Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 9
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper proposes an android-based application to help the users to navigate in finding books in the library easily and interactively. This navigation application is connected to a Bluetooth Low Energy (BLE) device that will emit an RSSI signal received by the Smartphone user and show the desired distance to the bookshelf position. The method of triangulation and mean filter were used to eliminate noise in the test environment to make the position of the bookshelf can be found precisely based on the RSSI BLE Beacon value. The test results showed the largest RSSI value for LOS conditions at -48dBm and NLOS at -63 dBm; while the lowest RRSI values for LOS conditions was at -84dBm and NLOS was at -96dBm.
Go to article

Authors and Affiliations

Tri Nopiani Damayanti
1
Dadan Nur Ramadan
1
Indah Mutia Utami
1

  1. School of Applied Science, Telkom University, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

Laser triangulation is one of the machine vision measurement methods most commonly used in 3D quality control. However, considering its susceptibility to interference, it cannot be used in certain areas of industrial production e.g. very shiny surfaces. Thus, for the improvement of its applicability, a predictive algorithm of light profile segmentation was designed, where - as a result of using a'priori knowledge - the method becomes resistant to secondary reflexes.

The developed technique has been tested on selected parts with surfaces typical for the machine-building industry. The evaluation has been presented based on the surface representation (mapping) error analysis, using the difference between the obtained cloud of points and the nominal surface as processing data, as well as scatter of the discrete Gauss curvature.

Go to article

Authors and Affiliations

Jacek Reiner
Maciej Stankiewicz
Download PDF Download RIS Download Bibtex

Abstract

Being reflective is one of the most paramount features that EFL (English as a Foreign Language) teachers need to be equipped with in the post-method era for their professional growth and development. The present study aimed to explore reflective teaching from a multi-dimensional perspective in terms of a) determinants that simulates teachers to reflect, b) consequences that teachers experience as a result of their reflective teaching, and c) obstacles that may arise and preclude teachers from reflective teaching. Qualitative data collection method was employed to gather data from 10 EFL teachers triangulating semi-structured interviews, diaries, journal, and observation. Data analysis via MAXQDA led to the emergence of three models for each dimension of the study. The results revealed that teachers not only reflect to respond to a problem, but also they reflect to diminish some negative factors like stress or anxiety on the part of both learners and themselves as well as improving, enhancing, or mending something in teaching or learning. The codes of determinants were also conceptualized into three broad categories of reflection-in-action, reflection-on-action, and reflection-for-action with the reflection-for-action used more frequently by the teachers. In the case of consequences, the codes were classified into two categories of internal and external consequences. It was also concluded that some of the consequences reinforce the reflective teaching and play the role of determinants motivating teachers to reflect again. Regarding the obstacles, after categorizing the codes into external and internal obstacles, it was observed that external factors are more robust.

Go to article

Authors and Affiliations

Farzaneh Tabassi
Afsaneh Ghanizadeh
Parinaz Gharooni Beigi
Download PDF Download RIS Download Bibtex

Abstract

Digital metrologywas applied to evaluate 3D models of the unique skull of a fossil tetrapod, Madygenerpeton pustulatum, generated using various 3D digitization methods. The skull surface is covered by minute tubercles making it challenging for digitization with appropriate accuracy. Uniqueness and fragility of the specimen preclude the use of tactile measuring systems for creating a standardized reference model. To overcome this problem, comparative analysis of the triangulated models generated from the clouds of points obtained with seven different devices was conducted using the Geomagic Studio and Autodesk PowerShape CAD software. In the proposed approach, geometrically and dimensionally closest-fitting models underwent detailed statistical analysis between surface polygons in three steps. First, 3D models obtained from different scanning methods were compared with each other in couples. Next, statistical analysis of the differences between the coupled models was performed. Finally, a rating list of the models related to the required accuracy was prepared. The proposed approach is applicable to any other scanned object, especially in palaeontological applications, where each object is unique and exhibits individual features.
Go to article

Authors and Affiliations

Yaroslav Garashchenko
1
ORCID: ORCID
Ilja Kogan
2 3
ORCID: ORCID
Mirosław Rucki
4
ORCID: ORCID

  1. National Technical University, Kharkiv Polytechnic Institute, Department of Integrated Technologies of Mechanical Engineering, Kyrpychova Str. 2, Kharkiv, 61002, Ukraine
  2. TU Bergakademie Freiberg, Geological Institute, Bernhard-von-Cotta-Str. 2, 09599 Freiberg, Germany
  3. Kazan Federal University, Institute of Geology and Petroleum Technologies, Kremlyovskaya Str. 4/5, 420008 Kazan, Russia
  4. Faculty of Mechanical Engineering, Kazimierz Pulaski University of Technology and Humanities in Radom, ul. Stasieckiego 54, 26-600 Radom, Poland
Download PDF Download RIS Download Bibtex

Abstract

Investigating human emotions empirically is still considered to be challenging, mostly due to the questionable validity of the results obtained when employing individual types of measures. Among the most frequently used methods to study emotional reactions are self-report, autonomic, neurophysiological, and behavioral measures. Importantly, previous studies on emotional responding have rarely triangulated the aforementioned research methods. In this paper we discuss main methodological considerations related to the use of physiological and self-report measures in emotion studies, based on our previous research on the processing of emotionally-laden narratives in the native and non-native language, where we employed the SUPIN S30 questionnaire as a self-report tool, and galvanic skin response (GSR) as a physiological measure (Jankowiak & Korpal, 2018). The findings revealed a more pronounced reaction to stimuli presented in the native relative to the non-native language, which was however reflected only in GSR patterns. The lack of correlation between GSR and SUPIN scores might have resulted from a number of methodological considerations, such as social desirability bias, sensitive questions, lack of emotional self-awareness, compromised ecological validity, and laboratory anxiety, all of which are thoroughly discussed in the article.

Go to article

Authors and Affiliations

Paweł Korpal
Katarzyna Jankowiak
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an algorithm for the construction of an approximation of a highly nonlinear current-flux characteristic of a synchronous reluctance machine. Such an approximation is required in a Hamiltonian model of an electric machine and the constructed approximation is suited to be used in such a model. It employs a simplicial approximation based on irregular points sets in the spaces of currents and fluxes. The sets are constructed by the iterative insertion of new points. Initially the sets contain an arbitrarily small number of elements. The insertion is based on an approximation error calculation. Based on the sets containing possibly small number of elements, the proposed procedure leads to smooth and precise approximation. Due to the nonlinearity of the approximated characteristics, ambiguities can occur. A method for the triangulation refinement of the sets of currents and fluxes that eliminates them is also presented. In the paper, a reluctance machine model using the constructed approximation is described and compared with a model using the approximation based on regular sets.

Go to article

Authors and Affiliations

Wojciech Burlikowski
Zygmunt Kowalik
Download PDF Download RIS Download Bibtex

Abstract

The determination of precise emitter location is a very important task in electronic intelligence systems. Its basic requirements include the detection of the emission of electromagnetic sources (emitters), measurement of signal parameters, determining the direction of emitters, signal analysis, and the recognition and identification of their sources. The article presents a new approach and algorithm for calculating the location of electromagnetic emission sources (radars) in a plane based on the bearings in the radio-electronic reconnaissance system. The main assumptions of this method are presented and described i.e. how the final mathematical formulas for calculating the emitter location were determined for any number of direction finders (DFs). As there is an unknown distance from the emitter to the DFs then in the final formulas it is stated how this distance should be calculated in the first iteration. Numerical simulation in MATLAB showed a quick convergence of the proposed algorithm to the fixed value in the fourth/fifth iteration with an accuracy less than 0.1 meter. The computed emitter location converges to the fixed value regardless of the choice of the starting point. It has also been shown that to precisely calculate the emitter position, at least a dozen or so bearings from each DFs should be measured. The obtained simulation results show that the precise emitter location depends on the number of DFs, the distances between the localized emitter and DFs, their mutual deployment, and bearing errors. The research results presented in the article show the usefulness of the tested method for the location of objects in a specific area of interest. The results of simulation calculations can be directly used in radio-electronic reconnaissance systems to select the place of DFs deployment to reduce the emitter location errors in the entire reconnaissance area.
Go to article

Bibliography

[1] Willey, R. G. (1985). Electronic Intelligence: The Interception of Radar Signals. Artech House.
[2] Oshman, Y., & Davidson, P. (1999). Optimization of observer trajectories for bearings-only target localization. IEEE Transactions on Aerospace and Electronic Systems, 35(3), 892–902. https://doi.org/10.1109/7.784059
[3] Tehrani, M. A., Laurin, J. J., & Savaria, Y. (2016). Multiple targets direction-of-arrival estimation in frequency scanning array antennas. IET Radar, Sonar & Navigation, 10(3), 624–631. https://doi.org/10.1049/iet-rsn.2015.0401
[4] Rutkowski, A., & Kawalec, A. (2020). Some of Problems of Direction Finding of Ground-Based Radars Using Monopulse Location System Installed on Unmanned Aerial Vehicle. Sensors, 20(18), 5186. https://doi.org/10.3390/s20185186
[5] Wang, Y., Jie, H., & Cheng, L. (2019). A Fusion Localization Method based on a Robust Extended Kalman Filter and Track-Quality forWireless Sensor Networks. Sensors, 19(16), 3638. https://doi.org/10.3390/s19173638
[6] Chow, T. L. (2001). Passive emitter location using digital terrain data [Doctoral dissertation, Binghamton University State University of New York].
[7] Poisel, R. A. (2012). Electronic Warfare Target Location Methods (2nd. ed.). Artech House.
[8] Willey, R. G. (2006). ELINT. The Interception and Analysis of Radar Signals. Horizon House Publications.
[9] Chan, Y. T., & Ho, K. C. (1994). A simple and efficient estimator for hyperbolic location. IEEE Transactions on Signal Processing, 42(8), 1905–1915. https://doi.org/10.1109/78.301830
[10] Bugaj, J., & Górny, K. (2019, March). Analysis of estimation algorithms for electromagnetic source localization. In XII Conference on Reconnaissance and Electronic Warfare Systems (Vol. 11055, p. 110550W). International Society for Optics and Photonics. https://doi.org/10.1117/12.2524927
[11] O’Connor, A., Setlur, P., & Devroye, N. (2015). Single-sensor RF emitter localization based on multipath exploitation. IEEE Transactions on Aerospace and Electronic Systems, 51(3), 1635–1651. https://doi.org/10.1109/TAES.2015.120807
[12] Adamy, D. L. (2001). EW 101. A First Course in Electronic Warfare. Artech House. [13] Adamy, D. L. (2004). EW 102. A Second Course in Electronic Warfare. Horizon House Publications.
[14] Becker, K. (1992). An efficient method of passive emitter location. IEEE Transactions on Aerospace and Electronic Systems, 28(4), 1091–1104. https://doi.org/10.1109/7.165371
[15] Foy, W. H. (1976). Position-location solutions by Taylor-series estimation. IEEE Transactions on Aerospace and Electronic Systems, AES-12(2), 187–194. https://doi.org/10.1109/TAES.1976.308294
[16] Mangel, M. (1981). Three Bearing Method for Passive Triangulation in Systems with Unknown Deterministic Biases. IEEE Transactions on Aerospace and Electronic Systems, AES-17(6), 814–819. https://doi.org/10.1109/TAES.1981.309133
[17] Adamy, D. L. (2005). Emitter Location: Reporting Location Accuracy. The Journal of Electronic Defense, (7).
[18] Kelner, J. M., & Ziółkowski, C. (2020). Effectiveness of Mobile Emitter Location by Cooperative Swarm of Unmanned Aerial Vehicles in Various Environmental Conditions. Sensors, 20(9), 2575. https://doi.org/10.3390/s20092575
[19] Mahapatra, P. R. (1980). Emitter location independent of systematic errors in direction finders. IEEE Transactions on Aerospace and Electronic Systems, AES-16(6), 851–855. https://doi.org/10.1109/TAES.1980.309009
[20] Matuszewski, J., & Dikta, A. (2017, April). Emitter location errors in electronic recognition system. In XI Conference on Reconnaissance and Electronic Warfare Systems (Vol. 10418, p. 104180C). International Society for Optics and Photonics. https://doi.org/10.1117/12.2269295
[21] Stansfield, R. G. (1947). Statistical theory of DF fixing. Journal of the Institution of Electrical Engineers-Part IIIA: Radiocommunication, 94(14), 762–770. https://doi.org/10.1049/ji-3a-2.1947.0096
[22] Vakin, S. A., Shustov, L. N., Dunwell, R. H. (2001). Fundamentals of Electronic Warfare. Artech House.
[23] Bature, U. I., Tahir, N. M., Yakub, N. A., & Baba, M. A. (2020). Multi-baseline Emitter Location System: A Correlative Interferometer Approach. Nigerian Journal of Engineering, 27(2), 92–98.
[24] Becker, K. (1992). An efficient method of passive emitter location. IEEE Transactions on Aerospace and Electronic Systems, 28(4), 1091–1104. https://doi.org/10.1109/7.165371
[25] Tian, B., Huang, H., & Li, Y. (2009, September). Direction of arrival estimation using nonlinear function of sum and difference beam. In 2009 IEEE Youth Conference on Information, Computing and Telecommunication (pp. 311–314). IEEE. https://doi.org/10.1109/YCICT.2009.5382360
[26] Ghilani, C. D., &Wolf, P. R. (2007). Adjustment Computations: Spatial Data Analysis (4th ed.). John Wiley & Sons, Inc. https://doi.org/10.1002/9780470121498
[27] Gavish, M., & Weiss, A. J. (1992). Performance analysis of bearing-only target location algorithms. IEEE Transactions on Aerospace and Electronic Systems, 28(3), 817–828. https://doi.org/10.1109/7.256302
[28] He, Y., Behnad, A., & Wang, X. (2015). Accuracy analysis of the two-reference-node angle-of-arrival localization system. IEEE Wireless Communications Letters, 4(3), 329–332. https://doi.org/10.1109/LWC.2015.2415788
[29] Kukes, I. S., Starik, M. Ye. (1964). Principles of Radio Direction Finding. Soviet Radio Publishing House. (in Russian)
[30] Paradowski, L. R. (1998, May). Microwave emitter position location: present and future. In 12th International Conference on Microwaves and Radar. MIKON-98. Conference Proceedings (IEEE Cat. No. 98EX195) (pp. 97–116). IEEE. https://doi.org/10.1109/MIKON.1998.738464
[31] Paradowski, L. R. (1997). Uncertainty ellipses and their application to interval estimation of emitter position. IEEE Transactions on Aerospace and Electronic Systems, 33(1), 126–133. https://doi.org/10.1109/7.570715
[32] Rui, L., & Ho, K. C. (2014). Elliptic localization: Performance study and optimum receiver placement. IEEE Transactions on Signal Processing, 62(18), 4673–4688. https://doi.org/10.1109/TSP.2014.2338835
[33] Shirman Ya. D. (Eds.). (1970). Theoretical fundamentals of radiolocation. Sovietskoe Radio. (in Russian)
[34] Tondwalkar, A. V., & Vinayakray-Jani, P. (2015, December). Terrestrial localization by using angle of arrival measurements in wireless sensor network. In 2015 International Conference on Computational Intelligence and CommunicationNetworks (CICN) (pp. 188–191). IEEE. https://doi.org/10.1109/CICN.2015.44
[35] Wang, Z., Luo, J. A.,&Zhang, X. P. (2012).Anovel location-penalized maximum likelihood estimator for bearing-only target localization. IEEE Transactions on Signal Processing, 60(12), 6166–6181. https://doi.org/10.1109/TSP.2012.2218809
[36] Ziółkowski, C., & Kelner, J. M. (2015). The influence of propagation environment on the accuracy of emission source bearing. Metrology and Measurement Systems, 22(4), 591–600.
Go to article

Authors and Affiliations

Jan Matuszewski
1
Tomasz Kraszewski
1
ORCID: ORCID

  1. Military University of Technology, Faculty of Electronics, Institute of Radioelectronics, gen. S. Kaliskiego 2, 00–908 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Various sectors of the economy such as transport and renewable energy have shown great interest in sea bed models. The required measurements are usually carried out by ship-based echo sounding, but this method is quite expensive. A relatively new alternative is data obtained by airborne lidar bathymetry. This study investigates the accuracy of these data, which was obtained in the context of the project ‘Investigation on the use of airborne laser bathymetry in hydrographic surveying’. A comparison to multi-beam echo sounding data shows only small differences in the depths values of the data sets. The IHO requirements of the total horizontal and vertical uncertainty for laser data are met. The second goal of this paper is to compare three spatial interpolation methods, namely Inverse Distance Weighting (IDW), Delaunay Triangulation (TIN), and supervised Artificial Neural Networks (ANN), for the generation of sea bed models. The focus of our investigation is on the amount of required sampling points. This is analyzed by manually reducing the data sets. We found that the three techniques have a similar performance almost independently of the amount of sampling data in our test area. However, ANN are more stable when using a very small subset of points.
Go to article

Authors and Affiliations

Tomasz Kogut
Joachim Niemeyer
Aleksandra Bujakiewicz

This page uses 'cookies'. Learn more