease of the RF transmittance and improvement of the heating performance. Also, the de-icing capability of the fabricated CNT film was evaluated at –20oC, and efficient removal of ice under cold conditions was demonstrated.

Go to article

Authors and Affiliations

Jun Hyuk Jung
Jiwon Hong
Youngryeul Kim
Seok-Min Yong
Jinwoo Park
Seung Jun Lee
Download PDF Download RIS Download Bibtex

Abstract

The mechanism in which the coatings made by thermal spraying adhere to the substrate is in most cases of a mechanical nature, thus being dependent on the morphology of the substrate surface. This paper study how the texture of the substrate influences the behavior of dry sliding wear, a behavior based on the adhesion to the substrate of the analyzed coatings. For this purpose, a Co – base powder, was chosen for atmospheric plasma spraying. For the substrate, a rectangular profile made of low-alloy steel was chosen, the surface of which was textured by mechanical abrasion, in order to obtain different degrees of roughness: sample S1 – Ra1 = 1.59 µm, sample S2 – Ra2 = 2.32 µm, sample 3 – Ra3.1 = 1.25 μm, Ra3.2 = 3.88 μm. In the case of sample 3, the texturing was done on one direction, with an elongated profile, so that the effect of the main direction of dry sliding wear on the quality of the coating could be studied. The tests were performed on an Amsler test machine, at constant load, for 1 hour. The samples were mounted in a fixed position, and the wear occurred on the basis of the rotation of the metal disc, without lubrication. It was found that the coating of sample 1 was the most affected, resulting even a partial delamination, and the best behavior was recorded in the case of sample 3.1.
Go to article

Authors and Affiliations

D. Cristisor
1
ORCID: ORCID
D.L. Chicet
2
ORCID: ORCID
C. Cirlan Paleu
1
ORCID: ORCID
C. Stescu
1
ORCID: ORCID
C. Munteanu
1 3
ORCID: ORCID

  1. Gheorghe Asachi Technical University of Iasi, Department of Mechanical Engineering, Blvd. Mangeron, No. 61, 700050, Iasi, Romania
  2. Gheorghe Asachi Technical University of Iasi, Department of Materials Science and Engineering, Blvd. Mangeron, No. 41, 700050, Iasi, Romania
  3. Technical Sciences Academy of Romania, 26 Dacia Blvd, Bucharest, 030167, Romania
Download PDF Download RIS Download Bibtex

Abstract

In this study we analyzed the rolling contact fatigue behavior of two types of coatings made by thermal coating, by the method of atmospheric plasma spraying (APS) from two commercially available powders: Ni5Al5Mo and Al2O3 – 13 TiO2. The contact fatigue behavior was studied on an installation specially designed. The specimens were tested for 54 hours (at 1380 rpm), at a load of 944 N. For both types of coatings, the appearance of a wear path was observed, much more obvious in the case of the Ni matrix layer, also confirmed by profilometry. The mechanism of the wear phenomenon was predominantly of plastic deformation type (the material was pushed towards the edges of the wear path) in the case of NiAlMo coating. In the case of ceramic coating, the wear path width was very small (300-450 μm), with very few changes at the surface level of the coating, which recommends this type of material for applications that require wear resistance to rolling.
Go to article

Authors and Affiliations

D. Chicet
1
ORCID: ORCID
S. Toma
1
ORCID: ORCID
R. Haraga
1
ORCID: ORCID
C. Bejinariu
1
ORCID: ORCID

  1. Gheorghe Asachi Technical University of Iasi, Department of Materials Science and Engineering, Blvd. Mangeron, No. 41, 700050, Iasi, Romania
Download PDF Download RIS Download Bibtex

Abstract

The HAp (hydroxyapatite) excellent ion exchange resin and has adsorption properties of heavy metals and organic materials. It is used as an adsorption material and as an organic drug-delivery material due to these characteristics, that are essentially controlled the specific surface area. In this paper, the specific surface area was controlled by adding polymers of polyvinylpyrrolidone (PVP), polystyrene beads (PSB), and polyethylene glycol (PEG). Through the USP process, the HAp powder is able to synthesize into the spherical shape, specific surface area, and pore were controlled by the properties of the polymers.
Go to article

Authors and Affiliations

Jeongha Lee
1
ORCID: ORCID
Kun-Jae Lee
1
ORCID: ORCID

  1. Dankook University, Departm ent of Energy Engineering, Cheonan 31116, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

Thin films were prepared based on cellulose polymer doped with different ratios of natural dye derived from Portulaca grandiflora concentrations. The polymer and natural dye were extracted from eco-friendly materials—the cell walls of millet husks and Portulaca grandiflora, respectively. The spray pyrolysis technique was applied to prepare thin film samples to control the film morphology and reduce the roughness of the surface. Optical microscope and Fourier transform infrared were used to analyse structural, morphological, and functional groups for all samples, respectively. The peak absorbance, extinction coefficient, optical bandgap, Urbach energy, and optical conductivity for the thin films were determined using ultraviolet-visible spectroscopy. The results show an enhancement in the optical characteristics when the natural cellulose is doped with a dye. Doping cellulose with 5% P. grandiflora has led to a considerable reduction in the energy bandgap (to 1.95 eV), compared to the sample doped with 1%.
Go to article

Authors and Affiliations

Tahseen Alaridhee
1
ORCID: ORCID
Mohammed T. Obeed
1
ORCID: ORCID
Fatima H. Malk
1
ORCID: ORCID
Baheya A. Dhahi
1

  1. Department of Material Science, Polymer Research Centre, University of Basrah, Iraq
Download PDF Download RIS Download Bibtex

Abstract

In the summer 1980-1981, in the Antarctic areas, in the coastal zone of Admiralty Bay (King George Island), complex measurements were carried out in order to investigate the proportion of wind gustiness in the processes generating marine spray systems and stimulating aerosol mass exchange between the sea and the atmosphere.

Go to article

Authors and Affiliations

Czesław Garbalewski
Roman Marks

This page uses 'cookies'. Learn more