Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A microgrid is an appropriate concept for urban areas with high penetration of renewable power generation, which improves the reliability and efficiency of the distribution network at the consumer premises to meet various loads such as domestic, industrial, and agricultural types. Microgrids comprising inverter-based and synchronous generator-based distribution generators can lead to the instability of the system during the islanded mode of operation. This paper presents a study on designing stable microgrids to facilitate higher penetration of solar power generation into a distribution network. Ageneralized small signal model is derived for a microgrid with static loads, dynamic loads, energy storages, solar photovoltaic (PV) systems, and diesel generators, incorporating the features of dynamic systems. The model is validated by comparing the transient curves given by the model and a transient simulator subjected to step changes. The result shows that full dynamic models of complex systems of microgrids can be built accurately, and the proposed microgrid is stable for all the considered loading situations and solar PV penetration levels according to the small signal stability analysis.
Go to article

Authors and Affiliations

W.E.P. Sampath Ediriweera
1
N.W.A. Lidula
1
H. Dayan B.P. Herath
2

  1. Department of Electrical Engineering, University of Moratuwa, Moratuwa, Sri Lanka
  2. Colombo City, Ceylon Electricity Board, Sri Lanka
Download PDF Download RIS Download Bibtex

Abstract

Different from the synchronization mechanism of synchronous generators, the non-synchronous generators must be synchronized with the grid through a controller. Generally, the virtual synchronous generator (VSG) control strategy is adopted for this purpose. In view of the current situation, where the control loops are not comprehensively considered in the research of the synchronization stability of the VSG, this paper considers multiple control loops, such as active frequency loops, virtual governors, power filters and current constraint control, to establish the mathematical model of the VSG and infinite system. On this basis, the correlation formula between power angle difference and control parameters is deduced. Adopting the phase plane method, the influence of different control loops and their parameters on the transient synchronization stability is analyzed. Finally, a setting principle of the frequency modulation coefficient of virtual governors is proposed, which not only meets the response speed of control systems, but also has good control performance.
Go to article

Authors and Affiliations

Yanxia Zhang
1
Yachao Cheng
1
Kaixiang Liu
Yue Han
1

  1. School of Electrical and Information Engineering, Tianjin University, China
Download PDF Download RIS Download Bibtex

Abstract

Large synchronous generators are of high importance for the stability of power systems. They generate the frequency of the system and stabilize it in case of severe grid faults like trips of large in-feeders or loads. In distributed energy systems, in-feed via inverters will replace this generation in large parts. Modern inverters are capable of supporting grid frequency during severe faults by different means on the one hand. On the other hand, higher Rates of Change of Frequency (RoCoF) after incidents need to be accustomed by future systems. To be able to analyse the RoCoF withstand capability of synchronous or induction generators, suitable models need to be developed. Especially the control and excitation system model need enhancements compared to models proposed in standards like IEEE Std 421.5. This paper elaborates on the necessary modelling depth and validates the approach with example results.
Go to article

Authors and Affiliations

Alf Assenkamp
1

  1. Bureau Veritas CPS Germany GmbH, Germany
Download PDF Download RIS Download Bibtex

Abstract

Three synchronous machine models representing three precision levels (complete, reduced and static), implemented in a virtual synchronous generator (VSG)-based industrial inverter, are compared and discussed to propose a set of tests for a possible standardization of VSG-based inverters and to ensure their “grid-friendly” operation in the context of isolated microgrids. The models and their implementation in the microcontroller of an industrial inverter (with the local control) are discussed, including the usability of the implementation with large-scale developments constraints in mind. The comparison is conducted based on existing standards (for synchronous machines and diesel generators) in order to determine their needed evolution, to define the requirements for future grid-friendly inverter-based generators, notably implementing a VSG solution.

Go to article

Authors and Affiliations

V. Moulichon
V. Debusschere
L. Garbuio
M.A. Rahmani
M. Alamir
N. Hadjsaid

This page uses 'cookies'. Learn more