Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an induction generator connected to the power grid using the AC/DC/AC converter and LCL coupling filter. In the converter, both from the generator and the power grid side, three-level inverters were used. The algorithm realizing pulse width modulation (PWM) in inverters has been simplified to the maximum. Control of the induction generator was based on the indirect field oriented control (IFOC) method. At the same time, voltage control has been used for this solution. The MPPT algorithm has been extended to the variable pitch range of the wind turbine blades. The active voltage balancing circuit has been used in the inverter DC voltage circuit. Synchronization of control from the power grid side is ensured by the use of a PLL loop with the system of preliminary suppression of undesired harmonics (CDSC).

Go to article

Authors and Affiliations

A. Kasprowicz
Download PDF Download RIS Download Bibtex

Abstract

The neutral point clamped (NPC) three-level inverter is widely used in highvoltage and high-power applications. However, neutral point voltage oscillation (NPVO) and common-mode voltage (CMV) problems exist in the NPC three-level inverter. In this paper, an improved virtual space vector modulation (VSVM) is proposed based on the reconstruction of a virtual small vector and a virtual medium vector. Compared with the traditional VSVM, an improved VSVM can effectively reduce the CMV. On this basis, a vector conversion method is proposed to further reduce the NPVO in the whole range. Simulation results verify the effectiveness and superiority of the improved VSVM.
Go to article

Bibliography

[1] Zhang X.,Wu X., Geng C., Ping X., Chen S., Zhang H., An Improved Simplified PWM for Three-Level Neutral Point Clamped Inverter Based on Two-Level Common-Mode Voltage Reduction PWM, IEEE Trans. Power Electronics, vol. 35, no. 10, pp. 11143–11154 (2020).
[2] Kaniewski J.Z., Power flow controller based on bipolar direct PWM AC/AC converter operation with active load, Archives of Electrical Engineering, vol. 68, no. 2, pp. 341–356 (2019).
[3] Beniwal N., Townsend C., Farivar G., Pou J., Ceballos S., Tafti H., Band-Limited Three-Level Modulation for Balancing Capacitor Voltages in Neutral-Point-Clamped Converters, IEEE Trans. Power Electronics, vol. 35, no. 9, pp. 9737–9752 (2020).
[4] Pham K., Nguyen N., A Reduced Common-Mode-Voltage Pulsewidth Modulation Method With Output Harmonic Distortion Minimization for Three-Level Neutral-Point-Clamped Inverters, IEEE Trans. Power Electronics, vol. 35, no. 7, pp. 6944–6962 (2020).
[5] Li C., Yang T., Kulsangcharoen P., Lo Calzo G., Bozhko S., Gerada C., Wheeler P., A Modified Neutral-Point Balancing Space Vector Modulation for Three-Level Neutral Point Clamped Converters in High Speed Drives, IEEE Trans. Ind. Electronics, vol. 66, no. 2, pp. 910–921 (2019).
[6] Jordi Z., Josep P., Salvador C., A Comprehensive Study of a Hybrid Modulation Technique for the Neutral-Point-Clamped Converter, IEEE Trans. Ind. Electronics, vol. 56, no. 2, pp. 294–304 (2009).
[7] Nguyen T.K.T., Nguyen N.-V., Prasad N.R., Eliminated common mode voltage pulse width modulation to reduce output current ripple for multilevel inverters, IEEE Trans. Power Electronics, vol. 31, no. 8, pp. 5952–5966 (2016).
[8] Lee J.S., Lee K.B., Time-Offset Injection Method for Neutral-Point AC Ripple Voltage Reduction in a Three-Level Inverter, IEEE Trans. Power Electronics, vol. 31, no. 3, pp. 1931–1941 (2016).
[9] McGrath B.P., Holmes D.G., Meynard T., Reduced PWM harmonic distortion for multilevel inverters operating over a wide modulation range, IEEE Trans. Power Electronics, vol. 21, no. 4, pp. 941–949 (2006).
[10] Chen J., He Y., Hasan S.U., Liu J., A comprehensive study on equivalent modulation waveforms of the SVM sequence for three-level inverters, IEEE Trans. Power Electronics, vol. 30, no. 12, pp. 7149–7158 (2015).
[11] Choi U.M., Lee J.S., Lee K.B., New modulation strategy to balance the neutral-point voltage for threelevel neutral-clamped inverter systems, IEEE Trans. Energy Conversion, vol. 29, no. 1, pp. 91–100 (2014). 218 Junlong Fang et al. Arch. Elect. Eng.
[12] Choi U.M., Lee K.B., Blaabjerg F., Method to minimize the low frequency neutral-point voltage oscillations with time-offset injection for neutral-point-clamped inverters, IEEE Trans. Ind. Appl., vol. 51, no. 2, pp. 1678–1691 (2015).
[13] Busquets-Monge S., Bordonau J., Boroyevich D., Somavilla S., The nearest three virtual space vector PWM – A modulation for the comprehensive neutral-point balancing in the three-level NPC inverter, IEEE Power Electron. Lett., vol. 2, no. 1, pp. 11–15 (2004).
[14] Xiang C.Q., Shu C., Han D., Improved Virtual Space Vector Modulation for Three-Level Neutral- Point-Clamped Converter with Feedback of Neutral-Point Voltage, IEEE Trans. Power Electronics, vol. 33, no. 6, pp. 5452–5464 (2018).
[15] Mukherjee S., Giri S., Banerjee S., An Improved Adjustable Modulation Strategy for Three-Level NPC Inverters Considering Dynamic Loading Applications, IEEE Trans. Ind. Electronics, vol. 65, no. 10, pp. 3915–3925 (2018).
[16] Yonglong Zhang, Yuejun An, Guangyu Wang, Xiangling Kong, Multi motor neural PID relative coupling speed synchronous control, Archives of Electrical Engineering, vol. 69, no. 1, pp. 57–68 (2020).
[17] Peng S., Zhang G., Qin C., Zhou Z., Gu X., Xia C., MPTC of NP-clamped three-level inverter-fed permanent-magnet synchronous motor system for NP potential imbalance suppression, IET Electric Power Applications, vol. 14, no. 4, pp. 658–667 (2020).
[18] Qin C., Zhang C., Chen A., Xing X., A space vector modulation scheme of the quasi-Z-source threelevel T-type inverter for common-mode voltage reduction, vol. 65, iss. 10, pp. 8340–8350 (2018).
[19] Pham K., Nguyen N., A Reduced Common-Mode-Voltage Pulsewidth Modulation Method with Output Harmonic Distortion Minimization for Three-Level Neutral-Point-Clamped Inverters, IEEE Trans. Ind. Electronics, vol. 35, no. 7, pp. 6944–6962 (2020).
[20] Xu X., Zheng Z., Wang K., Yang B., Li Y., A Comprehensive Study of Common Mode Voltage Reduction and Neutral Point Potential Balance for a Back-to-Back Three-Level NPC Converter, IEEE Trans. Power Electronics, vol. 35, no. 8, pp. 7910–7920 (2020).
[21] Jiang W., Wang P., Ma M., A Novel Virtual Space Vector Modulation with Reduced Common-Mode Voltage and Eliminated Neutral Point Voltage Oscillation for Neutral Point Clamped Three-Level Inverter, IEEE Trans. Ind. Electronics, vol. 67, no. 2, pp. 884–894 (2020).
Go to article

Authors and Affiliations

Junlong Fang
1
ORCID: ORCID
Guangya Wang
1
Ran Li
1
Siyuan Liu
1
Shuyu Wang
1

  1. School of Electricity and Information, Northeast Agricultural University, China
Download PDF Download RIS Download Bibtex

Abstract

Due to recent developments in the field of high-power and medium-voltage, the multilevel inverter has raised to such an extent owing to some of its amazing facts regarding harmonic spectrum, ease in control, reduced electromagnetic interference (EMI), filterless circuit, stress on power switches, common-mode voltage. This paper well describes a novel architecture of a single-phase multilevel inverter using a lesser number of overall components, especially the power switches. The proposed topology is generalized in the structure that can generate any number of voltage steps. A 7-level structure of the proposed topology is explained and is elaborately discussed. Simulation is carried out in MATLAB and corresponding experimental results verify the existence of the proposed multilevel inverter. The real-time experimental results were presented and are well verified by the simulation results for 7-level as well for 13-level across RL-Load. The nature of load current is also indicated as per the nature of load voltage. Nevertheless, the topology is further compared with some of the recent literature and found superior in each respect.
Go to article

Authors and Affiliations

Bidyut Mahato
1
ORCID: ORCID
Mrinal Ranjan
2
Pradipta Kumar Pal
3
Santosh Kumar Gupta
4
Kailash Kumar Mahto
2

  1. ABES Engineering College, Ghaziabad, UP – 201009, India
  2. Gaya College of Engineering, Gaya, Bihar – 823003, India
  3. Indian Institute of Technology (Indian School of Mines), Dhanbad – 826004, India
  4. Government Engineering College, Siwan, Bihar – 841226, India
Download PDF Download RIS Download Bibtex

Abstract

Multilevel inverters have been widely used in various occasions due to their advantages such as lowharmonic content of the outputwaveform. However, because multilevel inverters use a large number of devices, the possibility of circuit failure is also higher than that of traditional inverters. A T-type three-level inverter is taken as the research object, and a diagnostic study is performed on the open-circuit fault of insulated gate bipolar transistor (IGBT) devices in the inverter. Firstly, the change of the current path in the inverter when an open-circuit fault of the device occurred, and the effect on the circuit switching states and the bridge voltages were analyzed. Then comprehensively considered the bridge voltages, and proposed a fault diagnosis method for a T-type three-level inverter based on specific fault diagnosis signals. Finally, the simulation verification was performed. The simulation results prove that the proposed method can accurately locate the open-circuit fault of the inverter device, and has the advantage of being easy to implement.
Go to article

Bibliography

[1] Karthik A., Loganathan U., A reduced component count five-level inverter topology for high reliability electric drives, IEEE Transactions on Power Electronics, vol. 35, no. 1, pp. 725–732 (2020).
[2] Jin H., Luo Y., Yan Y., Pan S., Improved carrier phase shift modulation and voltage equalization control strategy in modular multilevel converter, Archives of electrical engineering, vol. 68, no. 4, pp. 803–815 (2019).
[3] Majumder M.G., Yadav A.K., Gopakumar K., Raj R.K., Loganathan U., Franquelo L.G., A 5-level inverter scheme using single DC link with reduced number of floating capacitors and switches for open-end IM drives, IEEE Transactions on Industrial Electronics, vol. 67, no. 2, pp. 960–968 (2020).
[4] Lewicki A., Morawiec M., Structure and the space vector modulation for a medium-voltage powerelectronic- transformer based on two seven-level cascade H-bridge inverters, IET Electric Power Applications, vol. 13, no. 10, pp. 1514–1523 (2019).
[5] Li X., Xing X., Zhang C., Chen A., Qin C., Zhang G., Simultaneous common-mode resonance circulating current and leakage current suppression for transformerless three-level T-ype PV inverter system, IEEE Transactions on Industrial Electronics, vol. 66, no. 6, pp. 4457–4467 (2019).
[6] Qin S., Lei Y., Ye Z., Chou D., Pilawa-Podgurski R.C.N., A high-power-density power factor correction front end based on seven-level flying capacitor multilevel converter, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 7, no. 3, pp. 1883–1898 (2019).
[7] Kim H., Kwon Y., Chee S., Sul S., Analysis and compensation of inverter nonlinearity for three-level T-type inverters, IEEE Transactions on Power Electronics, vol. 32, no. 6, pp. 4970–4980 (2017).
[8] Wang B., Li Z., Bai Z., Krein P.T., Ma H., A redundant unit to form T-type three-level inverters tolerant of IGBT open-circuit faults in multiple legs, IEEE Transactions on Power Electronics, vol. 35, no. 1, pp. 924–939 (2020).
[9] Wang B., Li Z., Bai Z., Krein P.T., Ma H., Real-time diagnosis of multiple transistor open-circuit faults in a T-type inverter based on finite-state machine model, CPSS Transactions on Power Electronics and Applications, vol. 5, no. 1, pp. 74–85 (2020).
[10] Choi U., Lee K., Blaabjerg F., Diagnosis and tolerant strategy of an open-switch fault for T-type three-level inverter systems, IEEE Transactions on Industry Applications, vol. 50, no. 1, pp. 495–508 (2014).
[11] He J., Demerdash N.A.O.,Weise N., Katebi R., A fast on-line diagnostic method for open-circuit switch faults in SiC-MOSFET-based T-type multilevel inverters, IEEE Transactions on Industry Applications, vol. 53, no. 3, pp. 2948–2958 (2017).
[12] Wang K., Tang Y., Zhang C., Open-circuit fault diagnosis and tolerance strategy applied to four-wire T-type converter systems, IEEE Transactions on Power Electronics, vol. 34, no. 6, pp. 5764–5778 (2019).
[13] Wang X., Wang Z., Xu Z., He J., Zhao W., Diagnosis and tolerance of common electrical faults in Ttype three-level inverters fed dual three-phase PMSM drives, IEEE Transactions on Power Electronics, vol. 35, no. 2, pp. 1753–1769 (2020).
[14] Schweizer M., Kolar J.W., Design and implementation of a highly efficient three-level T-type converter for low-voltage applications, IEEE Transactions on Power Electronics, vol. 28, no. 2, pp. 899–907 (2013). Vol. 70 (2021) Fault diagnosis of T-type three-level inverter 87
[15] Wang K., Tang Y., Zhang C., Open-circuit fault diagnosis and tolerance strategy applied to four-wire T-type converter systems, IEEE Transactions on Power Electronics, vol. 34, no. 6, pp. 5764–5778 (2019).
[16] Abadi M.B., Mendes A.M.S., Cruz S.M.Â., Method to diagnose open-circuit faults in active power switches and clamp-diodes of three-level neutral-point clamped inverters, IET Electric Power Applications, vol. 10, no. 7, pp. 623–632 (2016).
[17] Zhou D., Yang S., Tang Y., A voltage-based open-circuit fault detection and isolation approach for modular multilevel converters with model-predictive control, IEEE Transactions on Power Electronics, vol. 33, no. 11, pp. 9866–9874 (2018).
[18] Chen D., LiuY., Zhang S., Open-circuit fault diagnosis method for the T-type inverter based on analysis of the switched bridge voltage, IET Power Electronics, vol. 12, no. 2, pp. 295–302 (2019
Go to article

Authors and Affiliations

Danjiang Chen
1
ORCID: ORCID
Yutian Liu
1
Shaozhong Zhang
1

  1. College of Information and Intelligence Engineering, Zhejiang Wanli University, China

This page uses 'cookies'. Learn more