Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 65
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The subject of discussion is a tank gun horizontal stabiliser. In order to simplify identification, the system was divided into appropriate functional parts. Then, via laboratory tests, dynamic and static characteristics of those parts were obtained, and numerical values of coefficients of suitable mathematical model of the system were determined. The structural scheme of the overall system was derived on the basis of the obtained static characteristics and transfer functions of individual parts of the system, and based on the knowledge about the system feedbacks. For the investigation of the considered control system, one applied a method of computer simulations. The mathematical model and its numerical implementation was experimentally verified. To this aim: • the results of model testing (for open-loop system) were compared with the existing results of experimental tests carried-out on a real tank; • tests of the complete closed-loop system were carried -out and their results were compared with the results of numerical computations. The results of experimental and model simulation investigations showed that the mathematical model and its numerical implementation was worked-out correctly.
Go to article

Authors and Affiliations

Krzysztof M. Papliński
Download PDF Download RIS Download Bibtex

Abstract

The article presents a water-cooling system for photovoltaic (PV) modules using a two-axis tracking system that tracks the apparent position of the Sun on the celestial sphere. The cooling system consists of 150 adjustable spray nozzles that cool the bottom layer of PV modules. The refrigerant is water taken from a tank with a capacity of 7 m 3. A water recovery system reduces its consumption with efficiency of approximately 90%. The experimental setup consists of a full-size photovoltaic installation made of 10 modules with an output power of 3.5 kWp combined with a tracking system. The article presents an analysis of the cooling system efficiency in various meteorological conditions. Measurements of energy production were performed in the annual cycle using three different types of photovoltaic installations: stationary, two-axis tracking system and two-axis tracking system combined with the cooling system.
Go to article

Authors and Affiliations

Kamil Płachta
1
Janusz Mroczka
1
Mariusz Ostrowski
1
ORCID: ORCID

  1. Wroclaw University of Technology, Faculty of Microsystem Electronics and Photonics, Chair of Electronic and Photonic Metrology, Bolesława Prusa 53/55, 50-317 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

Automation in experiments carried out on animals is getting more and more important in research. Computers take over laborious and time-consuming activities like recording and analysing images of the experiment scene. The first step in an image analysis is finding and distinguishing between the observed animals and then tracking all objects during the experiment. In this paper four tracking methods are presented. Quantitative and qualitative figures of merit are applied to confront those methods. The comparison takes into consideration the level of correct object recognition during different disturbances, the speed of computation, requirements as to the frame rate and image illumination, quality of recovering from occluded situations and others.

Go to article

Authors and Affiliations

Magdalena Mazur-Milecka
Antoni Nowakowski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a new method for simultaneous tracking of varying grid impedance and its uncertainty bounds. Impedance tracking consists of two stages. In the first stage, the actual noise estimate is obtained from least squares (LS) residua. In the second stage, the noise covariance matrix is approximated with the use of residual information. Then weighted least squares (WLS) method is applied in order to estimate impedance and background voltage. Finally uncertainty bounds for impedance estimation are computed. The robustness of the method has been verified using simulated signals. The proposed method has been compared to sliding LS. The results have shown, that the method performs much better than the LS for all considered cases, even in the presence of significant background voltage variations.

Go to article

Authors and Affiliations

Dariusz Borkowski
Szymon Barczentewicz
Download PDF Download RIS Download Bibtex

Abstract

The contribution presents a novel approach to the detection and tracking of lanes based on lidar data. Therefore, we use the distance and reflectivity data coming from a one-dimensional sensor. After having detected the lane through a temporal fusion algorithm, we register the lidar data in a world-fixed coordinate system. To this end, we also incorporate the data coming from an inertial measurement unit and a differential global positioning system. After that stage, an original image of the road can be inferred. Based on this data view, we are able to track the lane either with a Kalman filter or by using a polynomial approximation for the underlying lane model.

Go to article

Authors and Affiliations

Michael Thuy
Fernando León
Download PDF Download RIS Download Bibtex

Abstract

In this paper, two new sinusoidal signal frequency estimators calculated on the basis of four equally spaced signal samples are presented. These estimators are called four-point estimators. Simulation and experimental research consisting in signal frequency estimation using the invented estimators have been carried out. Simulation has also been performed for frequency tracking. The simulation research was carried out applying the MathCAD computer program that determined samples of a sinusoidal signal disturbed by Gaussian noise. In the experimental research, sinusoidal signal samples were obtained by means of a National Instruments PCI-6024E data acquisition card and an Agilent 33220A function generator. On the basis of the collected samples, the values of four-point estimators invented by the authors and, for comparison, the values of three- and four-point estimators proposed by Vizireanu were determined. Next, estimation errors of the signal frequency were determined. It has been shown that the invented estimators can estimate a signal frequency with greater accuracy.
Go to article

Authors and Affiliations

Sergiusz Sienkowski
Mariusz Krajewski
Download PDF Download RIS Download Bibtex

Abstract

The paper addresses optimal control problem of mobile manipulators. Dynamic equations of those mechanisms are assumed herein to be uncertain. Moreover, unbounded disturbances act on the mobile manipulator whose end-effector tracks a desired (reference) trajectory given in a task (Cartesian) space. A computationally efficient class of two-stage cascaded (hierarchical) control algorithms based on both the transpose Jacobian matrix and transpose actuation matrix, has been proposed. The offered control laws involve two kinds of non-singular terminal sliding mode (TSM) manifolds, which were also introduced in the paper. The proposed class of cooperating sub-controllers is shown to be finite time stable by fulfilment of practically reasonable assumptions. The performance of the proposed control strategies is illustrated on an exemplary mobile manipulator whose end-effector tracks desired trajectory.

Go to article

Authors and Affiliations

M. Galicki
Download PDF Download RIS Download Bibtex

Abstract

Figuig Berber (eastern Morocco) has a large number of deictic constructions. Among these, a construction with a preposed pronominal element followed by a genitival phrase is by far the most common. All deictic constructions use a basic contrast between two elements: -u and -ənn. In exophoric deixis, the former has proximal interpretation, while the latter has distal interpretation. In endophoric deixis, the situation is more complicated. For some speakers, only constructions with -ənn are permitted in this use, while other speakers use both constructions with -u and -ənn, without clear contrast. In the article, emphasis is laid on when endophoric deictic marking is used, and when it is absent. In principle, such marking shows that the referent has already been mentioned in the previous context, and can be regarded anaphoric. However, in such situations, it is still possible not to mark the noun. This is mainly the case when there is only one potential referent in a given situation, as, for example, in the case of kings, or as is often the case with nouns modified by a genitival phrase.

Go to article

Authors and Affiliations

Maarten Kossmann
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the following paper is to present the experimental field investigations in jointless railway track subjected to the author’s generated imperfections on its static work. The main concept for the executed investigations is to induce an intentional imperfection (both a concave and convex irregularity) in an actual railway track, propose a way of appropriate measurement (using the PONTOS system), and utilize author’s field investigations results to calibrate necessary parameters for theoretical calculations. An experimental formula describing the value of the force transferred from the rail to the railway sleeper on the grounds of the survey site caused by a locomotive is provided. Furthermore, the deflection of the chosen railway rail and sleeper due to the generated imperfection is subjected to analysis. Finally the objective of the present consideration is to resolve the calculations into the beam element such that the results can be used in computational railway practice. The scheme of the so-called a “hanging sleeper” is particularly unfavourable, a gap arises between the sleeper and the foundation, for which the significant changes appear, especially in the rail deflections and stresses. A work scheme of the railway track elements is described on the generated short concave and convex irregularity.
Go to article

Authors and Affiliations

Włodzimierz Andrzej Bednarek
1

  1. Poznan University of Technology, Faculty of Civil and Transport Engineering, Institute of Civil Engineering, Division of Bridges and Railway Engineering, ul. Piotrowo 5, 60-965 Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

Eye tracking constitutes a valuable tool for the examination of human visual behavior since it provides objective measurements related to the performed visual strategies during the observation of any type of visual stimuli. Over the last decade, eye movement analysis contributed substantially to the better understanding of how visual attention processes work in different types of maps. Considering the clear need for the examination of map user reaction during the observation of realistic cartographic products (i.e. static maps, animated maps, interactive and multimedia maps), a critical amount of experimental studies were performed in order to study different aspects related to map reading process by the cartographic community. The foundation of these studies is based on theories and models that have been developed in similar research domains (i.e. psychology, neuroscience etc.), while the research outcomes that produced over these years can be used directly for the design of more effective and efficient maps. The aim of the present article is to summarize and present the current panorama of the existing eye tracking studies in cartographic research appeared over the last decade. Additionally, methodological contributions (including analysis tools) of cartographic society in the field of eye movement analysis are reported, while existing challenges and future perspectives are also discussed.

Go to article

Authors and Affiliations

Vassilios Krassanakis
Paweł Cybulski
Download PDF Download RIS Download Bibtex

Abstract

Focus of the vibration expert community shifts more and more towards diagnosing machines subjected to varying rotational speeds and loads. Such machines require order analysis for proper fault detection and identification. In many cases phase markers (tachometers, encoders, etc) are used to help performing the resampling of the vibration signals to remove the speed fluctuations and smearing from the spectrum (order tracking). However, not all machines have the facility to install speed tracking sensors, due to design or cost reasons, and the signal itself has to then be used to extract this information. This paper is focused on the problem of speed tracking in wind turbines, which represent typical situations for speed and load variation. The basic design of a wind turbine is presented. Two main types of speed control i.e. stall and pitch control are presented,. The authors have investigated two methods of speed tracking, using information from the signal (without relying on a speed signal). One method is based on extracting a reference signal to use as a tachometer, while the other is phase-based (phase demodulation). Both methods are presented and applied to the vibration data from real wind turbines. The results are compared with each other and with the actual speed data.

Go to article

Authors and Affiliations

Jacek Urbanek
Tomasz Barszcz
Nader Sawalhi
Robert Randall
Download PDF Download RIS Download Bibtex

Abstract

Condition monitoring of machines working under non-stationary operations is one of the most challenging problems in maintenance. A wind turbine is an example of such class of machines. One of effective approaches may be to identify operating conditions and investigate their influence on used diagnostic features. Commonly used methods based on measurement of electric current, rotational speed, power and other process variables require additional equipment (sensors, acquisition cards) and software. It is proposed to use advanced signal processing techniques for instantaneous shaft speed recovery from a vibration signal. It may be used instead of extra channels or in parallel as signal verification.

Go to article

Authors and Affiliations

Jacek Urbanek
Tomasz Barszcz
Radosław Zimroz
Walter Bartelmus
Fabien Millioz
Nadine Martin
Download PDF Download RIS Download Bibtex

Abstract

The research project “Railcab” designs a shuttle-based transportation system, which combines innovative mechatronic technologies with existing railway tracks. The traction and braking forces are generated by a linear electromagnetic drive while the tracking and guidance is performed using classical wheel/rail technology. By adopting different mechatronic modules, a modular structuring of the overall system, the driving safety, vehicle dynamics and the travelling comfort can be increased.

In the present paper, we concentrate on the development of the active tracking module which reduces the sensitivity of the system behaviour with respect to the friction in the wheel/rail contact. Basic ideas of the tracking module are self-optimizing active tracking, camber adjustment, and mechanical locking device. Based on a-priori identified risks, like e.g. strong cross-wind, frosted rails and crossing of switches, the safety concepts are described in detail together with the methodology that was used in the design process.

Go to article

Authors and Affiliations

Michael Walther
Thomas Muller
Jorg Wallaschek
Download PDF Download RIS Download Bibtex

Abstract

The paper presents design and experimental verification of platform mechanism with cost-effective wire-based sensors for measuring of spatial displacement or pose of some moving object. This task, also known as spatial tracking, has a very wide application. The proposed mechanism, guided by the moving object, has a parallel structure with two platforms and at least six wire-based sensors for measuring distances between the platform points. Changes of the platform pose cause corresponding changes of the sensors' wire lengths. Forward position problem of an equivalent mechanism model with 6 degrees of freedom is described together with analyses of work space limitations and error propagation in a measurement system. A specific application is illustrated for tracking of a wheel knuckle of 5-link suspension mechanism used in passenger cars. The developed device has the following advantages: it can be installed in a wheel cavity; enables dynamic measurements on the road; is cost-effective. Performance of the latest prototype of the wire-based tracker was verified on the basis of measurements on a test rig, where two other measuring devices were used for comparison purposes.

Go to article

Authors and Affiliations

Marta Góra
Michał Maniowski
Download PDF Download RIS Download Bibtex

Abstract

The diagnostics of track superstructure, which involves geometric measurements, direct observation and railroad surveillance, provides the basis for making decisions regarding the commencement of repair works. Planning repairs and increasing the probability of making the right decision at the right time also requires knowledge of the basic performance specifications of a given railway line, especially the maximum train speed and the permissible traffic volume. The article discusses a way to plan the repairs of track superstructure using artificial neural networks. It features a description of the process of designing, building and training a neural network, based on which a way to predict the degree of urgency of repairs has been discussed. The conclusions point towards the potential advantages of neurocomputers in the process of track superstructure maintenance.

Go to article

Authors and Affiliations

Henryk Bałuch
Iwona Nowosińska
Download PDF Download RIS Download Bibtex

Abstract

Photovoltaic (PV) cells are very costly because of the silicon element which is not cheaply available. Usually, PV cells are preferred to be used at maximum efficiency. Therefore, PV plants are emphasized to extract maximum power from PVcells. When inertia free PV plants are integrated into the grid in large numbers, the problem of maintaining system stability subjected to load perturbation is quite difficult. In response to this, a control topology is being an approach to make available the PV cells in maintaining system stability by utilizing the system frequency deviation as feedback to the controller. To implement this, the PVs are operated at Maximum Power Point Tracking (MPPT). This allows the PV to operate at Pseudo Maximum Power Point tracking (PMPPT) which makes it possible to run the PV with reserve power capacity without employing a battery for storage. The control strategy has been implemented over a two-stage power conversion model of the PV system. The simulation results showed that the proposed control PMPPT topology is effective in frequency regulation capability as compared to the MPPT technique.

Go to article

Authors and Affiliations

Ritesh Kumar
Balakrushna Sahu
Chandan Kumar Shiva
B. Rajender
Download PDF Download RIS Download Bibtex

Abstract

The almost unlimited possibilities of modern computational tools create the temptation to study phenomena related to the operation of engineering objects exclusively using complex numerical simulations. However, the fascination with multi-parametric complex computational models, whose solutions are obtained using iterative techniques, may result in qualitative discrepancies between reality and virtual simulations. The need to verify on real objects the conclusions obtained from numerical calculations is therefore indisputable. The enormous cost and uniqueness of large-scale test stands significantly limit the possibility of conducting tests under real conditions. The solution may be an experiment focused on testing features relevant to the given task, while minimising the dimensions of the objects under consideration. Such conditions led to the concept of conducting a series of field experiments to verify the effectiveness of prototype track components, which were developed using numerical simulations to reduce the noise caused by passing trains. The main aim of this study is to examine the acoustic efficiency of prototype porous concrete sound absorbing panels, in relation to the ballasted and ballastless track structures. Presented results of the proposed unconventional experiments carried out on an improvised test stand using the recorded acoustic signals confirm the effectiveness of the developed vibroacoustic isolators.
Go to article

Authors and Affiliations

Cezary Kraśkiewicz
1
ORCID: ORCID
Grzegorz Klekot
2
ORCID: ORCID
Piotr Książka
3
Artur Zbiciak
1
ORCID: ORCID
Przemysław Mossakowski
1
ORCID: ORCID
Patrycja Chacińska
3
Anna Al Sabouni-Zawadzka
1
ORCID: ORCID

  1. Faculty of Civil Engineering, Warsaw University of Technology
  2. Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology
  3. National Research Institute, Department of Environmental Acoustics, Institute of Environmental Protection Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The present paper describes an experimental methodology of identification of dynamic characteristics of a track structure, consisting in determination of a track decay rate (TDR) in the field tests that were conducted by the authors on the railway line section inWarsaw. The proposed methodology of measurements, parameters determination and presentation of the results is based on the measurement methods described in EN 15461 [1], which are aimed at determination of TDR. The values of TDR determined in the impulse tests in one-third octave bands are compared with the limiting values specified in EN ISO 3095 [2] and Technical Specifications for Interoperability (TSI) [3]. Based on the obtained experimental data, the analysed railway line is classified as a structure that does not generate excessive level of rolling noise from the vibrations induced by the moving rolling stock on structural elements of the track – particularly on rails. The results obtained in this study are promising from the point of view of future development of effective solutions used for protection of people and environment against noise generated by the railway traffic.
Go to article

Authors and Affiliations

Cezary Kraśkiewicz
1
ORCID: ORCID
Przemysław Mossakowski
1
ORCID: ORCID
Artur Zbiciak
1
ORCID: ORCID
Anna Al Sabouni-Zawadzka
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

A solar photovoltaic (PV) system has been emerging out as one of the greatest potential renewable energy sources and is contributing significantly in the energy sector. The PV system depends upon the solar irradiation and any changes in the incoming solar irradiation will affect badly on the output of the PV system. The solar irradiation is location specific and also the atmospheric conditions in the surroundings of the PV system contribute significantly to its performance. This paper presents the cumulative assessment of the four MPPT techniques during the partial shading conditions (PSCs) for different configurations of the PV array. The partial shading configurations like series-parallel, bridge link, total cross tied and honeycomb structure for an 8×4 PV array has been simulated to compare the maximum power point tracking (MPPT) techniques. The MPPT techniques like perturb and observe, incremental conductance, extremum seeking control and a fuzzy logic controller were implemented for different shading patterns. The results related to the maximum power tracked, tracking efficiency of each of the MPPT techniques were presented in order to assess the best MPPT technique and the best configuration of the PV array for yielding the maximum power during the PSCs.
Go to article

Authors and Affiliations

B. Krishna Naick
K. Chatterjee
T.K. Chatterjee
Download PDF Download RIS Download Bibtex

Abstract

In this paper we propose a sensor-based navigation method for navigation of wheeled mobile robot, based on the Kohonen self-organising map (SOM). We discuss a sensor-based approach to path design and control of wheeled mobile robot in an unknown 2-D environment with static obstacles. A strategy of reactive navigation is developed including two main behaviours: a reaching the middle of a collision-free space behaviour, and a goal-seeking behaviour. Each low-level behaviour has been designed at design stage and then fused to determine a proper actions acting on the environment at running stage. The combiner can fuse low-level behaviours so that the mobile robot can go for the goal position without colliding with obstacles one for the convex obstacles and one for the concave ones. The combiner is a softswitch, based on the idea of artificial potential fields, that chooses more then one action to be active with diRerent degrees at each time step. The output of the navigation level is fed into a neural tracking controller that takes into account the dynamics of the mobile robot. The purpose of the neural controller is to generate the commands for the servo-systems of the robot so it may choose its way to its goal autonomously, while reacting in real-time to unexpected events. Computer simulation has been conducted to illustrate the performance of the proposed solution by a series of experiments on the emulator of wheeled mobile robot Pioneer-2DX.

Go to article

Authors and Affiliations

Z. Hendzel
Download PDF Download RIS Download Bibtex

Abstract

In this work, a novel approach to designing an on-line tracking controller for a nonholonomic wheeled mobile robot (WMR) is presented. The controller consists of nonlinear neural feedback compensator, PD control law and supervisory element, which assure stability of the system. Neural network for feedback compensation is learned through approximate dynamic programming (ADP). To obtain stability in the learning phase and robustness in face of disturbances, an additional control signal derived from Lyapunov stability theorem based on the variable structure systems theory is provided. Verification of the proposed control algorithm was realized on a wheeled mobile robot Pioneer–2DX, and confirmed the assumed behavior of the control system.

Go to article

Authors and Affiliations

Zenon Hendzel
Marcin Szuster
Download PDF Download RIS Download Bibtex

Abstract

Recently, the search for new effective energy production solutions has been focused on the production of electricity using renewable and environmentally friendly carriers. This resulted in an increased interest in PV cells and cogeneration systems. The article looks at the main factors affecting their operational parameters against the background of the development history of subsequent generations of PV cells. Average daily solar radiation and wind velocity in Lodz were characterized. The research was done on a static and tracking system with a total peak power of 15 kWp and a 30 kW microturbine. PV panels are installed on the building of the Institute of Electrical Power Engineering of the Lodz University of Technology and they work as part of DERLab. A microturbine is inside the building. Energy measurements were carried out in 2016 giving grounds for the analysis of energy efficiency and financial analysis of the energy supply in buildings. Energy yields in the static and tracking system as well as percentage coverage of electricity from PV cells and microturbines were assessed. The distribution of monthly savings, annual savings of energy costs and the payback time of the investment costs of the systems subject to the test were determined. The research we have done allows us to say that the energy produced by follow-up modules is about 3 times greater than that generated in stationary modules. On the other hand, the annual savings of energy costs using gas micro-turbines are about 10 times higher than those of lagging panels. The analysis shows that it is possible to determine the profitability of the microturbine and photovoltaic panels use despite large financial outlays. The payback period of investment outlays is about 12 years when using the installation throughout the year.

Go to article

Authors and Affiliations

Paulina Sawicka-Chudy
Elżbieta Rybak-Wilusz
Maciej Sibiński
Marian Cholewa
Ryszard Pawełek
Download PDF Download RIS Download Bibtex

Abstract

The solar photovoltaic output power fluctuates according to solar irradiation, temperature, and load impedance variations. Due to the operating point fluctuations, extracting maximum power from the PV generator, already having a low power conversion ratio, becomes very complicated. To reach a maximum power operating point, a maximum power point tracking technique (MPPT) should be used. Under partial shading condition, the nonlinear PV output power curve contains multiple maximum power points with only one global maximum power point (GMPP). Consequently, identifying this global maximum power point is a difficult task and one of the biggest challenges of partially shaded PV systems. The conventional MPPT techniques can easily be trapped in a local maximum instead of detecting the global one. The artificial neural network techniques used to track the GMPP have a major drawback of using huge amount of data covering all operating points of PV system, including different uniform and non-uniform irradiance cases, different temperatures and load impedances. The biological intelligence techniques used to track GMPP, such as grey wolf algorithm and cuckoo search algorithm (CSA), have two main drawbacks; to be trapped in a local MPP if they have not been well tuned and the precision-transient tracking time complex paradox. To deal with these drawbacks, a Distributive Cuckoo Search Algorithm (DCSA) is developed, in this paper, as GMPP tracking technique. Simulation results of the system for different partial shading patterns demonstrated the high precision and rapidity, besides the good reliability of the proposed DCSAGMPPT technique, compared to the conventional CSA-GMPPT.
Go to article

Bibliography

[1] Zhao Zhuoli, Runting Cheng, Baiping Yan, Jiexiong Zhang, Ze- han Zhang, Mingyu Zhang, and Loi Lei Lai: A dynamic particles MPPT method for photovoltaic systems under partial shading conditions. Energy Conversion and Management, 220 (2020), 113070, DOI: 10.1016/j.enconman.2020.113070.
[2] Nabil A. Ahmed and Masafumi Miyatake: A novel maximum power point tracking for photovoltaic applications under partially shaded insolation conditions. Electric Power Systems Research, 78(5), (2008), 777–784, DOI: 10.1016/j.epsr.2007.05.026.
[3] Liqun Liu, Xiaoli Meng, and Chunxia Liu: A review of maximum power point tracking methods of PV power system at uniform and partial shading. Renewable and Sustainable Energy Reviews, 53 (2016), 1500–1507, DOI: 10.1016/j.rser.2015.09.065.
[4] Yanzhi Wang, Xue Lin, Younghyun Kim, Naehyuck Chang, and Mas- soud Pedram: Enhancing efficiency and robustness of a photovoltaic power system under partial shading. Thirteenth International Symposium on Quality Electronic Design (ISQED), Santa Clara USA, (2012), 592–600, DOI: 10.1109/ISQED.2012.6187554.
[5] Ricardo Orduz, Jorge Solorzano, Miguel Ángel Egido, and Ed- uardo Roman: Analytical study and evaluation results of power optimizers for distributed power conditioning in photovoltaic arrays. Progress in Photovoltaics: Research and Applications, 21(3), (2013), 359–373, DOI: 10.1002/pip.1188.
[6] Kashif Ishaque and Zainal Salam: A review of maximum power point tracking techniques of PV system for uniform insolation and partial shading condition. Renewable and Sustainable Energy Reviews, 19 (2013), 475–488, DOI: 10.1016/j.rser.2012.11.032.
[7] Jubaer Ahmed and Zainal Salam: A critical evaluation on maximum power point tracking methods for partial shading in PV systems. Renewable and Sustainable Energy Reviews, 47 (2015), 933–953, DOI: 10.1016/j.rser.2015.03.080.
[8] Ali M. Eltamaly: Performance of MPPT techniques of photovoltaic systems under normal and partial shading conditions. Advances in Renewable Energies and Power Technologies, vol. 1, Solar and Wind Energies, I. Yahyaoui, 2018, Elsevier, Chapter 4, 115–161.
[9] Ali M. Eltamaly: Performance of smart maximum power point tracker under partial shading conditions of photovoltaic systems. Journal ofRenewable and Sustainable Energy, 7(4), (2015), 043141, DOI: 10.1063/1.4929665.
[10] A. Talha, H. Boumaaraf, and O. Bouhali: Evaluation of maximum power point tracking methods for photovoltaic systems. Archives of Control Sciences, 21(2), (2011), 151–165.
[11] Hegazy Rezk and Ali M. Eltamaly: A comprehensive comparison of different MPPT techniques for photovoltaic systems. Solar Energy, 112 (2015), 1–11, DOI: 10.1016/j.solener.2014.11.010.
[12] S. Lyden and M.E. Haque: Maximum power point tracking techniques for photovoltaic systems: A comprehensive review and comparative analysis. Renewable and Sustainable Energy Reviews, 52 (2015): 1504–1518, DOI: 10.1016/j.rser.2015.07.172.
[13] Zainal Salam, Jubaer Ahmed, and Benny S. Merugu: The application of soft computing methods for MPPT of PV system: A technological and status review. Applied Energy, 107 (2013), 135–148, DOI: 10.1016/j.apenergy.2013.02.008.
[14] Hassan M.H. Farh, Mohamed F. Othman, and Ali M. Eltamaly: Maximum power extraction from grid-connected PV system. Saudi Arabia Smart Grid (SASG), (2017), 1–6, DOI: 10.1109/SASG.2017.8356498.
[15] Seyedali Mirjalili, Seyed Mohammad Mirjalili, and Andrew Lewis: GreyWolf optimizer. Advances in Engineering Software, 69 (2014), 46–61, DOI: 10.1016/j.advengsoft.2013.12.007.
[16] Sabrina Titri, Cherif Larbes, Kamal Youcef Toumi, and Karima Be- natchba: A new MPPT controller based on the ant colony optimization algorithm for photovoltaic systems under partial shading conditions. Applied Soft Computing, 58 (2017), 465–479, DOI: 10.1016/j.asoc.2017.05.017.
[17] Lian Lian Jiang, Douglas L. Maskell, and Jagdish C. Patra:Anovel ant colony optimization-based maximum power point tracking for photovoltaic systems under partially shaded conditions. Energy and Buildings, 58 (2013), 227–236, DOI: 10.1016/j.enbuild.2012.12.001.
[18] Lian Lian Jiang, R. Srivatsan, and Douglas L. Maskell: Computational intelligence techniques for maximum power point tracking in PV systems: A review. Renewable and Sustainable Energy Reviews, 85 (2018), 14–45, DOI: 10.1016/j.rser.2018.01.006.
[19] Ali M. Eltamaly and Hassan M.H. Farh: Dynamic global maximum power point tracking of the PV systems under variant partial shading using hybrid GWO-FLC. Solar Energy, 177 (2019), 306–316, DOI: 10.1016/j.solener.2018.11.028.
[20] Jubaer Ahmed and Zainal Salam: A maximum power point tracking (MPPT) for PV system using cuckoo search with partial shading capability. Applied Energy, 119 (2014), 118–130, DOI: 10.1016/j.apenergy.2013.12.062.
[21] Xin-She Yang and Suash Deb: Cuckoo search via Lévy flights. 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, India (2009), 210–214, DOI: 10.1109/NABIC.2009.5393690.
[22] Jubaer Ahmed and Zainal Salam: A soft computing MPPT for PV system based on cuckoo search algorithm. 4th International Conference on Power Engineering, Energy and Electrical Drives, Istanbul, Turkey, (2013), 558– 562, DOI: 10.1109/PowerEng.2013.6635669.
[23] Ahmed A. El Baset, A. El Halim, Naggar H. , and Ahmed A. El Sattar: A comparative study between perturb and observe and cuckoo search algorithm for maximum power point tracking. 21st International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, (2019), 716–723, DOI: 10.1109/MEPCON47431.2019.9008210.
[24] Filippo Spertino and Jean Sumaili Akilimali: Are manufacturing I–V mismatch and reverse currents key factors in large photovoltaic arrays? IEEE Transactions on Industrial Electronics, 56(11), (2009), 4520–4531, DOI: 10.1109/TIE.2009.2025712.
[25] M. Drif, P.J. Perez, J. Aguilera, and J.D. Aguilar: A new estimation method of irradiance on a partially shaded PV generator in grid-connected photovoltaic systems. Renewable Energy, 33(9), (2008), 2048–2056, DOI: 10.1016/j.renene.2007.12.010.
[26] Bidyadhar Subudhi and Raseswari Pradhan: A comparative study on maximum power point tracking techniques for photovoltaic power systems. IEEE Transactions on Sustainable Energy, 4(1), (2012), 89–98, DOI: 10.1109/TSTE.2012.2202294.
[27] Kashif Ishaque and Zainal Salam:AcomprehensiveMATLAB Simulink PV system simulator with partial shading capability based on two-diode model. Solar Energy, 85(9), (2011), 2217–2227, DOI: 10.1016/j.solener.2011.06.008.
[28] Mohamed I.Mosaad, M. Osama Abed el-Raouf, Mahmoud A. Al- Ahmar, and Fahd A. Banakher: Maximum power point tracking of PV system based cuckoo search algorithm; review and comparison. Energy Procedia, 162 (2019), 117–126, DOI: 10.1016/j.egypro.2019.04.013.
[29] Bo Yang, JingboWang, Xiaoshun Zhang, Tao Yu, Wei Yao, Hongchun Shu, Fang Zeng, and Liming Sun: Comprehensive overview of metaheuristic algorithm applications on PV cell parameter identification. Energy Conversion and Management, 208 (2020), 112595, DOI: 10.1016/j.enconman.2020.112595.
[30] Tong Kang, Jiangang Yao, Min Jin, Shengjie Yang, and Thanh Long Duong: A novel improved cuckoo search algorithm for parameter estimation of photovoltaic (PV) models. Energies, 11(5), (2018), 1060, DOI: 10.3390/en11051060.
[31] S. Walton, O. Hassan, K. Morgan, and M.R. Brown: Modified cuckoo search: a new gradient free optimisation algorithm. Chaos, Solitons & Fractals, 44(9), (2011), 710718, DOI: 10.1016/j.chaos.2011.06.004.
[32] Amir Hossein Gandomi, Xin-She Yang, and Amir Hossein Alavi: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Engineering with Computers, 29(1), (2013), 17–35, DOI: 10.1007/s00366-011-0241-y.
[33] Abdesslem Layeb: A novel quantum inspired cuckoo search for knapsack problems. International Journal of Bio-Inspired Computation, 3(5), (2011), 297–305, DOI: 10.1504/IJBIC.2011.042260.
[34] Ehsan Valian, Saeed Tavakoli, Shahram Mohanna, and Atiyeh Haghi: Improved cuckoo search for reliability optimization problems. Computers & Industrial Engineering, 64(1), (2013), 459–468, DOI: 10.1016/j.cie.2012.07.011.
[35] Xiangtao Li, Jianan Wang, and Minghao Yin: Enhancing the performance of cuckoo search algorithm using orthogonal learning method. Neural Computing and Applications, 24(6), (2014), 1233–1247, DOI: 10.1007/s00521-013-1354-6.
[36] Hui Wang, Wenjun Wang, Hui Sun, Zhihua Cui, Shahryar Rahna- mayan, and Sanyou Zeng: A new cuckoo search algorithm with hybrid strategies for flow shop scheduling problems. Soft Computing, 21(15), (2017), 4297–4307, DOI: 10.1007/s00500-016-2062-9.
[37] Wang Jianzhou, He Jiang, Yujie Wu, and Yao Dong: Forecasting solar radiation using an optimized hybrid model by cuckoo search algorithm. Energy, 81 (2015), 627–644, DOI: 10.1016/j.energy.2015.01.006.
[38] Wen Long, Shaohong Cai, Jianjun Jiao, Ming Xu, and Tiebin Wu: A new hybrid algorithm based on grey wolf optimizer and cuckoo search for parameter extraction of solar photovoltaic models. Energy Conversion and Management, 203 (2020), 112243, DOI: 10.1016/j.enconman.2019.112243.
[39] Diego Oliva, Ahmed A. Ewees, Mohamed Abd El Aziz, Aboul Ella Hassanien, and Marco Perez-Cisneros: A chaotic improved artificial bee colony for parameter estimation of photovoltaic cells. Energies, 10(7), (2017), 865, DOI: 10.3390/en10070865.
[40] Xiaofang Yuan, Yuqing He, and Liangjiang Liu: Parameter extraction of solar cell models using chaotic asexual reproduction optimization. Neural Computing and Applications, 26(5), (2015), 1227–1239, DOI: 10.1007/s00521-014-1795-6.
[41] Xiaofang Yuan, Yongzhong Xiang, and Yuqing He: Parameter extraction of solar cell models using mutative-scale parallel chaos optimization algorithm. Solar Energy, 108 (2014), 238–251, DOI: 10.1016/j.solener.2014.07.013.
[42] Alireza Askarzadeh and Alireza Rezazadeh: Artificial bee swarm optimization algorithm for parameters identification of solar cell models. Applied Energy, 102 (2013), 943–949, DOI: 10.1016/j.apenergy.2012.09.052.
[43] Santhan Kumar Cherukuri and Srinivasa Rao Rayapudi: Enhanced grey wolf optimizer based MPPT algorithm of PV system under partial shaded condition. International Journal of Renewable Energy Development, 6(3), (2017), 203–212, DOI: 10.14710/ijred.6.3.203-212.
[44] Adeel Feroz Mirza, Qiang Ling, M. Yaqoob Javed, and Majad Man- soor: Novel MPPT techniques for photovoltaic systems under uniform irradiance and Partial shading. Solar Energy, 184 (2019), 628–648, DOI: 10.1016/j.solener.2019.04.034.
Go to article

Authors and Affiliations

Khadidja Bentata
1
Ahmed Mohammedi
2 3
Tarak Benslimane
4 5
ORCID: ORCID

  1. Laboratory Materials and Sustainable Development (LMDD), Electrical Engineering Department, Faculty of Science and Applied Sciences, University of Bouira, Algeria
  2. Electrical Engineering Department, Faculty of Science and Applied Sciences, University of Bouira, Algeria
  3. LTII Laboratory, University of Bejaia, Algeria
  4. Electrical Engineering Department, University of M’sila, Algeria
  5. SGRE Laboratory, University of Béchar, Algeria
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a mature concept of an intelligent monitoring system of air pollution inflow and its realization in the form of a SINZaP system lunched at Institute for Ecology of Industrial Areas (]ETU) in 2006. SINZaP is a real time operating system resembling a neural network. It is designed for modeling of pollutant emissions and air pollutants concentrations, addressed to specialists or decision makers responsible for air quality management. For modeling of emission and air pollutants concentrations in SIZNaP system, a back trajectory model -BackTrack has been used, which is based on YLSTRACK model. The essential feature ofthe BackTrack model is the application of back trajectories in the selection of emission sources influencing a given receptor. For modeling of trajectories BackTrack uses three-dimensional wind fields, friction velocity, MoninObukhov length and mixing layer height. SINZaP consists of four main modules: (I) data module including data scanner for reading public data accessible in the Internet, (2) module for preparation of meteorological data, (3) BackTrack module for simulations of pollutants emissions and simulations of air pollutants concentrations, and (4) Trainer module, the task ofwhich is correction of input parameters for adjusting modeling and observed data.
Go to article

Authors and Affiliations

Czeslaw Kliś
Joachim Bronder

This page uses 'cookies'. Learn more