Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This article aims at presenting research on the sorption of carbon dioxide on shales, which will allow to estimate the possibility of CO2 injection into gas shales. It has been established that the adsorption of carbon dioxide for a given sample of sorbent is always greater than that of methane. Moreover, carbon dioxide is the preferred gas if adsorption takes place in the presence of both gases. In this study CO2 sorption experiments were performed on high pressure setup and experimental data were fitted into the Ambrose four components models in order to calculate the total gas capacity of shales as potential CO2 reservoirs. Other data necessary for the calculation have been identified: total organic content, porosity, temperature and moisture content. It was noticed that clay minerals also have an impact on the sorption capacity as the sample with lowest TOC has the highest total clay mineral content and its sorption capacity slightly exceeds the one with higher TOC and lower clay content. There is a positive relationship between the total content of organic matter and the stored volume, and the porosity of the material and the stored volume.
Go to article

Bibliography

[1] A. Szurlej, P. Janusz, Natural gas economy in the United States and European markets. Gospodarka Surowcami Mineralnymi (Mineral Resources Management) 29 (4), 77-94 (2013). DOI: https://doi.org/10.2478/gospo-2013-0043
[2] B. Dudley, BP Statistical Review of World Energy 4 (2019).
[3] J. Siemek, M. Kaliski, S. Rychlicki, P. Janusz, S. Sikora, A. Szurlej, Wpływ shale gas na rynek gazu ziemnego w Polsce. Rynek Energii 5, 118-124 (2011).
[4] K . Król, A. Dynowski, Eksploatacja gazu ziemnego z formacji łupkowych w Polsce – nadzieje i fakty (komunikat). Bezp. Pr. Ochr. Śr. w Gór. 10 (2015).
[5] M. Iijima, T. Nagayasu, T. Kamijyo, S. Nakatani, MHI’s Energy Efficient Flue Gas CO2 Capture Technology and Large Scale CCS Demonstration Test at Coal-fired Power Plants in USA. Mitsubishi Heavy Industries Technical Review 49 (1), 37-43 (2012).
[6] R . Khosrokhavar, Mechanisms for CO2 sequestration in geological formations and enhanced gas recovery. Springer Theses (2016). DOI: https://doi.org/10.4233/uuid:a27f5c1d-5fd2-4b1e-b757-8839c0c4726c
[7] D . Liu, Y. Li, S. Yang, R.K. Agarwal, CO2 sequestration with enhanced shale gas recovery. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 43 (24) 1-11 (2019). DOI: https://doi.org/10.1080/15567036.2019.1587069
[8] R . Heller, M. Zoback, Adsorption of methane and carbon dioxide on gas shale and pure mineral samples. Journal of Unconventional Oil and Gas Resources 8, 14-24 (2014). DOI: https://doi.org/10.1016/j.juogr.2014.06.001
[9] J.A. Cecilia, C. García‐Sancho, E. Vilarrasa‐García, J. Jiménez‐Jiménez, E. Rodriguez‐Castellón, Synthesis, Characterization, Uses and Applications of Porous Clays Heterostructures: A Review. Chem. Rec. 18, 1085-1104 (2018). DOI: https://doi.org/10.1002/tcr.201700107
[10] O.P. Ortiz Cancino, D. Peredo Mancilla, M. Pozo, E. Pérez, D. Bessieres, Effect of Organic Matter and Thermal Maturity on Methane Adsorption Capacity on Shales from the Middle Magdalena Valley Basin in Colombia. Energy Fuels 31, 11698-11709 (2017). DOI: https://doi.org/10.1021/acs.energyfuels.7b01849
[11] S. Zhou, H. Xue, Y. Ning, W. Guo, Q. Zhang, Experimental study of supercritical methane adsorption in Longmaxi shale: Insights into the density of adsorbed methane. Fuel 211, 140-148 (2018). DOI: https://doi.org/10.1016/j.fuel.2017.09.065
[12] H . Bi, Z. Jiang, J. Li, P. Li, L. Chen, Q. Pan, Y. Wu, The Ono-Kondo model and an experimental study on supercritical adsorption of shale gas: A case study on Longmaxi shale in southeastern Chongqing, China. J. Nat. Gas Sci. Eng. 35, 114-121 (2016). DOI: https://doi.org/10.1016/j.jngse.2016.08.047
[13] M. Gasparik, P. Bertier, Y. Gensterblum, A. Ghanizadeh, B.M. Krooss, R. Littke, Geological controls on the methane storage capacity in organic-rich shales. Int. J. Coal Geol., Special issue: Adsorption and fluid transport phenomena in gas shales and their effects on production and storage 123, 34-51 (2014). DOI: https://doi.org/10.1016/j.coal.2013.06.010
[14] X. Luo, S. Wang, Z. Wang, Z. Jing, M. Lv, Z. Zhai, T. Han, Adsorption of methane, carbon dioxide and their binary mixtures on Jurassic shale from the Qaidam Basin in China. Int. J. Coal Geol. 150, 210-223 (2015). DOI: https://doi.org/10.1016/j.coal.2015.09.004
[15] L . Wang, Q. Yu, The effect of moisture on the methane adsorption capacity of shales: A study case in the eastern Qaidam Basin in China. J. Hydrol. 542, 487-505 (2016). DOI: https://doi.org/10.1016/j.jhydrol.2016.09.018
[16] S.M. Kang, E. Fathi, R.J. Ambrose, I.Y. Akkutlu, R.F. Sigal, Carbon Dioxide Storage Capacity of Organic-Rich Shales. SPE J. 16, 842-855 (2011). DOI: https://doi.org/10.2118/134583-PA
[17] D .L. Gautier, J.K. Pitman, R.R. Charpentier, T. Cook, T.R. Klett, C.J. Schenk, Potential for Technically Recoverable Unconventional Gas and Oil Resources in the Polish-Ukrainian Foredeep. USGS Fact Sheet, 2012-3102 (2012).
[18] R . McCarthy, V. Arp, A New Wide Range Equation of State for Helium. Advances in Cryogenic Engineering 35, 1465-1475 (1990).
[19] R . Span, W. Wagner, A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple‐Point Temperature to 1100 K at Pressures up to 800 MPa. Journal of Physical and Chemical Reference Data 25 (6), 1509-1596 (1996). DOI: https://doi.org/10.1063/1.555991
[20] U . Setzmann, W. Wagner, A New Equation of State and Tables of Thermodynamic Properties for Methane Covering the Range from the Melting Line to 625 K at Pressures up to 100 MPa. Journal of Physical and Chemical Reference Data 20, 1061-1155 (1991). DOI: https://doi.org/10.1063/1.555898
[21] M. Lutynski, M. A. Gonzalez Gonzalez, Characteristics of carbon dioxide sorption in coal and gas shale – The effect of particle size. Journal of Natural Gas Science and Engineering 28, 558-565. DOI: https://doi.org/10.1016/j.jngse.2015.12.037
[22] R . Aguilera, Shale gas reservoirs: Theoretical, practical and research issues. Petroleum Research 1 (1), 10-26 (2016). DOI: https://doi.org/10.1016/S2096-2495(17)30027-3
[23] H . Belyadi, E. Fathi, F. Belyadi, Hydraulic fracturing in unconventional reservoirs: theories, operations, and economic analysis. Gulf Professional Publishing (2016).
[24] K . Sepehrnoori, Y. Wei, Shale Gas and Tight Oil Reservoir Simulation. Elsevier (2018). DOI: https://doi.org/10.1016/ C2017-0-00263-X
[25] R .J. Ambrose, R.C Hartman, M. Diaz-Campos, I.Y. Akkutlu, C.H. Sondergeld, New Pore-scale Considerations for Shale Gas in Place Calculations. Presented at the SPE Unconventional Gas Conference, Society of Petroleum Engineers (2010). DOI: https://doi.org/10.2118/131772-MS
[26] R .J. Ambrose, R.C. Hartman, M. Diaz Campos, I.Y. Akkutlu, C.H. Sondergeld, Shale Gas-in-Place Calculations Part I: New Pore-Scale Considerations. Spe Journal 17 (01), 219-229 (2012). DOI: https://doi.org/10.2118/131772-PA
[27] P. Such, Co to właściwie znaczy porowatość skał łupkowych. Nafta-Gaz LXX (7), 411-415 (2014).
Go to article

Authors and Affiliations

Patrycja Waszczuk-Zellner
1
ORCID: ORCID
Marcin Lutyński
2
ORCID: ORCID
Aleksandra Koteras
3
ORCID: ORCID

  1. LNPC Patrycja Waszczuk, Pszczyna, Poland
  2. Silesian University of Technology, 2A Akademicka Str., 44-100 Gliwice, Poland
  3. Central Mining Institute (GIG), 1 Gwarków Sq., 40-166 Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Renewable energy sources are connected to the grid through inverters, resulting in reduced grid inertia and poor stability. Traditional grid-connected inverters do not have the function of voltage and frequency regulation and can no longer adapt to the new development. The virtual synchronous generator (VSG) has the function of voltage and frequency regulation and has more outstanding advantages than the traditional inverter. Based on the principle of the VSG, the relationship between energy storage capacity, frequency response and output power of the VSG is derived, and the relationship between the virtual inertia coefficient, damping coefficient and frequency characteristics of the VSG and output power is revealed. The mathematical model is established and modeled using the Matlab/Simulink simulation software, and the simulation results verify the relationship between energy storage capacity and frequency response and the output power of the VSG.
Go to article

Authors and Affiliations

Baoge Zhang
1
ORCID: ORCID
Shanyan Ping
1
Yi Long
1
Yuemin Jiao
1
Boxiang Wu
1

  1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, China

This page uses 'cookies'. Learn more