Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Date
  • Typ

Wyniki wyszukiwania

Wyników: 678
Wyników na stronie: 25 50 75
Sortuj wg:
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

User authentication is an essential element of any communication system. The paper investigates the vulnerability of the recently published first semiquantum identity authentication protocol (Quantum Information Processing 18: 197, 2019) to the introduced herein multisession attacks. The impersonation of the legitimate parties by a proper combination of phishing techniques is demonstrated. The improved version that closes the identified loophole is also introduced
Przejdź do artykułu

Bibliografia

  1.  M.M. Wilde, Quantum Information Theory. Cambridge University Press, 2013, doi: 10.1017/CBO9781139525343.
  2.  S. Wiesner, “Conjugate coding,” SIGACT News, vol. 15, no. 1, pp. 78–88, 1983, doi: 10.1145/1008908.1008920.
  3.  P. Benioff, “The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines,” J. Stat. Phys., vol. 22, no. 5, pp. 563–591, 1980, doi: 10.1007/BF01011339.
  4.  C.H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proceedings of International Conference on Computers, Systems and Signal Processing, Bangalore, India, 1984, pp. 175–179.
  5.  C.H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Theor. Comput. Sci., vol. 560, pp. 7–11, 2014, doi: 10.1016/j.tcs.2014.05.025.
  6.  P.W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM J. Comput., vol. 26, no. 5, pp. 1484–1509, 1997, doi: 10.1137/S0097539795293172.
  7.  A. Shenoy-Hejamadi, A. Pathak, and S. Radhakrishna, “Quantum cryptography: Key distribution and beyond,” Quanta, vol. 6, no. 1, pp. 1–47, 2017, doi: 10.12743/quanta.v6i1.57.
  8.  F. Xu, X. Ma, Q. Zhang, H.-K. Lo, and J.-W. Pan, “Secure quantum key distribution with realistic devices,” Rev. Mod. Phys., vol. 92, p. 025002, 2020, doi: 10.1103/RevModPhys.92.025002.
  9.  D. Pan, K. Li, D. Ruan, S.X. Ng, and L. Hanzo, “Singlephoton- memory two-step quantum secure direct communication relying on Einstein-Podolsky-Rosen pairs,” IEEE Access, vol. 8, pp. 121 146–121 161, 2020, doi: 10.1109/ACCESS.2020.3006136.
  10.  P. Zawadzki, “Advances in quantum secure direct communication,” IET Quant. Comm., vol. 2, no. 2, pp. 54–62, 2021, doi: 10.1049/ qtc2.12009.
  11.  A. Pljonkin and P.K. Singh, “The review of the commercial quantum key distribution system,” in 2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC), 2018, pp. 795–799, doi: 10.1109/PDGC.2018.8745822.
  12.  R. Qi, Z. Sun, Z. Lin, P. Niu, W. Hao, L. Song, Q. Huang, J. Gao, L. Yin, and G. Long, “Implementation and security analysis of practical quantum secure direct communication,” vol. 8, p. 22, 2019, doi: 10.1038/s41377-019-0132-3.
  13.  X. Li and D. Zhang, “Quantum authentication protocol using entangled states,” in Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, 2006, pp. 1004–1009. [Online]. Available: https://www.researchgate.net/ publication/242080451_Quantum_authentication_protocol_using_entangled_states.
  14.  G. Zeng and W. Zhang, “Identity verification in quantum key distribution,” Phys. Rev. A, vol. 61, p. 022303, 2000, doi: 10.1103/ PhysRevA.61.022303.
  15.  Y. Kanamori, S.-M. Yoo, D.A. Gregory, and F.T. Sheldon, “On quantum authentication protocols,” in GLOBECOM ’05. IEEE Global Telecommunications Conference, 2005., vol. 3, 2005, pp. 1650–1654, doi: 10.1109/GLOCOM.2005.1577930.
  16.  P. Zawadzki, “Quantum identity authentication without entanglement,” Quantum Inf. Process., vol. 18, no. 1, p. 7, 2019, doi: 10.1007/ s11128-018-2124-2.
  17.  M. Boyer, D. Kenigsberg, and T. Mor, “Quantum key distribution with classical Bob,” Phys. Rev. Lett., vol. 99, p. 140501, 2007, doi: 10.1103/PhysRevLett.99.140501.
  18.  M. Boyer, R. Gelles, D. Kenigsberg, and T. Mor, “Semiquantum key distribution,” Phys. Rev. A, vol. 79, no. 3, p. 032341, 2009, doi: 10.1103/PhysRevA.79.032341.
  19.  W.O. Krawec, “Security of a semi-quantum protocol where reflections contribute to the secret key,” Quantum Inf. Process., vol. 15, no. 5, pp. 2067–2090, 2016, doi: 10.1007/s11128-016-1266-3.
  20.  Z.-R. Liu and T. Hwang, “Mediated semi-quantum key distribution without invoking quantum measurement,” Ann. Phys., vol. 530, no. 4, p. 1700206, 2018, doi: 10.1002/andp.201700206.
  21.  C.-W. Tsai and C.-W. Yang, “Cryptanalysis and improvement of the semi-quantum key distribution robust against combined collective noise,” Int. J. Theor. Phys., vol. 58, no. 7, pp. 2244–2250, 2019, doi: 10.1007/s10773-019-04116-5.
  22.  W.O. Krawec, “Security proof of a semi-quantum key distribution protocol,” in 2015 IEEE International Symposium on Information Theory (ISIT), 2015, pp. 686–690, doi: 10.1109/ISIT.2015.7282542.
  23.  Y.-P. Luo and T. Hwang, “Authenticated semi-quantum direct communication protocols using Bell states,” Quantum Inf. Process., vol. 15, no. 2, pp. 947–958, 2016, doi: 10.1007/s11128-015-1182-y.
  24.  J. Gu, P.-h. Lin, and T. Hwang, “Double C-NOT attack and counterattack on ‘Three-step semi-quantum secure direct communication protocol’,” Quantum Inf. Process., vol. 17, no. 7, p. 182, 2018, doi: 10.1007/s11128-018-1953-3.
  25.  M.-H. Zhang, H.-F. Li, Z.-Q. Xia, X.-Y. Feng, and J.-Y. Peng, “Semiquantum secure direct communication using EPR pairs,” Quantum Inf. Process., vol. 16, no. 5, p. 117, 2017, doi: 10.1007/s11128-017-1573-3.
  26.  L.-L. Yan, Y.-H. Sun, Y. Chang, S.-B. Zhang, G.-G. Wan, and Z.-W. Sheng, “Semi-quantum protocol for deterministic secure quantum communication using Bell states,” Quantum Inf. Process., vol. 17, no. 11, p. 315, 2018, doi: 10.1007/s11128-018-2086-4.
  27.  C. Xie, L. Li, and D. Qiu, “A novel semi-quantum secret sharing scheme of specific bits,” Int. J. Theor. Phys., vol. 54, no. 10, pp. 3819– 3824, 2015, doi: 10.1007/s10773-015-2622-2.
  28.  A. Yin and F. Fu, “Eavesdropping on semi-quantum secret sharing scheme of specific bits,” Int. J. Theor. Phys., vol. 55, no. 9, pp. 4027– 4035, 2016, doi: 10.1007/s10773-016-3031-x.
  29.  K.-F. Yu, J. Gu, T. Hwang, and P. Gope, “Multi-party semi-quantum key distribution-convertible multi-party semi- quantum secret sharing,” Quantum Inf. Process., vol. 16, no. 8, p. 194, 2017, doi: 10.1007/s11128-017-1631-x.
  30.  X. Gao, S. Zhang, and Y. Chang, “Cryptanalysis and improvement of the semi-quantum secret sharing protocol,” Int. J. Theor. Phys., vol. 56, no. 8, pp. 2512–2520, 2017, doi: 10.1007/s10773-017-3404-9.
  31.  Z. Li, Q. Li, C. Liu, Y. Peng, W. H. Chan, and L. Li, “Limited resource semiquantum secret sharing,” Quantum Inf. Process., vol. 17, no. 10, p. 285, 2018, doi: 10.1007/s11128-018-2058-8.
  32.  K. Sutradhar and H. Om, “Efficient quantum secret sharing without a trusted player,” Quantum Inf. Process., vol. 19, no. 2, p. 73, 2020, doi: 10.1007/s11128-019-2571-4.
  33.  H. Iqbal and W.O. Krawec, “Semi-quantum cryptography,” Quantum Inf. Process., vol. 19, no. 3, p. 97, 2020, doi: 10.1007/s11128-020- 2595-9.
  34.  N.-R. Zhou, K.-N. Zhu, W. Bi, and L.-H. Gong, “Semi-quantum identification,” Quantum Inf. Process., vol. 18, no. 6, p. 197, 2019, doi: 10.1007/s11128-019-2308-4.
  35.  K. Moriarty, B. Kaliski, and A. Rusch, “Pkcs #5: Password-based cryptography specification version 2.1,” Internet Requests for Comments, RFC Editor, RFC 8018, January 2017. [Online]. Available: https://www.rfc-editor.org/rfc/rfc8018.html.
  36.  A. Biryukov, D. Dinu, D. Khovratovich, and S. Josefsson, “The memory-hard Argon2 password hash and proof-of-work function,” Working Draft, IETF Secretariat, Internet-Draft draft-irtf-cfrg-argon2-12, 2020. [Online]. Available: https://tools.ietf.org/id/draft-irtf-cfrg-argon2-03. html.
  37.  P.-H. Lin, T. Hwang, and C.-W. Tsai, “Double CNOT attack on ‘Quantum key distribution with limited classical Bob’,” Int. J. Quantum Inf., vol. 17, no. 02, p. 1975001, 2019, doi: 10.1142/S0219749919750017.
  38.  D. Moody, L. Chen, S. Jordan, Y.-K. Liu, D. Smith, R. Perlner, and R. Peralta, “Nist report on post-quantum cryptography,” National Institute of Standards and Technology, U.S. Department of Commerce, Tech. Rep., 2016, doi: 10.6028/NIST.IR.8105.
  39.  P. Wang, S. Tian, Z. Sun, and N. Xie, “Quantum algorithms for hash preimage attacks,” Quantum Eng., vol. 2, no. 2, p. e36, 2020, doi: 10.1002/que2.36.
Przejdź do artykułu

Autorzy i Afiliacje

Piotr Zawadzki
1
ORCID: ORCID

  1. Department of Telecommunications and Teleinformatics, Silesian University of Technology, ul. Akademicka 2A, 44-100 Gliwice, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Polyester coatings are among the most commonly used types of powder paints and present a wide range of applications. Apart from its decorative values, polyester coating successfully prevents the substrate from environmental deterioration. This work investigates the cavitation erosion (CE) resistance of three commercial polyester coatings electrostatic spray onto AW-6060 aluminium alloy substrate. Effect of coatings repainting (single- and double-layer deposits) and effect of surface finish (matt, silk gloss and structural) on resistance to cavitation were comparatively studied. The following research methods were used: CE testing using ASTM G32 procedure, 3D profilometry evaluation, light optical microscopy, scanning electron microscopy (SEM), optical profilometry and FTIR spectroscopy. Electrostatic spray coatings present higher CE resistance than aluminium alloy. The matt finish double-layer (M2) and single-layer silk gloss finish (S1) are the most resistant to CE. The structural paint showed the lowest resistance to cavitation wear which derives from the rougher surface finish. The CE mechanism of polyester coatings relies on the material brittle-ductile behaviour, cracks formation, lateral net-cracking growth and removal of chunk coating material and craters’ growth. Repainting does not harm the properties of the coatings. Therefore, it can be utilised to regenerate or smother the polyester coating finish along with improvement of their CE resistance.
Przejdź do artykułu

Bibliografia

  1.  A. Kausar, “Review of fundamentals and applications of polyester nanocomposites filled with carbonaceous nanofillers,” J. Plast. Film Sheeting, vol. 35, no. 1, pp. 22–44, Jan. 2019, doi: 10.1177/8756087918783827.
  2.  A. Krzyzak, E. Kosicka, and R. Szczepaniak, “Research into the Effect of Grain and the Content of Alundum on Tribological Properties and Selected Mechanical Properties of Polymer Composites,” Materials, vol. 13, no. 24, Art. no. 5735, Jan. 2020, doi: 10.3390/ma13245735.
  3.  A. Kausar, “High performance epoxy/polyester-based nanocomposite coatings for multipurpose applications: A review,” J. Plast. Film Sheeting, vol. 36, no. 4, pp. 391–408, Oct. 2020, doi: 10.1177/8756087920910481.
  4.  M. Winnicki, T. Piwowarczyk, and A. Małachowska, “General description of cold sprayed coatings formation and of their properties,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, no. 3, pp. 301–310, Jun. 2018.
  5.  L. Łatka, L. Pawłowski, M. Winnicki, P. Sokołowski, A. Małachowska, and S. Kozerski, “Review of Functionally Graded Thermal Sprayed Coatings,” Appl. Sci., vol. 10, no. 15, Art. no. 5153, Jan. 2020, doi: 10.3390/app10155153.
  6.  R. Kosydar et al., “Boron nitride/titanium nitride laminar lubricating coating deposited by pulsed laser ablation on polymer surface,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 56, no. 3, pp. 217–221, 2008.
  7.  T. Burakowski and T. Wierzchon, Surface Engineering of Metals: Principles, Equipment, Technologies. Boca Raton, Fla: CRC Press, 1998.
  8.  T. Hejwowski, Nowoczesne powłoki nakładane cieplnie odporne na zużycie ścierne i erozyjne (Modern wear and erosion resitant thermally deposited coatings). Lublin, Poland: Politechnika Lubelska (Lublin University of Technology), 2013. [Online]. Available: http://bc.pollub. pl/dlibra/docmetadata?id=4059.
  9.  Z.W. Wicks. Jr, F.N. Jones, S.P. Pappas, and D.A. Wicks, Organic Coatings: Science and Technology. John Wiley & Sons, 2007.
  10.  S. Biggs, C.A. Lukey, G.M. Spinks, and S.-T. Yau, “An atomic force microscopy study of weathering of polyester/melamine paint surfaces,” Prog. Org. Coat., vol. 42, no. 1, pp. 49–58, Jun. 2001, doi: 10.1016/S0300-9440(01)00147-3.
  11.  M. Oleksy et al., “Kompozycje modyfikowanych farb proszkowych. Cz. 1. Hybrydowe kompozycje poliestrowych farb proszkowych,” Polimery, vol. 63, no. 11– 12, pp. 762‒771, 2018, doi: 10.14314/polimery.2018.11.4.
  12.  M. Fernández-Álvarez, F. Velasco, and A. Bautista, “Effect on wear resistance of nanoparticles addition to a powder polyester coating through ball milling,” J. Coat. Technol. Res., vol. 15, no. 4, pp. 771–779, Jul. 2018, doi: 10.1007/s11998-018-0106-z.
  13.  M. Zouari, M. Kharrat, and M. Dammak, “Wear and friction analysis of polyester coatings with solid lubricant,” Surf. Coat. Technol., vol. 204, no. 16, pp. 2593–2599, May 2010, doi: 10.1016/j.surfcoat.2010.02.001.
  14.  I. Stojanović, V. Šimunović, V. Alar, and F. Kapor, “Experimental Evaluation of Polyester and Epoxy–Polyester Powder Coatings in Aggressive Media,” Coatings, vol. 8, no. 3, Art. no. 98, Mar. 2018, doi: 10.3390/coatings8030098.
  15.  K.V.S.N. Raju and D.K. Chattopadhyay, “Polyester coatings for corrosion protection,” in High-Performance Organic Coatings, A.S. Khanna, Ed. Woodhead Publishing, 2008, pp. 165–200. doi: 10.1533/9781845694739.2.165.
  16.  M. Szala and E. Kot, “Influence of repainting on the mechanical properties, surface topography and microstructure of polyester powder coatings,” Adv. Sci. Technol. Res. J., vol. 11, no. 2, pp. 159–165, Jun. 2017, doi: 10.12913/22998624/69680.
  17.  M. Walczak, D. Pieniak, and M. Zwierzchowski, “The tribological characteristics of SiC particle reinforced aluminium composites,” Arch. Civ. Mech. Eng., vol. 15, no. 1, pp. 116–123, Jan. 2015, doi: 10.1016/j.acme.2014.05.003.
  18.  M. Szala, L. Łatka, M.Walczak, and M.Winnicki, “Comparative Study on the Cavitation Erosion and Sliding Wear of Cold-Sprayed Al/ Al2O3 and Cu/Al2O3 Coatings, and Stainless Steel, Aluminium Alloy, Copper and Brass,” Metals, vol. 10, no. 7, Art. no. 7, Jul. 2020, doi: 10.3390/met10070856.
  19.  V. Caccese, K.H. Light, and K.A. Berube, “Cavitation erosion resistance of various material systems,” Ships Offshore Struct., vol. 1, no. 4, pp. 309–322, Apr. 2006, doi: 10.1533/saos.2006.0136.
  20.  T. Deplancke, O. Lame, J.-Y. Cavaille, M. Fivel, M. Riondet, and J.-P. Franc, “Outstanding cavitation erosion resistance of Ultra High Molecular Weight Polyethylene (UHMWPE) coatings,” Wear, vol. 328–329, pp. 301–308, Apr. 2015, doi: 10.1016/j.wear.2015.01.077.
  21.  N. Qiu, L. Wang, S. Wu, and D.S. Likhachev, “Research on cavitation erosion and wear resistance performance of coatings,” Eng. Fail. Anal., vol. 55, pp. 208–223, Sep. 2015, doi: 10.1016/j.engfailanal.2015.06.003.
  22.  S. Chi, J. Park, and M. Shon, “Study on cavitation erosion resistance and surface topologies of various coating materials used in shipbuilding industry,” J. Ind. Eng. Chem., vol. 26, pp. 384–389, Jun. 2015, doi: 10.1016/j.jiec.2014.12.013.
  23.  G.L. García et al., “Cavitation resistance of epoxybased multilayer coatings: Surface damage and crack growth kinetics during the incubation stage,” Wear, vol. 316, no. 1–2, pp. 124–132, Aug. 2014, doi: 10.1016/j.wear.2014.04.007.
  24.  M. Hibi, K. Inaba, K. Takahashi, K. Kishimoto, and K. Hayabusa, “Effect of Tensile Stress on Cavitation Erosion and Damage of Polymer,” J. Phys. Conf. Ser., vol. 656, no. 1, p. 012049, Nov. 2015, doi: 10.1088/1742-6596/656/1/012049.
  25.  G. Taillon, S. Saito, K. Miyagawa, and C. Kawakita, “Cavitation erosion resistance of high-strength fiber reinforced composite material,” IOP Conf. Ser. Earth Environ. Sci., vol. 240, no. 6, p. 062056, Mar. 2019, doi: 10.1088/1755-1315/240/6/062056.
  26.  N. Sheppard, “The Historical Development of Experimental Techniques in Vibrational Spectroscopy,” in Handbook of Vibrational Spectroscopy, American Cancer Society, 2006. doi: 10.1002/0470027320.s0101.
  27.  R.M. Silverstein et al., Spectrometric Identification of Organic Compounds, 8th Edition, 8th edition. Wiley, 2014.
  28.  W. Macek et al., “Profile and Areal Surface Parameters for Fatigue Fracture Characterisation,” Materials, vol. 13, no. 17, Art. no. 3691, 2020, doi: 10.3390/ma13173691.
  29.  “ISO 4287:1997. Geometrical Product Specifications (GPS) – Surface texture: Profile method – Terms, definitions and surface texture parameters,” International Organization for Standardization, Geneva, Switzerland, Norma, 1997.
  30.  A. Skoczylas, “Influence of Centrifugal Shot Peening Parameters on the Impact Force and Surface Roughness of EN-AW2024 Aluminum Alloy Elements,” Adv. Sci. Technol. Res. J., vol. 15, no. 1, pp. 71–78, Mar. 2021, doi: 10.12913/22998624/130511.
  31.  “ASTM G32-10: Standard Test Method for Cavitation Erosion Using Vibratory Apparatus,” ASTM International: West Conshohocken, Philadelphia, PA, USA, 2010.
  32.  M. Szala, M. Walczak, L. Łatka, K. Gancarczyk, and D. Özkan, “Cavitation Erosion and Sliding Wear of MCrAlY and NiCrMo Coatings Deposited by HVOF Thermal Spraying,” Adv. Mater. Sci., vol. 20, no. 2, pp. 26–38, Jun. 2020, doi: 10.2478/adms-2020-0008.
  33.  J. Steller, A. Krella, J. Koronowicz, and W. Janicki, “Towards quantitative assessment of material resistance to cavitation erosion,” Wear, vol. 258, no. 1, pp. 604–613, Jan. 2005, doi: 10.1016/j.wear.2004.02.015.
  34.  J. Steller, “International Cavitation Erosion Test and quantitative assessment of material resistance to cavitation,” Wear, vol. 233–235, pp. 51–64, Dec. 1999, doi: 10.1016/S0043-1648(99)00195-7.
  35.  B. Dybowski, M. Szala, T. J. Hejwowski, and A. Kiełbus, “Microstructural phenomena occurring during early stages of cavitation erosion of Al-Si aluminium casting alloys,” Solid State Phenom., vol. 227, pp. 255–258, 2015, doi: 10.4028/www.scientific.net/SSP.227.255.
  36.  J. Zhao, Z. Jiang, J. Zhu, J. Zhang, and Y. Li, “Investigation on Ultrasonic Cavitation Erosion Behaviors of Al and Al-5Ti Alloys in the DistilledWater,” Metals, vol. 10, no. 12, Art. no. 1631, Dec. 2020, doi: 10.3390/met10121631.
  37.  J. Lin, Z. Wang, J. Cheng, M. Kang, X. Fu, and S. Hong, “Effect of Initial Surface Roughness on Cavitation Erosion Resistance of Arc- Sprayed Fe-Based Amorphous/Nanocrystalline Coatings,” Coatings, vol. 7, no. 11, Art. no. 2000, Nov. 2017, doi: 10.3390/coatings7110200.
  38.  M. Szala, L. Łatka, M. Awtoniuk, M. Winnicki, and M. Michalak, “Neural Modelling of APS Thermal Spray Process Parameters for Optimizing the Hardness, Porosity and Cavitation Erosion Resistance of Al2O3‒13 wt% TiO2 Coatings,” Processes, vol. 8, no. 12, Art. no. 1544, Dec. 2020, doi: 10.3390/pr8121544.
  39.  J.C. Lindon, Encyclopedia of Spectroscopy and Spectrometry – 3rd Edition. 2010. [Online]. Available: https://www.elsevier.com/books/ encyclopedia-of-spectro scopy-and-spectrometry/lindon/978-0-12-803224-4 (Accessed: Feb. 24, 2021).
  40.  J.I. Haleem, “A Review of: Handbook of Near-Infrared Analysis,” Instrum. Sci. Technol., vol. 22, no. 3, pp. 283–285, Aug. 1994, doi: 10.1080/10739149408000456.
  41. Infrared Spectroscopy: Fundamentals and Applications. John Wiley & Sons, Ltd, 2004, doi: 10.1002/0470011149.ch3.
Przejdź do artykułu

Autorzy i Afiliacje

Mirosław Szala
1
ORCID: ORCID
Aleksander Świetlicki
2
Weronika Sofińska-Chmiel
3

  1. Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  2. Students Research Group of Materials Technology, Department of Materials Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  3. Analytical Laboratory, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, pl. Maria Curie-Sklodowska 3, 20-031 Lublin, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Individual identification of similar communication emitters in the complex electromagnetic environment has great research value and significance in both military and civilian fields. In this paper, a feature extraction method called HVG-NTE is proposed based on the idea of system nonlinearity. The shape of the degree distribution, based on the extraction of HVG degree distribution, is quantified with NTE to improve the anti-noise performance. Then XGBoost is used to build a classifier for communication emitter identification. Our method achieves better recognition performance than the state-of-the-art technology of the transient signal data set of radio stations with the same plant, batch, and model, and is suitable for a small sample size.
Przejdź do artykułu

Bibliografia

  1.  J. Dudczyk, “Radar emission sources identification based on hierarchical agglomerative clustering for large data sets”, J. Sens. 2016, 1879327 (2016).
  2.  G. Manish, G. Hareesh, and M. Arvind, “Electronic Warfare: Issues and Challenges for Emitter Classification”, Def. Sci. J. 201161(3), 228‒234 (2011).
  3.  J. Dudczyk and A. Kawalec, “Specific emitter identification based on graphical representation of the distribution of radar signal parameters”, Bull. Pol. Acad. Sci. Tech. Sci. 63(2), 391‒396 (2015).
  4.  Q. Xu, R. Zheng, W. Saad, and Z. Han, “Device Fingerprinting in Wireless Networks: Challenges and Opportunities”, IEEE Commun. Surv. Tutor. 18(1), 94‒104 (2016).
  5.  P.C. Adam and G.L. Dennis, “Identification of Wireless Devices of Users Who Actively Fake Their RF Fingerprints With Artificial Data Distortion”, IEEE Trans. Wirel. Commun. 14(11), 5889‒5899 (2015).
  6.  N. Zhou, L. Luo, G. Sheng, and X. Jiang, “High Accuracy Insulation Fault Diagnosis Method of Power Equipment Based on Power Maximum Likelihood Estimation”, IEEE Trans. Power Deliv. 34(4), 1291‒1299 (2019).
  7.  S. Guo, R.E. White, and M. Low, “A comparison study of radar emitter identification based on signal transients”, IEEE Radar Conference, Oklahoma City, 2018, pp. 286‒291.
  8.  Q. Wu, C. Feres, D. Kuzmenko, D. Zhi, Z. Yu, and X. Liu, “Deep learning based RF fingerprinting for device identification and wireless security”, Electron. Lett. 54(24), 1405‒1407 (2018).
  9.  A. Kawalec, R. Owczarek, and J. Dudczyk, “Karhunen-Loeve transformation in radar signal features processing”, International Conference on Microwaves, Krakow, 2006.
  10.  B. Danev and S. Capkun, “Transient-based identification of wireless sensor nodes”, Information Processing in Sensor Networks, San Francisco, 2009, pp. 25‒36.
  11.  R.W. Klein, M.A. Temple, M.J. Mendenhall, and D.R. Reising, “Sensitivity Analysis of Burst Detection and RF Fingerprinting Classification Performance”, International Conference on Communications, Dresden, 2009, pp. 641‒645.
  12.  C. Bertoncini, K. Rudd, B. Nousain, and M. Hinders, “Wavelet Fingerprinting of Radio-Frequency Identification (RFID) Tags”, I IEEE Trans. Ind. Electron. 59(12), 4843‒4850 (2012).
  13.  Z. Shi, X. Lin, C. Zhao, and M. Shi, “Multifractal slope feature based wireless devices identification”, International Conference on Computer Science and Education, Cambridge, 2015, pp. 590‒595.
  14.  C.K. Dubendorfer, B.W. Ramsey, and M.A. Temple, “ZigBee Device Verification for Securing Industrial Control and Building Automation Systems”, International Conference on Critical Infrastructure Protection ,Washington DC, 2013, pp. 47‒62.
  15.  D.R. Reising and M.A. Temple, “WiMAX mobile subscriber verification using Gabor-based RF-DNA fingerprints”, International Conference on Communications, Ottawa, 2012, pp. 1005‒1010.
  16.  Y. Li, Y. Zhao, L. Wu, and J. Zhang, “Specific emitter identification using geometric features of frequency drift curve”, Bull. Pol. Acad. Sci. Tech. Sci. 66, 99‒108 (2018).
  17.  Y. Yuan, Z. Huang, H. Wu, and X. Wang, “Specific emitter identification based on Hilbert-Huang transform-based time-frequency-energy distribution features”, IET Commun. 8(13), 2404‒2412 (2014).
  18.  T.L. Carroll, “A nonlinear dynamics method for signal identification”, Chaos Interdiscip. J. Nonlinear Sci. 17(2), 023109 (2007).
  19.  D. Sun, Y. Li, Y. Xu, and J. Hu, “A Novel Method for Specific Emitter Identification Based on Singular Spectrum Analysis”, Wireless Communications & Networking Conference, San Francisco, 2017, pp. 1‒6.
  20.  Y. Jia, S. Zhu, and G. Lu, “Specific Emitter Identification Based on the Natural Measure”, Entropy 19(3), 117 (2017).
  21.  L. Lacasa, B. Luque, J. Luque, and J.C. Nuno, “The visibility graph: A new method for estimating the Hurst exponent of fractional Brownian motion”, Europhys. Lett. 86(3), 30001‒30005 (2009).
  22.  M. Ahmadlou and H. Adeli, “Visibility graph similarity: A new measure of generalized synchronization in coupled dynamic systems”, Physica D 241(4), 326‒332 (2012).
  23.  S. Zhu and L. Gan, “Specific emitter identification based on horizontal visibility graph”, IEEE International Conference Computer and Communications, Chengdu, 2017, pp. 1328‒1332.
  24.  B. Luque, L. Lacasa, F. Ballesteros, and J. Luque, “Horizontal visibility graphs: Exact results for random time series”, Phys. Rev. E. 80(4), 046103 (2009).
  25.  W. Jiang, B. Wei, J. Zhan, C. Xie, and D. Zhou, “A visibility graph power averaging aggregation operator: A methodology based on network analysis”, Comput. Ind. Eng. 101, 260‒268 (2016).
  26.  M. Wajs, P. Kurzynski, and D. Kaszlikowski, “Information-theoretic Bell inequalities based on Tsallis entropy”, Phys. Rev. A. 91(1), 012114 (2015).
  27.  J. Liang, Z. Huang, and Z. Li, “Method of Empirical Mode Decomposition in Specific Emitter Identification”, Wirel. Pers. Commun. 96(2), 2447‒2461, (2017).
  28.  A.M. Ali, E. Uzundurukan, and A. Kara, “Improvements on transient signal detection for RF fingerprinting”, Signal Processing and Communications Applications Conference (SIU), Antalya, 2017, pp. 1‒4.
  29.  Y. Yuan, Z. Huang, H. Wu, and X. Wang, “Specific emitter identification based on Hilbert-Huang transform-based time-frequency-energy distribution features”, IET Commun. 8(13), 2404‒2412 (2014).
  30.  D.R. Kong and H.B. Xie, “Assessment of Time Series Complexity Using Improved Approximate Entropy”, Chin. Phys. Lett. 28(9), 90502‒90505 (2011).
  31.  T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System”, Knowledge Discovery and Data Mining, San Francisco, 2016, pp. 785‒794.
  32.  G. Huang, Y. Yuan, X. Wang, and Z. Huang, “Specific Emitter Identification Based on Nonlinear Dynamical Characteristics”, Can. J. Electr. Comp. Eng.-Rev. Can. Genie Electr. Inform. 39(1), 34‒41 (2016).
  33.  D. Sun, Y. Li, Y. Xu, and J. Hu, “A Novel Method for Specific Emitter Identification Based on Singular Spectrum Analysis”, Wireless Communications and Networking Conference, San Francisco, 2017, pp. 1‒6.
Przejdź do artykułu

Autorzy i Afiliacje

Ke Li
1 2 3
ORCID: ORCID
Wei Ge
1 2
ORCID: ORCID
Xiaoya Yang
1 2
Zhengrong Xu
1

  1. School of Information and Computer, Anhui Agricultural University, Hefei, Anhui, 230036, China
  2. Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, Anhui, 230036, China
  3. Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai, 200072, China
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

In this paper, a spring system symmetrically arranged around a circular plate compliant to out-of-plane oscillation is proposed. The spring system consists of single serpentine springs mutually coupled in a plane. Three theoretical mechanical models for evaluating the stiffness of the spring system are built, which are based on the flexural beam, Sigitta, and serpentine spring theories and equivalent mechanical spring structure models. The theoretically calculated results are in good agreement with numerical solutions using the finite element method, with errors less than 10% in the appropriate dimension ranges of the spring. Compared to similar spring structures without mechanical coupling, the proposed mechanically coupled spring shows advantage in suppressing the mode coupling.
Przejdź do artykułu

Bibliografia

[1] X. Liu, K. Kim, and Y. Sun. A MEMS stage for 3-axis nanopositioning. Journal of Micromechanics and Microengineering, 17(9):1796–1802, 2007. doi: 10.1088/0960-1317/17/9/007.
[2] R. Legtenberg, A.W. Groeneveld, and M. Elwenspoek. Comb-drive actuators for large displacements. Journal of Micromechanics and Microengineering, 6(3):320–329, 1996. doi: 10.1088/0960-1317/6/3/004.
[3] S. Abe, M.H. Chu, T. Sasaki, and K. Hane. Time response of a microelectromechanical silicon photonic waveguide coupler switch. IEEE Photonics Technology Letters, 26(15):1553–1556, 2014. doi: 10.1109/lpt.2014.2329033.
[4] T.Q. Trinh, L.Q. Nguyen, D.V. Dao, H.M. Chu, and H.N. Vu, Design and analysis of a z-axis tuning fork gyroscope with guided-mechanical coupling. Microsystem Technologies, 20(2):281–289, 2014. doi: 10.1007/s00542-013-1947-0.
[5] Y.J. Huang, T.L. Chang, and H.P. Chou. Novel concept design for complementary metal oxide semiconductor capacitive z-direction accelerometer. Japanese Journal of Applied Physics, 48(7):076508, 2009. doi: 10.1143/jjap.48.076508.
[6] A. Sharaf and S. Sedky. Design and simulation of a high-performance Z-axis SOI-MEMS accelerometer. Microsystem Technologies, 19(8):1153–1163, 2013. doi: 10.1007/s00542-012-1714-7.
[7] Y. Matsumoto, M. Nishimura, M. Matsuura, and M. Ishida. Three-axis SOI capacitive accelerometer with PLL C–V converter. Sensors and Actuators A: Physical, 75(1):77–85, 1999. doi: 10.1016/s0924-4247(98)00295-7.
[8] D. Peroulis, S.P. Pacheco, K. Sarabandi, and L.P.B. Katehi. Electromechanical considerations in developing low-voltage RF MEMS switches. IEEE Transactions on Microwave Theory and Techniques, 51:259–270, 2003. doi: 10.1109/TMTT.2002.806514.
[9] Y. Liu. Stiffness Calculation of the microstructure with crab-leg flexural suspension. Advanced Materials Research, 317-319:1123–1126, 2011. doi: 10.4028/www.scientific.net/AMR.317-319.1123.
[10] H.M. Chou, M.J. Lin, and R. Chen. Investigation of mechanics properties of an awl-shaped serpentine microspring for in-plane displacement with low spring constant-to-layout area. Journal of Micro/Nanolithography MEMS and MOEMS, 15(3):035003, 2016. doi: 10.1117/1.JMM.15.3.035003.
[11] D.V. Hieu, L.V. Tam, N.V. Duong, N.D. Vy, and C.M. Hoang. Design and simulation analysis of a z axis microactuator with low mode cross-talk. Journal of Mechanics, 36(6):881–888, 2020. doi: 10.1017/jmech.2020.48.
[12] D.V. Hieu, L.V. Tam, K. Hane, and M.H. Chu. Design and simulation analysis of an integrated XYZ micro-stage for controlling displacement of scanning probe. Journal of Theoretical and Applied Mechanics, 59(1):143–156, 2021. doi: 10.15632/jtam-pl/130549.
[13] F. Hu, W. Wang, and J. Yao. An electrostatic MEMS spring actuator with large stroke and out-of-plane actuation. Micromechanics and Microengineering, 21(11):115029, 2011. doi: 10.1088/0960-1317/21/11/115029.
[14] W. Wai-Chi, A.A. Azid, and B.Y. Majlis. Formulation of stiffness constant and effective mass for a folded beam. Archives of Mechanics, 62(5):405–418, 2010.
[15] Y. Cao and Z. Xi. A review of MEMS inertial switches. Microsystem Technologies, 25(12):4405–4425, 2019. doi: 10.1007/s00542-019-04393-4.
[16] K.R. Sudha, K. Uttara, P.C. Roshan, and G.K. Vikas. Design and analysis of serpentine based MEMS accelerometer. AIP Conference Proceedings, 1966:020026, 2018. doi: 10.1063/1.5038705.
[17] H.M. Chou, M.J. Lin, and R. Chen. Fabrication and analysis of awlshaped serpentine microsprings for large out-of-plane displacement. Journal of Micromechanics and Microengineering, 25:095018, 2015. doi: 10.1088/0960-1317/25/9/095018.
[18] C.M. Hoang, and K. Hane. Design fabrication and vacuum operation characteristics of two-dimensional comb-drive micro-scanner. Sensors and Actuators A: Physical, 165(2): 422–430, 2011. doi: 10.1016/j.sna.2010.11.004.
[19] G. Barillaro, A. Molfese, A. Nannini, and F. Pieri. Analysis simulation and relative performances of two kinds of serpentine springs. Journal of Micromechanics and Microengineering, 15(4):736–746, 2005. doi: 10.1088/0960-1317/15/4/010.
[20] P.B. Chu, I. Brener, C. Pu, S.S. Lee, J.I. Dadap, S. Park, K.Bergman et al. Design and nonlinear servo control of MEMS mirrors and their performance in a large port-count optical switch. Journal of Microelectromechanical Systems, 14(2):261–273, 2005. doi: 10.1109/JMEMS.2004.839827.
[21] G.D.J. Su, S.H. Hung, D. Jia, and F. Jiang. Serpentine Spring corner designs for micro-electro-mechanical systems optical switches with large mirror mass. Optical Review, 12(4):339–344, 2005. doi: 10.1007/s10043-005-0339-9.
[22] A. Khlifi, A. Ahmed, S. Pandit, B. Mezghani, R. Patkar, P. Dixit, and M.S. Baghini. Experimental and theoretical dynamic investigation of MEMS Polymer mass-spring systems. IEEE Sensors Journal, 20(19):11191–11203, 2020. doi: 10.1109/JSEN.2020.2996802.
[23] J. Wu, T. Liu, K. Wang, and K. Sørby. A measuring method for micro force based on MEMS planar torsional spring. Measurement Science and Technology, 32(3):035002, 2020. doi: 10.1088/1361-6501/ab9acd.
[24] Z. Rahimi, J. Yazdani, H. Hatami, W. Sumelka, D. Baleanu, and S. Najafi. Determination of hazardous metal ions in the water with resonant MEMS biosensor frequency shift – concept and preliminary theoretical analysis. Bulletin of the Polish Academy of Sciences: Technical Sciences, 68(3): 529–537, 2020. doi: 10.24425/bpasts.2020.133381.
[25] K.G. Sravani, D. Prathyusha, C. Gopichand, S.M. Maturi, A. Elsinawi, K. Guha, and K. S. Rao. Design, simulation and analysis of RF MEMS capacitive shunt switches with high isolation and low pull-in-voltage. Microsystem Technologies, 28:913–928, 2022. doi: 10.1007/s00542-020-05021-2.
[26] N. Lobontiu and E. Garcia. Mechanics of Microelectromechanical Systems. Kluwer Academic Publishers, 2005. doi: 10.1007/b100026.
[27] H.A. Rouabah, C.O. Gollasch, and M. Kraft. Design optimisation of an electrostatic MEMS actuator with low spring constant for an “Atom Chip”. In Technical Proceedings of the 2005 NSTI Nanotechnology Conference and Trade Show, volume 3, pages 489–492, 2002.
[28] R. Raymond and J. Raymond. Roark's Formulas for Stress and Strain. McGraw-Hill, 1989.
[29] M.S. Weinberg and A. Kourepenis. Error sources in in-plane silicon tuning-fork MEMS gyroscopes. Journal of Microelectromechanical Systems, 15(3):479–491, 2006. doi: 10.1109/jmems.2006.876779.
Przejdź do artykułu

Autorzy i Afiliacje

Duong Van Nguyen
1 2
ORCID: ORCID
Chien Quoc Nguyen
1
ORCID: ORCID
Hieu Van Dang
2
ORCID: ORCID
Hoang Manh Chu
1
ORCID: ORCID

  1. International Training Institute for Materials Science, Hanoi University of Science and Technology, Vietnam
  2. FPT University, Hanoi, Vietnam
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Although gear teeth give lots of advantages, there is a high possibility of failure in gear teeth in each gear stage in the drive train system. In this research, the authors developed proper gear teeth using the basic theorem of gear failure and reliability-based design optimization. A design variable characterized by a probability distribution was applied to the static stress analysis model and the dynamics analysis model to determine an objective function and constraint equations and to solve the reliability-based design optimization. For the optimization, the authors simulated the torsional drive train system which includes rotational coordinates. First, the authors established a static stress analysis model which gives information about endurance limit and bending strength. By expressing gear mesh stiffness in terms of the Fourier series, the equations of motion including the gear mesh models and kinematical relations in the drive train system were acquired in the form of the Lagrange equations and constraint equations. For the numerical analysis, the Newmark Beta method was used to get dynamic responses including gear mesh contact forces. From the results such as the gear mesh contact force, the authors calculated the probability of failure, arranged each probability and gear teeth, and proposed a reasonable and economic design of gear teeth.
Przejdź do artykułu

Bibliografia

[1] S. Wang, T. Moan, and Z. Jiang. Influence of variability and uncertainty of wind and waves on fatigue damage of a floating wind turbine drivetrain. Renewable Energy, 181:870–897, 2022. doi: 10.1016/j.renene.2021.09.090.
[2] Z. Yu, C. Zhu, J. Tan, C. Song, and Y. Wang. Fully-coupled and decoupled analysis comparisons of dynamic characteristics of floating offshore wind turbine drivetrain. Ocean Engineering, 247:110639, 2022. doi: 10.1016/j.oceaneng.2022.110639.
[3] F.K. Moghadam and A.R. Nejad. Online condition monitoring of floating wind turbines drivetrain by means of digital twin. Mechanical Systems and Signal Processing, 162:108087, 2022. doi: 10.1016/j.ymssp.2021.108087.
[4] W. Shi, C.W. Kim, C.W. Chung, and H.C. Park. Dynamic modeling and analysis of a wind turbine drivetrain using the torsional dynamic model. International Journal of Precision Engineering and Manufacturing, 14(1):153–159, 2013. doi: 10.1007/s12541-013-0021-2.
[5] M. Todorov and G. Vukov. Parametric torsional vibrations of a drive train in horizontal axis wind turbine. In Proceeding of the 1st Conference Franco-Syrian about Renewable Energy, pages 1–17, Damas, 24-28 October, 2010.
[6] R.C. Juvinall and K.M. Marshek. Fundamentals of Machine Component Design. John Wiley & Sons, 2020.
[7] Q. Zhang, J. Kang, W. Dong, and S. Lyu. A study on tooth modification and radiation noise of a manual transaxle. International Journal of Precision Engineering and Manufacturing, 13(6):1013–1020, 2012. doi: 10.1007/s12541-012-0132-1.
[8] B. Shlecht, T. Shulze, and T. Rosenlocher. Simulation of heavy drive trains with multimegawatt transmission power in SimPACK. In: SIMPACK Users Meeting, Baden-Baden, Germany, 21-22 March, 2006.
[9] M. Todorov and G. Vukov. Modal properties of drive train in horizontal axis wind turbine. The Romanian Review Precision Mechanics, Optics & Mechatronics, 40:267–275, 2011.
[10] D. Lee, D.H. Hodges, and M.J. Patil. Multi‐flexible‐body dynamic analysis of horizontal axis wind turbines. Wind Energy, 5(4):281–300, 2002. doi: 10.1002/we.66.
[11] F.L.J. Linden, P.H. Vazques, and S. Silva. Modelling and simulating the efficiency and elasticity of gearboxes, In Proceeding of the 7th Modelica Conference, pages 270–277, Como, 20-22 September, 2009.
[12] J. Wang, D. Qin, and Y. Ding. Dynamic behavior of wind turbine by a mixed flexible-rigid multi-body model. Journal of System Design and Dynamics, 3(3):403–419, 2009. doi: 10.1299/jsdd.3.403.
[13] A.A. Shabana. Computational Dynamics. John Wiley & Sons. 2009.
[14] A.K. Chopra. Dynamics of Structures. Pearson Education India. 2007.
[15] Y. Park, H. Park, Z. Ma, J. You, J. and W. Shi. Multibody dynamic analysis of a wind turbine drivetrain in consideration of the shaft bending effect and a variable gear mesh including eccentricity and nacelle movement. Frontiers in Energy Research, 8:604414, 2021. doi: 10.3389/fenrg.2020.604414.
[16] S.R. Singiresu. Mechanical Vibrations. Addison Wesley. 1995.
[17] R.R. Craig Jr and A.J. Kurdila. Fundamentals of Structural Dynamics. John Wiley & Sons. 2006.
[18] K.J. Bathe. Finite Element Procedures. Klaus-Jurgen Bathe. 2006.
[19] Y. Kim, C.W. Kim, S. Lee, and H. Park. Dynamic modeling and numerical analysis of a cold rolling mill. International Journal of Precision Engineering and Manufacturing, 14(3):407–413. 2013. doi: 10.1007/s12541-013-0056-4.
[20] S.J. Yoon and D.H. Choi. Reliability-based design optimization of slider air bearings. KSME International Journal, 18(10):1722–1729, 2004. doi: 10.1007/BF02984320.
[21] H.H. Chun,S.J. Kwon, T. and Tak. Reliability-based design optimization of automotive suspension systems. International Journal of Automotive Technology, 8(6):713–722, 2007.
[22] J. Fang, Y. Gao, G. Sun, and Q. Li. Multiobjective reliability-based optimization for design of a vehicledoor. Finite Elements in Analysis and Design, 67:13–21, 2013. doi: 10.1016/j.finel.2012.11.007.
[23] Y.L. Young, J.W. Baker, and M.R. Motley. Reliability-based design and optimization of adaptive marine structures. Composite Structures, 92(2):244–253, 2010. doi: 10.1016/j.compstruct.2009.07.024.
[24] G. Liu, H. Liu, C. Zhu, T. Mao, and G. Hu. Design optimization of a wind turbine gear transmission based on fatigue reliability sensitivity. Frontiers of Mechanical Engineering, 16(1):61–79, 2021. doi: 10.1007/s11465-020-0611-5.
[25] H. Li, H. Cho, H. Sugiyama, K.K. Choi, and N.J. Gaul. Reliability-based design optimization of wind turbine drivetrain with integrated multibody gear dynamics simulation considering wind load uncertainty. Structural and Multidisciplinary Optimization, 56 (1):183–201, 2017. doi: 10.1007/s00158-017-1693-5.
[26] C. Luo, B. Keshtegar, S.P. Zhu, O. Taylan, O. and X.P. Niu. Hybrid enhanced Monte Carlo simulation coupled with advanced machine learning approach for accurate and efficient structural reliability analysis. Computer Methods in Applied Mechanics and Engineering, 388:114218. doi: 10.1016/j.cma.2021.114218.
Przejdź do artykułu

Autorzy i Afiliacje

Changwoo Lee
1
Yonghui Park
2
ORCID: ORCID

  1. Pohang Institute of Metal Industry Advancement, Pohang, Republic of Korea
  2. Department of Mechanical Engineering, Yuhan University, Bucheon, Republic of Korea
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The axial crumpling of frusta in the axisymmetric "concertina" mode is examined. A new theoretical model is developed in which the inward folding in both cylinders and frusta is addressed. The results were compared with previous relevant models as well as experimental findings. The flexibility of the model was substantiated by its capability of describing and estimating the inward folding in frusta in general as well as in cylinders as a special case. A declining trend of the eccentricity dependence with the D/t ratio was found in contrast with a previous theory which suggests total independency. ABAQUS 14-2 finite element software was employed to simulate the thin tube as a 3-D thin shell part. Numerical simulations of the process were found to, firstly, underestimate the theoretical values of inward folding in general, secondly anticipate more underestimations as the tubes become thinner and/or have larger apex angle, and finally anticipate as low as 300 apical angle frusta to revert its mode of deformation to global inversion.
Przejdź do artykułu

Bibliografia

[1] F.C. Bardi and S. Kyriakides. Plastic buckling of circular tubes under axial compression–part I: Experiments. International Journal of Mechanical Sciences, 48(8):830–841, 2006. doi: 10.1016/j.ijmecsci.2006.03.005.
[2] J.M. Alexander. An approximate analysis of the collapse of thin cylindrical shells under axial loading. The Quarterly Journal of Mechanics and Applied Mathematics, 13(1):10–15, 1960. doi: 10.1093/qjmam/13.1.10.
[3] A.A.K. Mohammed, M.N. Alam, and R. Ansari. Quasi-static study of thin aluminium frusta with linearly varying wall-thickness. International Journal of Crashworthiness, 25(5):473–484, 2020. doi: 10.1080/13588265.2019.1613762.
[4] A. Shiravand and M. Asgari. Hybrid metal-composite conical tubes for energy absorption; theoretical development and numerical simulation. Thin-Walled Structures, 145:106442, 2019. doi: 10.1016/j.tws.2019.106442.
[5] P. Sadjad, E.M. Hossein, and E.M. Sobhan. Crashworthiness of double-cell conical tubes with different cross sections subjected to dynamic axial and oblique loads. Journal of Central South University, 25:632–645, 2018. doi: 10.1007/s11771-018-3766-z.
[6] G. Lu , J.L. Yu , J.J. Zhang, and T.X. Yu. Alexander revisited: upper- and lower-bound approaches for axial crushing of a circular tube. International Journal of Mechanical Sciences, 206:106610, 2021. doi: 10.1016/j.ijmecsci.2021.106610.
[7] A. Sadighi, A. Eyvazian, M. Asgari, and A.M. Hamouda. A novel axially half corrugated thin-walled tube for energy absorption under axial loading. Thin-Walled Structures, 145:106418, 2019. doi: 10.1016/j.tws.2019.106418.
[8] M.Y. Abbood, and R.N. Kiter. On the peak quasi-static load of axisymmetric buckling of circular tubes. International Journal of Crashworthiness, 27(2):367–375, 2022. doi: 10.1080/13588265.2020.1807679.
[9] T. Wierzbicki, S.U. Bhat, W. Abramowicz, and D. Brodkin. Alexander revisited–-A two folding elements model of progressive crushing of tubes. International Journal of Solids and Structures, 29(4):3269–3288, 1992. doi: 10.1016/0020-7683(92)90040-Z.
[10] A.A. Singace, H. Elsobky, and T.Y. Reddy. On the eccentricity factor in the progressive crushing of tubes. International Journal of Solids and Structures, 32(24):3589-3602, 1995. doi: 10.1016/0020-7683(95)00020-B.
[11] H.E. Postlethwaite and B. Mills. Use of collapsible structural elements as impact isolators, with special reference to automotive applications. The Journal of Strain Analysis for Engineering Design, 5(1):58–73,1970. doi: 10.1243/03093247V051058.
[12] A.G. Mamalis, D.E. Manolakos, S. Saigal, G. Viegelahn, and W. Johnson. Extensible plastic collapse of thin-wall frusta as energy absorbers. International Journal of Mechanical Sciences, 28(4):219–229, 1986. doi: 10.1016/0020-7403(86)90070-6.
[13] A.G. Mamalis, D.E. Manolakos, G.L. Viegelahn, and W. Johnson. The modeling of the progressive extensible plastic collapse of thin-wall shells. International Journal of Mechanical Sciences, 30(3-4):249–261, 1988. doi: 10.1016/0020-7403(88)90058-6.
[14] N.K. Gupta, G.L. Prasad, and S.K. Gupta. Plastic collapse of metallic conical frusta of large semi-apical angles. International Journal of Crashworthiness, 2(4):349–366, 1997. doi: 10.1533/cras.1997.0054.
[15] A.A.A. Alghamdi, A.A.N. Aljawi, and T.M.N. Abu-Mansour. Modes of axial collapse of unconstrained capped frusta. International Journal of Mechanical Sciences, 44(6):1145–1161, 2002. doi: 10.1016/S0020-7403(02)00018-8.
[16] N.M. Sheriff, N.K. Gupta, R. Velmurugan, and N. Shanmugapriyan. Optimization of thin conical frusta for impact energy absorption. Thin-Walled Structures, 46(6):653–666, 2008. doi: 10.1016/j.tws.2007.12.001.
Przejdź do artykułu

Autorzy i Afiliacje

Riyah N. Kiter
1
Mazin Y. Abbood
1
ORCID: ORCID
Omar H. Hassoon
2
ORCID: ORCID

  1. Department of Mechanical Engineering, College of Engineering, University of Anbar, Iraq
  2. Department of Production and Metallurgy Engineering, University of Technology, Baghdad, Iraq
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

In this present work, the laminar free convection boundary layer flow of a two-dimensional fluid over the vertical flat plate with a uniform surface temperature has been numerically investigated in detail by the similarity solution method. The velocity and temperature profiles were considered similar to all values and their variations are as a function of distance from the leading edge measured along with the plate. By taking into account this thermal boundary condition, the system of governing partial differential equations is reduced to a system of non-linear ordinary differential equations. The latter was solved numerically using the Runge-Kutta method of the fourth-order, the solution of which was obtained by using the FORTRAN code on a computer. The numerical analysis resulting from this simulation allows us to derive some prescribed values of various material parameters involved in the problem to which several important results were discussed in depth such as velocity, temperature, and rate of heat transfer. The definitive comparison between the two numerical models showed us an excellent agreement concerning the order of precision of the simulation. Finally, we compared our numerical results with a certain model already treated, which is in the specialized literature.
Przejdź do artykułu

Bibliografia

[1] Md J. Uddin, W.A. Khan, and A.I.Md Ismail. Similarity solution of double diffusive free convective flow over a moving vertical flat plate with convective boundary condition. Ain Shams Engineering Journal, 6(3):1105–1112, 2015. doi: 10.1016/j.asej.2015.01.008.
[2] J.A. Esfahani and B. Bagherian. Similarity solution for unsteady free convection from a vertical plate at constant temperature to power law fluids. Journal of Heat Transfer, 134(10):1–7, 2012. doi: 10.1115/1.4005750.
[3] Y.Z. Boutros, M.B. Abd-el-Malek, and N.A. Badran. Group theoretic approach for solving time-independent free-convective boundary layer flow on a nonisothermal vertical flat plate. Archiwum Mechaniki Stosowanej, 42(3):377–395, 1990.
[4] M. Modather, A.M. Rashad, and A.J. Chamkha. An analytical study of MHD heat and mass transfer oscillatory flow of a micropolar fluid over a vertical permeable plate in a porous medium. Turkish Journal of Engineering and Environmental Sciences, 33(4):245–257, 2009.
[5] M.V. Krishna and A.J. Chamkha. Hall and ion slip effects on MHD rotating flow of elastico-viscous fluid through porous medium. International Communications in Heat and Mass Transfer, 113:104494, 2020. doi: 10.1016/j.icheatmasstransfer.2020.104494.
[6] M.V. Krishna and A.J. Chamkha. Hall and ion slip effects on MHD rotating boundary layer flow of nanofluid past an infinite vertical plate embedded in a porous medium. Results in Physics, 15:102652, 2019. doi: 10.1016/j.rinp.2019.102652.
[7] M.V. Krishna, N.A. Ahamad, and A.J. Chamkha. Hall and ion slip effects on unsteady MHD free convective rotating flow through a saturated porous medium over an exponential accelerated plate. Alexandria Engineering Journal, 59(2):565–577, 2020. doi: 10.1016/j.aej.2020.01.043.
[8] A.J. Chamkha. Non-Darcy fully developed mixed convection in a porous medium channel with heat generation/absorption and hydromagnetic effects. Numerical Heat Transfer, Part A: Applications, 32(6):653–675, 1997. doi: 10.1080/10407789708913911.
[9] A.J. Chamkha. Thermal radiation and buoyancy effects on hydromagnetic flow over an accelerating permeable surface with heat source or sink. International Journal of Engineering Science, 38(15):1699–1712, 2000. doi: 10.1016/S0020-7225(99)00134-2.
[10] G. Rasool, T. Zhang, A.J. Chamkha, A. Shafiq, I. Tlili, and G. Shahzadi. Entropy generation and consequences of binary chemical reaction on MHD Darcy–Forchheimer Williamson nanofluid flow over non-linearly stretching surface. Entropy, 22(18):18, 2020. doi: 10.3390/e22010018.
[11] A.J. Chamkha, C. Issa, and K. Khanafer. Natural convection from an inclined plate embedded in a variable porosity porous medium due to solar radiation. International Journal of Thermal Sciences, 41(1):73–81, 2002. doi: 10.1016/S1290-0729(01)01305-9.
[12] A.J. Chamkha and A. Ben-Nakhi. MHD mixed convection-radiation interaction along a permeable surface immersed in a porous medium in the presence of Soret and Dufour's effects. Heat and Mass Transfer, 44:845, 2008. doi: 10.1007/s00231-007-0296-x.
[13] A.J. Chamkha. Hydromagnetic natural convection from an isothermal inclined surface adjacent to a thermally stratified porous medium. International Journal of Engineering Science, 35(10/11):975–986, 1997. doi: 10.1016/S0020-7225(96)00122-X.
[14] A. Wakif, A.J. Chamkha, I.L. Animasaun, M. Zaydan, H. Waqas, and R. Sehaqui. Novel physical insights into the thermodynamic irreversibilities within dissipative EMHD fluid flows past over a moving horizontal Riga plate in the coexistence of wall suction and Joule heating effects: A comprehensive numerical investigation. Arabian Journal for Science and Engineering, 45:9423–9438, 2020. doi: 10.1007/s13369-020-04757-3.
[15] N.A. Ahammad, I.A. Badruddin, S.Z. Kamangar, H.M.T. Khaleed, C.A. Saleel, and T.M.I. Mahlia. Heat Transfer and entropy in a vertical porous plate subjected to suction velocity and MHD. Entropy, 23(8):1069, 2021. doi: 10.3390/e23081069.
[16] M.V. Krishna, N.A. Ahamad, and A.J. Chamkha. Numerical investigation on unsteady MHD convective rotating flow past an infinite vertical moving porous surface. Ain Shams Engineering Journal, 12(2): 2099–2109, 2021. doi: 10.1016/j.asej.2020.10.013.
[17] P. Kandaswamy, A.K.A. Hakeem, and S.Saravanan. Internal natural convection driven by an orthogonal pair of differentially heated plates. Computers & Fluids, 111:179–186, 2015. doi: 10.1016/j.compfluid.2015.01.015.
[18] S.E. Ahmed, H.F. Oztop, and K. Al-Salem. Natural convection coupled with radiation heat transfer in an inclined porous cavity with corner heater. Computers & Fluids, 102:74–84, 2014. doi: 10.1016/j.compfluid.2014.06.024.
[19] S. Siddiqa, M.A. Hossain, and R.S.R. Gorla. Natural convection flow of viscous fluid over triangular wavy horizontal surface. Computers & Fluids, 106:130–134, 2015. doi: 10.1016/j.compfluid.2014.10.001.
[20] L. Zhou, S.W. Armfield, N. Williamson, M.P. Kirkpatrick, and W. Lin. Natural convection in a cavity with time-dependent flux boundary. International Journal of Heat and Fluid Flow, 92:108887, 2021. doi: 10.1016/j.ijheatfluidflow.2021.108887.
[21] K.M. Talluru, H.F. Pan, J.C. Patterson, and K.A. Chauhan. Convection velocity of temperature fluctuations in a natural convection boundary layer. International Journal of Heat and Fluid Flow, 84:108590, 2020. doi: 10.1016/j.ijheatfluidflow.2020.108590.
[22] M. Chakkingal, S. Kenjereš, I. Ataei-Dadavi, M.J. Tummers, and C.R. Kleijn. Numerical analysis of natural convection with conjugate heat transfer in coarse-grained porous media. International Journal of Heat and Fluid Flow, 77:48–60, 2019. doi: 10.1016/j.ijheatfluidflow.2019.03.008.
[23] N. Mahir and Z. Altaç. Numerical investigation of flow and combined natural-forced convection from an isothermal square cylinder in cross flow. International Journal of Heat and Fluid Flow, 75:103–121, 2019. doi: 10.1016/j.ijheatfluidflow.2018.11.013.
[24] M.A. Ezan and M. Kalfa. Numerical investigation of transient natural convection heat transfer of freezing water in a square cavity. International Journal of Heat and Fluid Flow, 61(Part B):438–448, 2016. doi: 10.1016/j.ijheatfluidflow.2016.06.004.
[25] A. Ouahouah, N. Labsi, X. Chesneau, and Y.K. Benkahla. Natural convection within a non-uniformly heated cavity partly filled with a shear-thinning nanofluid and partly with air. Journal of Non-Newtonian Fluid Mechanics, 289:104490, 2021. doi: 10.1016/j.jnnfm.2021.104490.
[26] M.H. Matin, I. Pop, and S. Khanchezar. Natural convection of power-law fluid between two-square eccentric duct annuli Journal of Non-Newtonian Fluid Mechanics, 197:11–23, 2013. doi: 10.1016/j.jnnfm.2013.02.002.
[27] M.T. Nguyen, A.M. Aly, and S.W. Lee. A numerical study on unsteady natural/ mixed convection in a cavity with fixed and moving rigid bodies using the ISPH method. International Journal of Numerical Methods for Heat & Fluid Flow, 28(3):684–703, 2018. doi: 10.1108/HFF-02-2017-0058.
[28] Y. Guo, R. Bennacer, S. Shen, D.E. Ameziani, and M. Bouzidi. Simulation of mixed convection in slender rectangular cavity with lattice Boltzmann method. International Journal of Numerical Methods for Heat & Fluid Flow, 20(1):130–148, 2010. doi: 10.1108/09615531011008163.
[29] N.B. Balam and A. Gupta. A fourth-order accurate finite difference method to evaluate the true transient behaviour of natural convection flow in enclosures. International Journal of Numerical Methods for Heat & Fluid Flow, 30(3):1233–1290, 2020. doi: 10.1108/HFF-06-2019-0519.
[30] L. Lukose and T. Basak. Numerical heat flow visualization analysis on enhanced thermal processing for various shapes of containers during thermal convection. International Journal of Numerical Methods for Heat & Fluid Flow, 30(7):3535–3583, 2020. doi: 10.1108/HFF-05-2019-0376.
[31] P. Pichandi, and S. Anbalagan. Natural convection heat transfer and fluid flow analysis in a 2D square enclosure with sinusoidal wave and different convection mechanism. International Journal of Numerical Methods for Heat & Fluid Flow, 28(9):2158–2188, 2018. doi: 10.1108/HFF-12-2017-0522.
[32] M. Salari, M.M. Rashidi,. E.H. Malekshah, and M.H. Malekshah. Numerical analysis of turbulent/transitional natural convection in trapezoidal enclosures. International Journal of Numerical Methods for Heat & Fluid Flow, 27(12):2902–2923, 2017. doi: 10.1108/HFF-03-2017-0097.
[33] A. Salama, M. El Amin, and S. Sun. Numerical investigation of natural convection in two enclosures separated by anisotropic solid wall. International Journal of Numerical Methods for Heat & Fluid Flow, 24(8):1928–1953, 2014. doi: 10.1108/HFF-09-2013-0268.
[34] N. Kim and J.N. Reddy. Least-squares finite element analysis of three-dimensional natural convection of generalized Newtonian fluids. International Journal for Numerical Methods in Fluids, 93(4):1292–1307, 2021. doi: 10.1002/fld.4929.
[35] J. Zhang and F. Lin. An efficient Legendre-Galerkin spectral method for the natural convection in two-dimensional cavities. International Journal for Numerical Methods in Fluids, 90(12):651–659, 2019.doi: 10.1002/fld.4742.
[36] J.C.F. Wong and P. Yuan. A FE-based algorithm for the inverse natural convection problem. International Journal for Numerical Methods in Fluids, 68(1):48–82, 2012. doi: 10.1002/fld.2494.
[37] H.S. Panda and S.G. Moulic. An analytical solution for natural convective gas micro flow in a tall vertical enclosure. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 225(1):145–154, 2011. doi: 10.1243/09544062JMES1768.
[38] M. Saleem, S. Asghar, and M.A. Hossain. Natural convection flow in an open rectangular cavity with cold sidewalls and constant volumetric heat source. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 225(5):1191–1201, 2011. doi: 10.1177/09544062JMES2648.
[39] A. Koca, H.F. Oztop, and Y. Varol. Natural convection analysis for both protruding and flush-mounted heaters located in triangular enclosure. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 222(7):1203–1214, 2008. doi: 10.1243/09544062JMES886.
[40] M.K. Mansour. Effect of natural convection on conjugate heat transfer characteristics in liquid mini channel during phase change material melting. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 228(3):491–513, 2014. doi: 10.1177/0954406213486590.
[41] E.F. Kent. Numerical analysis of laminar natural convection in isosceles triangular enclosures. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 223(5):1157–1169, 2009. doi: 10.1243/09544062JMES1122.
[42] A. Belhocine and W.Z. Wan Omar. An analytical method for solving exact solutions of the convective heat transfer in fully developed laminar flow through a circular tube. Heat Transfer Asian Research, 46(8):1342–1353, 2017. doi: 10.1002/htj.21277.
[43] A. Belhocine and W. Z. Wan Omar. Numerical study of heat convective mass transfer in a fully developed laminar flow with constant wall temperature. Case Studies in Thermal Engineering, 6:116–127, 2015. doi: 10.1016/j.csite.2015.08.003.
[44] A. Belhocine and O.I. Abdullah. Numerical simulation of thermally developing turbulent flow through a cylindrical tube. International Journal of Advanced Manufacturing Technology, 102(5-8):2001–2012, 2019. doi: 10.1007/s00170-019-03315-y.
[45] A. Belhocine and W.Z. Wan Omar. Analytical solution and numerical simulation of the generalized Levèque equation to predict the thermal boundary layer. Mathematics and Computers in Simulation, 180:43–60, 2021. doi: 10.1016/j.matcom.2020.08.007.
[46] A. Belhocine, N.Stojanovic, and O.I. Abdullah. Numerical simulation of laminar boundary layer flow over a horizontal flat plate in external incompressible viscous fluid. European Journal of Computational Mechanics, 30(4-6):337–386, 2021.doi: 10.13052/ejcm2642-2085.30463.
[47] S. Ostrach. An analysis of laminar free convection flow and heat transfer about a flat plate parallel to the direction of the generating body force. National Advisory Committee for Aeronautics, Report 1111, 1953.
[48] T.L. Bergman, A.S. Lavine, F.P. Incropera, and D.P. Dewitt. Fundamentals of Heat and Mass Transfer, 7th ed., John Wiley & Sons, New York, 2011.
Przejdź do artykułu

Autorzy i Afiliacje

Ali Belhocine
1
ORCID: ORCID
Nadica Stojanovic
2
Oday Ibraheem Abdullah
3

  1. Department of Mechanical Engineering, University of Sciences and the Technology of Oran, Algeria
  2. University of Kragujevac, Faculty of Engineering, Department for Motor Vehicles and Motors, Serbia
  3. System Technologies and Mechanical Design Methodology, Hamburg University of Technology, Hamburg, Germany
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

In this paper, an adaptive sliding mode controller (ASMC) is proposed for an electromechanical clutch position control system to apply in the automated manual transmission. Transmission systems undergo changes in parameters with respect to the wide range of driving condition, such as changing in friction coefficient of clutch disc and stiffness of diaphragm spring, hence, an adaptive robust control method is required to guarantee system stability and overcome the uncertainties and disturbances. As the majority of transmission dynamics variables cannot be measured in a cost-efficient way, a non-linear estimator based on unscented Kalman filter (UKF) is designed to estimate the state valuables of the system. Also, a non-linear dynamic model of the electromechanical actuator is presented for the automated clutch system. The model is validated with experimental test results. Numerical simulation of a reference input for clutch bearing displacement is performed in computer simulation to evaluate the performance of controller and estimator. The results demonstrate the high effectiveness of the proposed controller against the conventional sliding mode controller to track precisely the desired trajectories.
Przejdź do artykułu

Bibliografia

[1] J. Horn, J. Bamberger, P. Michau, and S. Pindl. Flatness-based clutch control for automated manual transmissions. Control Engineering Practice, 11(12):1353–1359, 2003. doi: 10.1016/S0967-0661(03)00099-6.
[2] L. Glielmo, L. Iannelli, V. Vacca, and F.Vasca. Gearshift control for automated manual transmissions. IEEE/ASME Transactions on Mechatronics, 11(1):17–26, 2006. doi: 10.1109/TMECH.2005.863369.
[3] Z. Zhong, G. Kong, Z. Yu, X. Chen, X. Chen, and X. Xin. Concept evaluation of a novel gear selector for automated manual transmissions. Mechanical Systems and Signal Processing, 31:316–331, 2012. doi: 10.1016/j.ymssp.2012.02.008.
[4] Y. Zhao, Z. Liu, L. Cai, W. Yang, J. Yang, and Z. Luo. Study of control for the automated clutch of an automated manual transmission vehicle based on rapid control prototyping. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 224(4):475–487, 2010. doi: 10.1243/09544070JAUTO1245.
[5] X. Song, Z. Sun, X. Yang, and G. Zhu. Modelling, control, and hardware-in-the-loop simulation of an automated manual transmission. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 224(2):143–160, 2010. doi: 10.1243/09544070JAUTO1284.
[6] S. Lin, S. Chang, and B. Li. Improving the gearshifts events in automated manual transmission by using an electromagnetic actuator. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 229(9):1548–1561, 2015. doi: 10.1177/0954406214546204.
[7] Z. Chen, B. Zhang, N. Zhang, H. Du G. Kong. Optimal preview position control for shifting actuators of automated manual transmission. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 233(2):440–452, 2019. doi: 10.1177/0954407017745981.
[8] C.Y. Tseng and C.H. Yu. Advanced shifting control of synchronizer mechanisms for clutchless automatic manual transmission in an electric vehicle. Mechanism and Machine Theory, 84:37–56, 2015. doi: 10.1016/j.mechmachtheory.2014.10.007.
[9] G. Kong, N. Zhang, and B. Zhang. Novel hybrid optimal algorithm development for DC motor of automated manual transmission. International Journal of Automotive Technology, 17(1):135–143, 2016. doi: 10.1007/s12239-016-0013-1.
[10] J. Oh, J. Kim, and S. Choi. Robust feedback tracking controller design for self-energizing clutch actuator of automated manual transmission. SAE International Journal of Passenger Cars-Mechanical Systems, 6(3):1510-1517, 2013. doi: 10.4271/2013-01-2587.
[11] A. Bagheri, S. Azadi, and A. Soltani. A combined use of adaptive sliding mode control and unscented Kalman filter estimator to improve vehicle yaw stability. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 231(2):388–401, 2017. doi: 10.1177/1464419316673960.
[12] B. Gao, Y. Lei, A. Ge, H. Chen, and K. Sanada. Observer-based clutch disengagement control during gear shift process of automated manual transmission. Vehicle System Dynamics, 49(5):685–701, 2011. doi: 10.1080/00423111003681354.
[13] R. Temporelli, M. Boisvert, P. Micheau. Control of an electromechanical clutch actuator using a dual sliding mode controller: Theory and experimental investigations, IEEE/ASME Transactions on Mechatronics, 24(4):1674–1685, 2019. doi: 10.1109/TMECH.2019.2919673.
[14] S.A. Haggag, Sliding mode adaptive PID control of an automotive clutch-by-wire actuator. SAE International Journal of Passenger Cars-Mechanical Systems, 9(1):424–433, 2016. doi: 10.4271/2016-01-9106.
[15] J. Park and S. Choi. Optimization method of reference slip speed in clutch slip engagement in vehicle powertrain. International Journal of Automotive Technology, 22:55–67, 2021. doi: 10.1007/s12239-021-0007-5.
[16] Z. Sun, B. Gao, J. Jin, and K. Sanada. Modelling, analysis and simulation of a novel automated manual transmission with gearshift assistant mechanism. International Journal of Automotive Technology, 20:885–895, 2019. doi: 10.1007/s12239-019-0082-z.
[17] G. Xia, J. Chen, X. Tang, L. Zhao, and B. Sun. Shift quality optimization control of power shift transmission based on particle swarm optimization–genetic algorithm. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 236(5)872–892, 2022. doi: 10.1007/s12239-019-0082-z.
[18] M. Sharifzadeh, M. Pisaturo, and A. Senatore. Real-time identification of dry-clutch frictional torque in automated transmissions at launch condition. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 234(2-3):586–598, 2020. doi: 10.1177/0954407019857268.
[19] X. Zhu, H. Zhang, J. Xi, J. Wang, and Z. Fang. Robust speed synchronization control for clutchless automated manual transmission systems in electric vehicles. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 229(4):424–436, 2015. doi: 10.1177/0954407014546431.
[20] H. Ren, S. Chen, T. Shim, and Z. Wu. Effective assessment of tyre–road friction coefficient using a hybrid estimator. Vehicle System Dynamics, 52(8):1047–1065, 2014. doi: 10.1080/00423114.2014.918629.
Przejdź do artykułu

Autorzy i Afiliacje

Abbas Soltani
1
ORCID: ORCID
Milad Arianfard
2
Reza Nakhaie Jazar
3
ORCID: ORCID

  1. Buin Zahra Higher Education Centre of Engineering and Technology, Imam Khomeini International University, Qazvin, Iran
  2. Department of Mechanical Engineering, Technical and Vocational University (TVU), Tehran, Iran
  3. School of Mechanical and Automotive Engineering, RMIT University, Melbourne, Australia
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Production and assessment of artillery firing tables (FT) are the key tasks in solving ballistic problems through both standard and non-standard firing conditions. According to the literature, two different standard firing table formats were developed by the former-Soviet and the United States armies. This study proposes the main difference between these FT formats, as the standard meteorological conditions. An accuracy assessment has been proposed to justify different sources of errors through modeling and production of such tables, including applied meteorological message, aiming angles round-off, linear superposition principle, and Earth approximation. A~case study has been proposed for the 155M107 projectile to demonstrate the impact of the Coriolis effect as well as other ballistic and atmospheric non-standard conditions. As a part of the construction of artillery FT, a fitting process has to be made between available firing data and simulations. Therefore, a parametric study is implemented to study the number of test elevations per charge needed through the fitting process and its corresponding production error. Hence, based on the number of test elevations available, the genetic algorithm (GA) has been utilized to obtain the test elevations order needed with minimum FT production error. The results show a good agreement with the data stated in the literature.
Przejdź do artykułu

Bibliografia

[1] J.A. Matts and D.H. McCoy. A graphical firing table model and a comparison of the accuracy of three utilization schemes. Report No. BRL-MR-2035, Army Ballistic Research Lab., Aberdeen Proving Ground, MD, U.S., April 1970.
[2] H.L. Reed Jr. Firing table computations on the ENIAC. In Proceeding of the 1952 ACM national meeting (Pittsburgh), pages 103-106, Pennsylvania, USA, 2 May, 1952. doi: 10.1145/609784.609796.
[3] E.R. Dickinson. The production of firing tables for cannon artillery. Report No. BRL-R-1371, Army Ballistic Research Lab., Aberdeen Proving Ground, MD, U.S., November 1967.
[4] S. Gorn and N.L. Juncosa. On the computational procedures for firing and bombing tables. Report No. BRL-R-889, Army Ballistic Research Lab., Aberdeen Proving Ground, MD, U.S., November 1954.
[5] C. Niekerk, and W. Rossouw. A proposed format for firing tables of a series of carrier projectiles possessing ballistic similarity with a HE projectile. In Proceeding of the 20th International Symposium on Ballistics, pages 187–194, Orlando, USA, 23–27 September, 2002.
[6] S.A. Ortac, U. Durak, U. Kutluay, K. Kucuk, and M.C. Candan. NABK based next generation ballistic table toolkit. In Proceeding of the 23rd International Symposium on Ballistics, pages 765–774, Tarragona, Spain, 16–20 April, 2007.
[7] A.J. Sowa. NATO shareable software developing into true suite supporting national operational fire control systems. In Proceeding of the 24th International Symposium on Ballistics, pages 126–133, Louisiana, USA, 22–26 September, 2008.
[8] Z. Leciejewski, T. Zawada, P. Kowalczuk, J. Szymonik, and P. Czyronis. Selected ballistic aspects of fire control system designed to anti-aircraft gun. In Proceeding of the 28th International Symposium on Ballistics, pages 655–665, Atlanta, USA, 22–26 September, 2014.
[9] NATO. The Modified Point Mass and five Degrees of Freedom Trajectory Models. Standard No. STANAG-4355, NATO Standardization Agency, Belgium, April 2009.
[10] M. Khalil, X. Rui, Q. Zha, H. Yu, and H. Hendy. Projectile impact point prediction based on self-propelled artillery dynamics and doppler radar measurements. Advances in Mechanical Engineering, 2013:53913, 2013. doi: 10.1155/2013/153913.
[11] L. Baranowski. Feasibility analysis of the modified point mass trajectory model for the need of ground artillery fire control systems. Journal of Theoretical and Applied Mechanics, 51(3):511–522, 2013.
[12] M. Khalil, X. Rui, and H. Hendy. Discrete time transfer matrix method for projectile trajectory prediction. Journal of Aerospace Engineering, 28(2):04014057, 2015. doi: 10.1061/(ASCE)AS.1943- 5525.0000381.
[13] L. Baranowski. Effect of the mathematical model and integration step on the accuracy of the results of computation of artillery projectile flight parameters. Bulletin of the Polish Academy of Sciences: Technical Sciences, 61(2):475–484, 2013. doi: 10.2478/bpasts-2013-0047.
[14] A. Szklarski, R. Głębocki, and M. Jacewicz. Impact point prediction guidance parametric study for 155 mm rocket assisted artillery projectile with lateral thrusters. Archive of Mechanical Engineering, 67(1):31–56, 2020. doi: 10.24425/ame.2020.131682.
[15] M. Aldoegre. Comparison Between Trajectory Models for Firing Table Application. MSc. Thesis, North-West University, Potchefstroom, South Africa, 2019.
[16] C. Donneaud, R. Cayzac and P. Champigny. Recent developments on aeroballistics of yawing and spinning projectiles: Part II: free flight tests. In Proceeding of the 20th International Symposium on Ballistics, pages 655–665, Orlando, USA, 23–27 September, 2002.
[17] A. Dupuis, C. Berner, and V. Fleck. Aerodynamic characteristics of a long-range spinning artillery shell: Part 1: from aeroballistic range free-flight tests. In Proceeding of the 21st International Symposium on Ballistics, Adelaide, Australia, 19–23 April, 2004.
[18] T. Brown, T. Harkins, M. Don, R. Hall, J. Garner, and B. Davis. Development and demonstration of a new capability for aerodynamic characterization of medium caliber projectiles. In Proceedings of the 28th International Symposium on Ballistics, pages 655–665, Atlanta, USA, 22–26 September, 2014.
[19] W. Zhou. An improved hybrid extended kalman filter based drag coefficient estimation for projectiles. In Proceedings of the 30th International Symposium on Ballistics, pages 80–91, California, USA, 11–15 September, 2017.
[20] M. Albisser, S. Dobre, C. Decrocq, F. Saada, B. Martinez, and P. Gnemmi. Aerodynamic characterization of a new concept of long range projectiles from free flight data. In Proceeding of the 30th International Symposium on Ballistics, pages 256–267, California, USA, 11–15 September, 2017.
[21] A. Ishchenko, V. Burkin, V. Faraponov, L. Korolkov, E. Maslov, A. Diachkovskiy, A. Chupashev, and A. Zykova. Determination of extra trajectory parameters of projectile layout motion. Journal of Physics: Conference Series, 919:012010, 2017, 1-5. doi: 10.1088/1742-6596/919/1/012010.
[22] G. Surdu, I. Vedinaş, G. Slămnoiu, and Ş. Pamfil. Projectile’s drag coefficient evaluation for small finite differences of his geometrical dimensions using analytical methods. In: International Conference of Scientific Paper (AFASES 2015), Brasov, Romania, 28–30 May, 2015.
[23] R.L. McCoy. Modern Exterior Ballistics: The Launch and Flight Dynamics of Symmetric Projectiles, 2nd ed., Schiffer Publishing, 2009.
[24] R. H. Whyte. SPIN-73 an Updated Version of the SPINNER Computer Program. Report No. TR-4588, Armament Systems Dept., VT, U.S., November 1973.
[25] W. Yingbin. The application of ballistic filtering theory in the production of firing tables. Journal of Ballistics, 7(1):65–70, 1995. (in Chinese)
[26] W. Liang, B. Jiang, and Y. Sa. The application of simple regression method in producing the curve of accommodation coefficient in test for firing table. Journal of of Shanxi Datong University (Natural Science Edition), 26(1):23–25, 2010. (in Chinese)
[27] C. Xinjun. A study of fitting method for making ground artillery firing tables. Journal of Ballistics, 9(2):76–79, 1997. (in Chinese)
[28] W.-Q. Huang. A series of base functions for global analytical approach to firing table. Applied Mathematics and Mechanics, 2(5):575–579, 1981. doi: 10.1007/bf01895460.
[29] N.P. Roberts. Ballistic analysis of firing table data for 155mm, M825 smoke projectile. Report No. BRL-MR-3865, Army Ballistic Research Lab., Aberdeen Proving Ground, MD, U.S., September 1990.
[30] S. Wu, Q. Kang, L. Fu, and X. Jinxiang. A study on comparing test and its application on the firing table design. Journal of Ballistics, 15(4):22–26, 2003. (in Chinese)
[31] S. Floroff and B. Salatino. 120-MM Ammunition Feasibility Assessment for Light Artillery. Report No. ARFSD TR 99002, U.S Army Armament Reseach, Development and Engineering Center, NJ, USA, March 2000.
[32] D.L. Johnson, B.C. Roberts, and W.W. Vaughan. Reference and standard atmosphere models. In Proceedings of the 10th Conference on Aviation, Range and Aerospace Meteorology, Boston, USA, 13–16 May, 2002.
[33] V. Cech and J. Jevicky. Improved theory of generalized meteo-ballistic weighting factor functions and their use. Defence Technology, 12(3):242–254, 2016. doi: 10.1016/j.dt.2016.01.009.
[34] V. Cech and J. Jevicky. Improved theory of projectile trajectory reference heights as characteristics of meteo-ballistic sensitivity functions. Defence Technology, 13(3):177–187, 2017. doi: 10.1016/j.dt.2017.04.001.
[35] G.E. Wood. Test Design Plan (TDP) for the Production Qualification Testing (PQT) of the 81mm M984/M983 High Explosive (HE) Cartridges. Report No. AD-A257 403, U.S Army Materiel Systems Analysis Activity, Aberdeen Proving Ground, MD, U.S., October 1992.
[36] W. Haifeng, W. Pengxin, W. Long, and D. Lijie. Discussion on the revision of artillery standard firing conditions of our army. Journal of Projectiles, Rockets, Missiles and Guidance, 37(4):153–156, 2017. (in Chinese)
[37] FT-122-2A18: Firing Tables for Cannon, 122mm Howitzer, 2A18. Former Soviet Union, 1968.
[38] S. Karel and B. Martin. Conversions of METB3 meteorological messages into the METEO11 format. In Proceedings of the 2017 International Conference on Military Technologies (ICMT), pages 278-284, Brno, Czech Republic, 31 May - 2 Jun, 2017. doi: 10.1109/MILTECHS.2017.7988770.
[39] FT-155-AM-2: Firing Tables for Cannon, 155mm Howitzer, M185. US Department of the Army, 1983.
[40] Manual of the ICAO Standard Atmosphere: Extended to 80 Kilometres. International Civil Aviation Organization, 1993.
[41] K. Šilinger, L. Potužák, and J. Šotnar. Conversion of the METCM into the METEO-11. In Proceedings of the 13th International Conference on Instrumentation, Measurement, Circuits And Systems (IMCAS '14), pages 212–218, Istanbul, Turkey, 15–17 December, 2014.
[42] Š. Karel, I. Jan, and P. Ladislav. Composition of the METEO11 meteorological message according to abstract of a measured meteorological data. In Proceedings of the 2017 International Conference on Military Technologies (ICMT), pages 194–199, Brno, Czech Republic, 31 May - 2 Jun, 2017. doi: 10.1109/MILTECHS.2017.7988755.
[43] NATO. Adoption of Standard Ballistic Meteorological Message. Standard No. STANAG 4061, NATO Standardization Agency, Belgium, October 2000.
[44] B. Karpov and L. Schmidt. The Aerodynamic Properties of the 155-mm Shell M101 from Free flight Range Tests of Full Scale and 1/12 Scale Models. Report No. BRL-MR-1582, Army Ballistic Research Lab., Aberdeen Proving Ground, MD, U.S., June 1964.
[45] M. Khalil, H. Abdalla, and O. Kamal. Dispersion analysis for spinning artillery projectile. In Proceeding of the 13th International Conference on Aerospace Sciences and Aviation Technology, pages 1-12, Cairo, Egypt, 26–28 May, 2009. doi: 10.21608/asat.2009.23740.
Przejdź do artykułu

Autorzy i Afiliacje

Mostafa Khalil
1
ORCID: ORCID

  1. Aerospace Engineering Department, Military Technical College, Cairo, Egypt
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Thermally induced free vibration of sandwich beams with porous functionally graded material core embedded between two isotropic face sheets is investigated in this paper. The core, in which the porosity phase is evenly or unevenly distributed, has mechanical properties varying continuously along with the thickness according to the power-law distribution. Effects of shear deformation on the vibration behavior are taken into account based on both third-order and quasi-3D beam theories. Three typical temperature distributions, which are uniform, linear, and nonlinear temperature rises, are supposed. A mesh-free approach based on point interpolation technique and polynomial basis is utilized to solve the governing equations of motion. Examples for specific cases are given, and their results are compared with predictions available in the literature to validate the approach. Comprehensive studies are carried out to examine the effects of the beam theories, porosity distributions, porosity volume fraction, temperature rises, temperature change, span-to-height ratio, different boundary conditions, layer thickness ratio, volume fraction index on the vibration characteristics of the beam.
Przejdź do artykułu

Bibliografia

[1] D.K. Jha, T. Kant, and R.K. Singh. A critical review of recent research on functionally graded plates. Composite Structures, 96:833–849, 2013. doi: 10.1016/j.compstruct.2012.09.001.
[2] A.S. Sayyad and Y.M. Ghugal. Modeling and analysis of functionally graded sandwich beams: a review. Mechanics of Advanced Materials and Structures, 26(21):1776–1795, 2019. doi: 10.1080/15376494.2018.1447178.
[3] A. Paul and D. Das. Non-linear thermal post-buckling analysis of FGM Timoshenko beam under non-uniform temperature rise across thickness. Engineering Science Technology, an International Journal, 19(3):1608–1625, 2016. doi: 10.1016/j.jestch.2016.05.014.
[4] A. Fallah and M.M. Aghdam. Thermo-mechanical buckling and nonlinear free vibration analysis of functionally graded beams on nonlinear elastic foundation. Composites Part B: Engineering, 43 (3):1523–1530, 2012. doi: 10.1016/j.compositesb.2011.08.041.
[5] A.I. Aria and M.I. Friswell. Computational hygro-thermal vibration and buckling analysis of functionally graded sandwich microbeams. Composites Part B: Engineering, 165:785–797, 2019. doi: 10.1016/j.compositesb.2019.02.028.
[6] S.E. Esfahani, Y. Kiani, and M.R. Eslami. Non-linear thermal stability analysis of temperature dependent FGM beams supported on non-linear hardening elastic foundations. International Journal of Mechanical Sciences, 69:10–20, 2013. doi: 10.1016/j.ijmecsci.2013.01.007.
[7] M. Lezgy-Nazargah. Fully coupled thermo-mechanical analysis of bi-directional FGM beams using NURBS isogeometric finite element approach. Aerospace Science and Technology, 45:154–164, 2015. doi: 10.1016/j.ast.2015.05.006.
[8] L.C. Trinh, T.P. Vo, H.-T. Thai, and T.-K. Nguyen. An analytical method for the vibration and buckling of functionally graded beams under mechanical and thermal loads. Composites Part B: Engineering, 100:152–163, 2016. doi: 10.1016/j.compositesb.2016.06.067.
[9] T.-K. Nguyen, B.-D. Nguyen, T.P. Vo, and H.-T. Thai. Hygro-thermal effects on vibration and thermal buckling behaviours of functionally graded beams. Composite Structures, 176:1050–1060, 2017. doi: 10.1016/j.compstruct.2017.06.036.
[10] P. Malekzadeh and S. Monajjemzadeh. Dynamic response of functionally graded beams in a thermal environment under a moving load. Mechanics of Advanced Materials and Structures, 23(3):248– 258, 2016. doi: 10.1080/15376494.2014.949930.
[11] N. Wattanasakulpong, B. Gangadhara Prusty, and D.W. Kelly. Thermal buckling and elastic vibration of third-order shear deformable functionally graded beams. International Journal of Mechanical Sciences, 53(9):734–743, 2011. doi: 10.1016/j.ijmecsci.2011.06.005.
[12] S.C. Pradhan and T. Murmu. Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method. Journal of Sound and Vibration, 321(1- 2):342–362, 2009. doi: 10.1016/j.jsv.2008.09.018.
[13] G.-L. She, F.-G. Yuan, and Y.-R. Ren. Thermal buckling and post-buckling analysis of functionally graded beams based on a general higher-order shear deformation theory. Applied Mathematical Modelling, 47:340–357, 2017. doi: 10.1016/j.apm.2017.03.014.
[14] H.-S. Shen and Z.-X. Wang. Nonlinear analysis of shear deformable FGM beams resting on elastic foundations in thermal environments. International Journal of Mechanical Sciences, 81:195–206, 2014. doi: 10.1016/j.ijmecsci.2014.02.020.
[15] T.T. Tran, N.H. Nguyen, T.V. Do, P.V. Minh, and N.D. Duc. Bending and thermal buckling of unsymmetric functionally graded sandwich beams in high-temperature environment based on a new third-order shear deformation theory. Journal of Sandwich Structures & Materials, 23(3):906–930, 2021. doi: 10.1177/1099636219849268.
[16] A.R. Setoodeh, M. Ghorbanzadeh, and P. Malekzadeh. A two-dimensional free vibration analysis of functionally graded sandwich beams under thermal environment. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 226(12):2860–2873, 2012. doi: 10.1177/0954406212440669.
[17] L. Chu, G. Dui, and Y. Zheng. Thermally induced nonlinear dynamic analysis of temperature-dependent functionally graded flexoelectric nanobeams based on nonlocal simplified strain gradient elasticity theory. European Journal of Mechanics - A/Solids, 82:103999, 2020. doi: 10.1016/j.euromechsol.2020.103999.
[18] Y. Fu, J. Wang, and Y. Mao. Nonlinear analysis of buckling, free vibration and dynamic stability for the piezoelectric functionally graded beams in thermal environment. Applied Mathematical Modelling, 36(9):4324–4340, 2012. doi: 10.1016/j.apm.2011.11.059.
[19] W.-R. Chen, C.-S. Chen, and H. Chang. Thermal buckling analysis of functionally graded Euler-Bernoulli beams with temperature-dependent properties. Journal of Applied and Computational Mechanics, 6(3):457–470, 2020. doi: 10.22055/JACM.2019.30449.1734.
[20] N. Wattanasakulpong and V. Ungbhakorn. Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities. Aerospace Science and Technology, 32(1):111–120, 2014. doi: 10.1016/j.ast.2013.12.002.
[21] N. Wattanasakulpong and A. Chaikittiratana. Flexural vibration of imperfect functionally graded beams based on Timoshenko beam theory: Chebyshev collocation method. Meccanica, 50(5):1331– 1342, 2015. doi: 10.1007/s11012-014-0094-8.
[22] D. Shahsavari, M. Shahsavari, L. Li, and B. Karami. A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation. Aerospace Science and Technology, 72:134–149, 2018. doi: 0.1016/j.ast.2017.11.004.
[23] Z. Ibnorachid, L. Boutahar, K. EL Bikri, and R. Benamar. Buckling temperature and natural frequencies of thick porous functionally graded beams resting on elastic foundation in a thermal environment. Advances in Acoustics and Vibration, 2019:7986569, 2019. doi: 10.1155/2019/7986569.
[24] Ş.D. Akbaş. Thermal effects on the vibration of functionally graded deep beams with porosity. International Journal of Applied Mechanics, 9(5):1750076, 2017. doi: 10.1142/ S1758825117500764.
[25] H. Babaei, M.R. Eslami, and A.R. Khorshidvand. Thermal buckling and postbuckling responses of geometrically imperfect FG porous beams based on physical neutral plane. Journal of Thermal Stresses, 43(1):109–131, 2020. doi: 10.1080/01495739.2019.1660600.
[26] F. Ebrahimi and A. Jafari. A higher-order thermomechanical vibration analysis of temperature-dependent FGM beams with porosities. Journal of Engineering, 2016:9561504, 2016. doi: 10.1155/2016/9561504.
[27] Y. Liu, S. Su, H. Huang, and Y. Liang. Thermal-mechanical coupling buckling analysis of porous functionally graded sandwich beams based on physical neutral plane. Composites Part B: Engineering, 168:236–242, 2019. doi: 10.1016/j.compositesb.2018.12.063.
[28] S.S. Mirjavadi, A. Matin, N. Shafiei, S. Rabby, and B. Mohasel Afshari. Thermal buckling behavior of two-dimensional imperfect functionally graded microscale-tapered porous beam. Journal of Thermal Stresses, 40(10):1201–1214, 2017. doi: 0.1080/01495739.2017.1332962.
[29] E. Salari, S.A. Sadough Vanini, A.R. Ashoori, and A.H. Akbarzadeh. Nonlinear thermal behavior of shear deformable FG porous nanobeams with geometrical imperfection: Snap-through and postbuckling analysis. International Journal of Mechanical Sciences, 178:105615, 2020. doi: 10.1016/j.ijmecsci.2020.105615.
[30] N. Ziane, S.A. Meftah, G. Ruta, and A. Tounsi. Thermal effects on the instabilities of porous FGM box beams. Engineering Structures, 134:150–158, 2017. doi: 10.1016/j.engstruct. 2016.12.039.
[31] A.I. Aria, T. Rabczuk, and M.I. Friswell. A finite element model for the thermo-elastic analysis of functionally graded porous nanobeams. European Journal of Mechanics - A/Solids, 77:103767, 2019. doi: 10.1016/j.euromechsol.2019.04.002.
[32] G.R. Liu and Y.T. Gu. A point interpolation method for two-dimensional solids. International Journal for Numerical Methods in Engineering, 50(4):937–951, 2001. doi: 10.1002/1097-0207(20010210)50:4937::AID-NME62>3.0.CO;2-X.
[33] Y.T. Gu and G.R. Liu. A local point interpolation method for static and dynamic analysis of thin beams. Computer Methods in Applied Mechanics and Engineering, 190(42):5515–5528, 2001. doi: 10.1016/S0045-7825(01)00180-3.
[34] T.H. Chinh, T.M. Tu, D.M. Duc, and T.Q. Hung. Static flexural analysis of sandwich beam with functionally graded face sheets and porous core via point interpolation meshfree method based on polynomial basic function. Archive of Applied Mechanics, 91:933–947, 2021. doi: 10.1007/s00419-020-01797-x.
[35] J.N. Reddy and C.D. Chin. Thermomechanical analysis of functionally graded cylinders and plates. Journal of Thermal Stresses, 21(6):593–626, 1998. doi: 10.1080/01495739808956165.
[36] H.-S. Shen. Functionally Graded Materials: Nonlinear Analysis of Plates and Shells. CRC Press, 2016. doi: 10.1201/9781420092578.
[37] T.-K. Nguyen, T.P. Vo, B.-D. Nguyen, and J. Lee. An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory. Composite Structures, 156:238–252, 2016. doi: 10.1016/j.compstruct.2015.11.074.
[38] M. Şimşek. Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories. Nuclear Engineering and Design, 240(4):697–705, 2010. doi: 10.1016/j.nucengdes.2009.12.013.
[39] J.N. Reddy. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. 2nd ed. CRC Press, 2003.
[40] G.R. Liu. Meshfree Methods: Moving Beyond the Finite Element Method. 2nd ed. Taylor & Francis, 2009. doi: 10.1201/9781420082104.
[41] G.R. Liu, Y.T. Gu, and K.Y. Dai. Assessment and applications of point interpolation methods for computational mechanics. International Journal for Numerical Methods in Engineering, 59(10):1373– 1397, 2004. doi: 10.1002/nme.925.
[42] T.P. Vo, H.-T. Thai, T.-K. Nguyen, F. Inam, and J. Lee. A quasi-3D theory for vibration and buckling of functionally graded sandwich beams. Composite Structures, 119:1–12, 2015. doi: 10.1016/j.compstruct.2014.08.006.
Przejdź do artykułu

Autorzy i Afiliacje

Tran Quang Hung
1
Tran Minh Tu
2
ORCID: ORCID
Do Minh Duc
1

  1. Faculty of Civil Engineering, The University of Da Nang - University of Science and Technology, Da Nang, Vietnam
  2. Hanoi University of Civil Engineering, Hanoi, Vietnam
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The aim of this work is to design the links‒spring mechanism for balancing, in the three positions of the operating range, a rotary disc subjected to a torque. An energy-related approach towards the conditions of the mechanical system balance for a discrete number of positions leads to the formulation of a task of searching for a four-bar linkage which guides a coupler point through the prescribed positions, where, at the same time, geometrical conditions (specifying the spring tension) and kinematic conditions (defining the radial component of the tension change rate) are satisfied. The finitely and infinitesimally separated position synthesis is considered, however, only a component of the coupler point velocity is essential. A general method was proposed for determining the four-bar mechanism geometry. Mechanism inversion was applied in order to reduce the number of designed variables and simplify the solution method. The system of complex algebraic equations defines the problem. Linear, symbolic transformations and a systematic search technique are utilized to find multiple local optimal solutions. The problem is solved using Mathematica software.
Przejdź do artykułu

Bibliografia

[1] V.H. Arakelian and S. Briot. Balancing of Linkages and Robot Manipulators. Advanced Methods with Illustrative Examples. Springer, 2015.
[2] P. Wang and Q. Xu. Design and modeling of constant-force mechanisms: A survey. Mechanism and Machine Theory, 119:1–21, 2018. doi: 10.1016/j.mechmachtheory.2017.08.017.
[3] V. Arakelian and M. Mkrtchyan. Design of scotch yoke mechanisms with balanced input torque. In Proceedings of the ASME 2015 International Design Engineering Technical Conferences \amp Computers and Information in Engineering Conference IDETC/CIE 2015, pages 1–5, Boston, Massachusetts, USA, 2–5 August, 2015. doi: 10.1115/DETC2015-46709.
[4] J.A. Franco, J.A. Gallego, and J.L. Herder. Static balancing of four-bar compliant mechanisms with torsion springs by exerting negative stiffness using linear spring at the instant center of rotation. Journal of Mechanisms and Robotics, 13(3):031010–13, 2021. doi: 10.1115/1.4050313.
[5] B. Demeulenaere and J. De Schutter. Input torque balancing using an inverted cam mechanism. Journal of Mechanical Design, 127(5):887–900, 2005. doi: 10.1115/1.1876452.
[6] D.A. Streit and E. Shin. Equilibrators for planar linkages. Journal of Mechanical Design, 115(3):604–611, 1993. doi: 10.1115/1.2919233.
[7] Y. Liu, D.P. Yu, and J. Yao. Design of an adjustable cam based constant force mechanism. Mechanism and Machine Theory, 103:85–97, 2016. doi: 10.1016/j.mechmachtheory.2016.04.014.
[8] J.L. Herder. Design of spring force compensation systems. Mechanism and Machine Theory, 33(1-2):151–161, 1998. doi: 10.1016/S0094-114X(97)00027-X.
[9] S.R. Deepak and G.K. Ananthasuresh. Static balancing of a four-bar linkage and its cognates. Mechanism and Machine Theory, 4:62–80, 2012. doi: 10.1016/j.mechmachtheory.2011.09.009.
[10] S. Perreault, P. Cardou, and C. Gosselin. Approximate static balancing of a planar parallel cable-driven mechanism based on four-bar linkages and springs. Mechanism and Machine Theory, 79:64–79, 2014. doi: 10.1016/j.mechmachtheory.2014.04.008.
[11] J. Buśkiewicz. The optimum distance function method and its application to the synthesis of a gravity balanced hoist. Mechanism and Machine Theory, 139:443–459, 2019. doi: 10.1016/j.mechmachtheory.2019.05.006.
[12] V.L. Nguyen. A design approach for gravity compensators using planar four-bar mechanisms and a linear spring. Mechanism and Machine Theory, 172:104770, 2022. doi: 10.1016/j.mechmachtheory.2022.104770.
[13] R. Barents, M. Schenk, W.D. van Dorsser, B.M. Wisse, and J.L. Herder. Spring-to-spring balancing as energy-free adjustment method in gravity equilibrators. Journal of Mechanical Design, 133(6):689–700, 2011. doi: 10.1115/DETC2009-86770.
[14] I. Simionescu and L. Ciupitu. The static balancing of the industrial robot arms, Part I: discrete balancing. Mechanism and Machine Theory, 35(9):1287–1298, 2001. doi: 10.1016/S0094-114X(99)00067-1.
[15] A.G. Erdman and G.N. Sandor. Mechanism Design: Analysis and Synthesis, Vol. 1, 4th ed., Prentice-Hall, Upper Saddle River, NJ, 2001.
[16] G.N. Sandor and A.G. Erdman. Advanced Mechanism Design: Analysis and Synthesis, Vol. 2, Prentice Hall, Englewood Cliffs, NJ, 1997.
[17] J.M. McCarthy and G.S. Soh. Geometric Design of Linkages, Vol. 11, Springer, New York, 2011.
[18] H. Kaustubh, J. Sonawale, and J.M. McCarthy. A design system for six-bar linkages integrated with a solid modeler. Journal of Computing and Information Science in Engineering, 15(4):041002, 2015. doi: 10.1115/1.4030940.
[19] J. Han and W. Liu. On the solution of eight-precision-point path synthesis of planar four-bar mechanisms based on the solution region methodology. Journal of Mechanisms and Robotics, 11(6):064504, 2019. doi: 10.1115/1.4044544.
[20] C.W. Wampler, A.P. Morgan, and A.J. Sommese. Complete solution of the nine-point path synthesis problem for four-bar linkages. Journal of Mechanical Design, 114(1):153–159, 1992. doi: 10.1115/1.2916909.
[21] W. Guo and X. Wang. Planar linkage mechanism design for bi-objective of trajectory and velocity. J Beijing Univ Aero Astronautics, 35(12):1483–1486, 2009.
[22] J. Han, W. Qian, and H. Zhao. Study on synthesis method of $\lambda$-formed 4-bar linkages approximating a straight line. Mechanism and Machine Theory, 44(1):57–65, 2009. doi: 10.1016/j.mechmachtheory.2008.02.011.
[23] J.E. Holte, T.R. Chase, and A.G. Erdman. Approximate velocities in mixed exact-approximate position synthesis of planar mechanisms. Journal of Mechanical Design, 123(3):388–394, 2001. doi: 10.1115/1.1370978.
[24] W.T. Lee and K. Russell. Developments in quantitative dimensional synthesis (1970–present): Four-bar path and function generation. Inverse Problems in Science and Engineering, 26(9):1280–1304, 2017. doi: 10.1080/17415977.2017.1396328.
[25] C. Wampler and A. Sommese, Numerical algebraic geometry and algebraic kinematics. Acta Numerica, 20:469–567, 2011. doi: 10.1017/S0962492911000067.
[26] D.A. Brake, J.D. Hauenstein, A.P. Murray, D.H. Myszka, and C.W. Wampler. The complete solution of alt-burmester synthesis problems for four-bar linkages. Journal of Mechanisms and Robotics, 8(4): 041018, 2016. doi: 10.1115/1.4033251.
[27] J. Buśkiewicz, 2019, Gravity balancing of a hoist by means of a four-bar linkage and spring. In: Advances in Mechanism and Machine Science: Proceedings of the 15th IFToMM World Congress on Mechanism and Machine Science, pages 1721–1730, Cracow, Poland, June, 2019. doi: 10.1007/978-3-030-20131-9_170.
[28] J. Buśkiewicz. Solution data, the code of algorithm 6dv2s_II in Mathematica wolfram 8.0 and pdf file of the code, the figures of the spring extensions and the rates of the spring extensions for all the cases. Mendeley Data, V3, 2022, https://data.mendeley.com/datasets/sb38dsw6vm/3.
Przejdź do artykułu

Autorzy i Afiliacje

Jacek Buśkiewicz
1
ORCID: ORCID

  1. Poznan University of Technology, Poznan, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

This study developed an ankle rehabilitation device for post-stroke patients. First, the research models and dynamic equations of the device are addressed. Second, the Sliding Mode Controller for the ankle rehabilitation device is designed, and the device's response is simulated on the software MATLAB. Third, the ankle rehabilitation device is successfully manufactured from aluminum and uses linear actuators to emulate dorsiflexion and plantarflexion exercises for humans. The advantages of the device are a simple design, low cost, and mounts onto rehabilitative equipment. The device can operate fast through experiments, has a foot drive mechanism overshoot of 0°, and a maximum angle error of 1°. Moreover, the rehabilitation robot can operate consistently and is comfortable for stroke patients to use. Finally, we will fully develop the device and proceed to clinical implementation.
Przejdź do artykułu

Bibliografia

[1] E. Osayande, K.P. Ayodele, M.A. Komolafe. Development of a robotic hand orthosis for stroke patient rehabilitation. International Journal of Online and Biomedical Engineering, 16(13):142–149, 2020. doi: 10.3991/ijoe.v16i13.13407.
[2] Z. Yue, X. Zhang, and J. Wang. Hand Rehabilitation robotics on poststroke motor recovery. Behavioural Neurology, 2017:3908135, 2017. doi: 10.1155/2017/3908135.
[3] C. Grefkes and G.R. Fink. Recovery from stroke: current concepts and futures perspectives. Neurological Research and Practice, 2(1):17, 2020. doi: 10.1186/s42466-020-00060-6.
[4] R. Gassert and V. Dietz. Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective. Journal of NeuroEngineering and Rehabilitation, 15:46, 2018. doi: 10.1186/s12984-018-0383-x.
[5] S.H. Hayes and S.R. Carroll. Early intervention care in the acute stroke patient. Archives of Physical Medicine and Rehabilitation, 67(5):319–321, 1986.
[6] D.U. Jette, R.L. Warren, and C. Wirtalla. The relation between therapy intensity and outcomes of rehabilitation in skilled nursing facilities. Archives of Physical Medicine and Rehabilitation, 86(3):373–379, 2005. doi: 10.1016/j.apmr.2004.10.018.
[7] Z. Zhou and Q. Wang. Concept and prototype design of a robotic ankle-foot rehabilitation system with passive mechanism for coupling motion. 2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), pages 1002–1005, Suzhou, China, 29 July -2 August, 2019. doi: 10.1109/cyber46603.2019.9066745.
[8] C.M. Racu and I. Doroftei. An overview on ankle rehabilitation devices. Advanced Materials Research, 1036:781–786, 2014. doi: 10.4028/www.scientific.net/amr.1036.781.
[9] A.A. Blank, J.A. French, A.U. Pehlivan, and M.K. O'Malley. Rehabilitation: Current trends in robot-assisted upper-limb stroke rehabilitation: promoting patient engagement in therapy. Current Physical Medicine and Rehabilitation Reports, 2(3):184–195, 2014.
[10] Z. Liao, L. Yao, Z. Lu, and J. Zhang. Screw theory based mathematical modeling and kinematic analysis of a novel ankle rehabilitation robot with a constrained 3-PSP mechanism topology. International Journal of Intelligent Robotics and Applications, 2(3):351–360, 2018. doi: 10.1007/s41315-018-0063-9.
[11] C.C.K. Lin, M.S. Ju, S.M. Chen, and B.W. Pan. A specialized robot for ankle rehabilitation and evaluation. Journal of Medical and Biological Engineering, 28(2):79–86, 2008.
[12] Z. Sun et al. Mechanism Design and ADAMS-MATLAB-Simulation of a Novel Ankle Rehabilitation Robot. 2019 IEEE International Conference on Robotics and Biomimetic (ROBIO), pages 425–432, Dali, China, December, 2019. doi: 10.1109/robio49542.2019.8961829.
[13] Q. Liu, A. Liu, W. Meng, Q. Ai, and S.Q. Xie. Hierarchical compliance control of a soft ankle rehabilitation robot actuated by pneumatic muscles. Frontiers in Neurorobotics, 11:64, 2017. doi: 10.3389/fnbot.2017.00064.
[14] T. Yonezawa, K. Nomura, T. Onodera, S. Ishimura, H. Mizoguchi, and H. Takemura. Evaluation of venous return in lower limb by passive ankle exercise performed by PHARAD. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 3582–3585, Milan, Italia, 25–29 August, 2015. doi: 10.1109/embc.2015.7319167.
[15] Ye Ding, M. Sivak, B. Weinberg, C. Mavroidis, and M.K. Holden. NUVABAT: Northeastern university virtual ankle and balance trainer. 2010 IEEE Haptics Symposium, pages 509–514, Waltham, Massachusetts, USA, 25–26 March, 2010. doi: 10.1109/haptic.2010.5444608.
[16] D. Ao, R. Song, and J. Gao. Movement performance of human–robot cooperation control based on emg-driven hill-type and proportional models for an ankle power-assist exoskeleton robot. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(8):1125–1134, 2017. doi: 10.1109/tnsre.2016.2583464.
[17] Y. Ren, Y.-N. Wu, C.-Y. Yang, T. Xu, R. L. Harvey, and L.-Q. Zhang. Developing a wearable ankle rehabilitation robotic device for in-bed acute stroke rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(6):589–596, 2017. doi: 10.1109/tnsre.2016.2584003.
[18] G. Aguirre-Ollinger, J.E. Colgate, M.A. Peshkin, and A. Goswami. Design of an active one-degree-of-freedom lower-limb exoskeleton with inertia compensation. The International Journal of Robotics Research, 30(4):486–499, 2011. doi: 10.1177/0278364910385730.
[19] Z. Zhou, Y. Sun, N. Wang, F. Gao, K. Wei, and Q. Wang. Robot-assisted rehabilitation of ankle plantar flexors spasticity: a 3-month study with proprioceptive neuromuscular facilitation. Frontiers in Neurorobotics, 10:16, 2016. doi: 10.3389/fnbot.2016.00016.
[20] I. Doroftei, C.M. Racu, C. Honceriu, and D. Irimia. One-degree-of freedom ankle rehabilitation platform. IOP Conference Series: Materials Science and Engineering, 591:012076, 2019. doi: 10.1088/1757-899x/591/1/012076.
[21] A. Gmerek and E. Jezierski. Admittance control of a 1-DoF robotic arm actuated by BLDC motor. 2012 17th International Conference on Methods & Models in Automation & Robotics (MMAR), pages 633–638, Miedzyzdroje, Poland, 27–30 August, 2012. doi: 10.1109/mmar.2012.6347811.
[22] Ł. Woliński. Comparison of the adaptive and neural network control for LWR 4+ manipulators: simulation study. Archive of Mechanical Engineering, 67(1):111–121, 2020. doi: 10.24425/ame.2020.131686.
[23] Meera C S, M.K. Gupta, and S. Mohan. Disturbance observer-assisted hybrid control for autonomous manipulation in a robotic backhoe. Archive of Mechanical Engineering, 66(2):153–169, 2019. doi: 10.24425/ame.2019.128442.
[24] O. Jedda, J. Ghabi and A. Douik. Sliding mode control of an inverted pendulum. In: Derbel N., Ghommam J., Zhu Q. (eds), Applications of Sliding Mode Control. Studies in Systems, Decision and Control, chapter 6:105–118, 2016, Springer. doi: 10.1007/978-981-10-2374-3_6.
[25] S. Singh, M.S. Qureshi, and P. Swarnkar. Comparison of conventional PID controller with sliding mode controller for a 2-link robotic manipulator. 2016 International Conference on Electrical Power And Energy System (ICEPES), pages 115–119, Bhopal, India, 14-16 December, 2016. doi: 10.1109/icepes.2016.7915916.
[26] P. Boscariol and D. Richiedei. Trajectory design for energy savings in redundant robotic cells. Robotics, 8(1):15, 2019. doi: 10.3390/robotics8010015.
[27] M. Adolphe, J. Clerval, Z. Kirchof, R. Lacombe-Delpech, and B. Zagrodny. Center of mass of human's body segments, Mechanics and Mechanical Engineering, 21(3):485–497, 2017.
[28] T. Eiammanussakul and V. Sangveraphunsiri. A lower limb rehabilitation robot in sitting position with a review of training activities. Journal of Healthcare Engineering, 2018:927807, 2018. doi: 10.1155/2018/1927807.
[29] A. Roy, H.I. Krebs, C.T. Bever, L.W. Forrester, R.F. Macko, and N. Hogan. Measurement of passive ankle stiffness in subjects with chronic hemiparesis using a novel ankle robot. Journal of Neurophysiology, 105(5):2132–2149, 2011. doi: 10.1152/jn.01014.2010.
[30] F. Gao, Y. Ren, E.J. Roth, R. Harvey, and L.-Q. Zhang. Effects of repeated ankle stretching on calf muscle–tendon and ankle biomechanical properties in stroke survivors. Clinical Biomechanics, 26(5):516–522, 2011. doi: 10.1016/j.clinbiomech.2010.12.003.
[31] G. Bucca, A. Bezzolato, S. Bruni and F. Molteni. A Mechatronic Device for the Rehabilitation of Ankle Motor Function. Journal of Biomechanical Engineering, 131(12):125001, 2009. doi: 10.1115/1.4000083.
[32] J. Zhong, Y. Zhu, C. Zhao, Z. Han, and X. Zhang. Position tracking of a pneumatic-muscle-driven rehabilitation robot by a single neuron tuned pid controller. Complexity, 2020:438391, 2020. doi: 10.1155/2020/1438391.
Przejdź do artykułu

Autorzy i Afiliacje

Minh Duc Dao
1
ORCID: ORCID
Xuan Tuy Tran
2
Dang Phuoc Pham
1
Quoc Anh Ngo
1
Thi Thuy Tram Le
3

  1. Faculty Technology and Engineering, The Pham Van Dong University, Quang Ngai, Vietnam
  2. Faculty Technology of Mechanical Engineering, The University of Danang – University of Science and Technology, Danang, Vietnam
  3. The Faculty Electronic-Electrical, The Quang Nam College, Quang Nam, Vietnam
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Thermal error always exists in a machine tool and accounts for a large part of the total error in the machine. Thermal displacement in X-axis on a CNC lathe is controlled based on a rapid heating system. Positive Temperature Coefficient (PTC) heating plates are installed on the X-axis of the machine. A control temperature system is constructed for rapid heating which further helps the thermal displacement to quickly reach stability. The system then continuously maintains stable compensation of the thermal error. The presented rapid heating technique is simpler than the compensation of machine thermal errors by interference in the numerical control system. Results show that the steady state of the thermal displacement in the X-axis can be acquired in a shorter time. In addition, almost all thermal errors in constant and varying working conditions could be significantly reduced, by above 80% and 60%, respectively, compared to those without using the rapid heating. Therefore, the proposed method has a high potential for application on the CNC lathe machine for improving its precision.
Przejdź do artykułu

Bibliografia

[1] J. Bryan. International status of thermal error research. CIRP Annals, 39(2):645–656, 1990. doi: 10.1016/S0007-8506(07)63001-7.
[2] J. Mayr, J. Jedrzejewski, E. Uhlmann, M. Alkan Donmez, W. Knapp, F. Härtig, et al. Thermal issues in machine tools. CIRP Annals, 61(2):771–791, 2012. doi: 10.1016/j.cirp.2012.05.008.
[3] H. Wang, F. Li, Y. Cai, Y. Liu, and Y. Yang. Experimental and theoretical analysis of ball screw under thermal effect. Tribology International, 152:106503, 2020. doi: 10.1016/j.triboint.2020.106503.
[4] C. Jin, B. Wu, and Y. Hu. Heat generation modeling of ball bearing based on internal load distribution. Tribology International, 45(1):8–15, 2012. doi: 10.1016/j.triboint.2011.08.019.
[5] J. Liu, C. Ma, S. Wang, S. Wang, B. Yang, and H. Shi. Thermal boundary condition optimization of ball screw feed drive system based on response surface analysis. Mechanical Systems and Signal Processing, 121:471–495, 2019. doi: 10.1016/j.ymssp.2018.11.042.
[6] C.-H. Wu and Y.-T. Kung. Thermal analysis for the feed drive system of a CNC machine center. International Journal of Machine Tools and Manufacture, 43(15):1521–1528, 2003. doi: 10.1016/j.ijmachtools.2003.08.008.
[7] H. Shi, C. Ma, J. Yang, L. Zhao, X. Mei, and G. Gong. Investigation into effect of thermal expansion on thermally induced error of ball screw feed drive system of precision machine tools. International Journal of Machine Tools and Manufacture, 97:60–71, 2015. doi: 10.1016/j.ijmachtools.2015.07.003.
[8] W.S. Yun, S.K. Kim, and D.W. Cho. Thermal error analysis for a CNC lathe feed drive system. International Journal of Machine Tools and Manufacture, 39:1087–1101, 1999. doi: 10.1016/S0890-6955(98)00073-X.
[9] H. Shi, B. He, Y. Yue, C. Min, and X. Mei. Cooling effect and temperature regulation of oil cooling system for ball screw feed drive system of precision machine tool. Applied Thermal Engineering, 161:114150, 2019. doi: 10.1016/j.applthermaleng.2019.114150.
[10] Z.Z. Xu, X.J. Liu, H.K. Kim, J.H. Shin, and S.K. Lyu. Thermal error forecast and performance evaluation for an air-cooling ball screw system. International Journal of Machine Tools and Manufacture, 51(7-8):605–611, 2011. doi: 10.1016/j.ijmachtools.2011.04.001.
[11] S.-C. Huang. Analysis of a model to forecast thermal deformation of ball screw feed drive systems. International Journal of Machine Tools and Manufacture, 35,(8):1099–1104, 1995. doi: 10.1016/0890-6955(95)90404-A.
[12] T.-J. Li, J.-H. Yuan, Y.-M. Zhang, and C.-Y. Zhao. Time-varying reliability prediction modeling of positioning accuracy influenced by frictional heat of ball-screw systems for CNC machine tools. Precision Engineering, 64:147–156, 2020. doi: 10.1016/j.precisioneng.2020.04.002.
[13] C. Ma, J. Liu, and S. Wang. Thermal error compensation of linear axis with fixed-fixed installation. International Journal of Mechanical Sciences, 175:105531, 2020. doi: 10.1016/j.ijmecsci.2020.105531.
[14] J. Zapłata and M. Pajor. Piecewise compensation of thermal errors of a ball screw driven CNC axis. Precision Engineering, 60:160–166, 2019. doi: 10.1016/j.precisioneng.2019.07.011.
[15] W. Feng, Z. Li, Q. Gu, and J. Yang. Thermally induced positioning error modelling and compensation based on thermal characteristic analysis. International Journal of Machine Tools and Manufacture, 93:26–36, 2015. doi: 10.1016/j.ijmachtools.2015.03.006.
[16] H. Zhou, P. Hu, H. Tan, J. Chen, and G. Liu. Modelling and compensation of thermal deformation for machine tool based on the real-time data of the CNC system. Procedia Manufacturing, 26:1137–1146, 2018. doi: 10.1016/j.promfg.2018.07.150.
[17] A.A. Kendoush. An approximate solution of the convective heat transfer from an isothermal rotating cylinder. International Journal of Heat and Fluid Flow, 17(4):439–441, 1996. doi: 10.1016/0142-727X(95)00002-8.
[18] T.L. Bergman, F.P. Incropera, D.P. DeWitt, and A.S. Lavine. Fundamentals of Heat and Mass Transfer. 7th edition, John Wiley & Sons, 2011.
[19] Z. Li, K. Fan, J. Yang, and Y. Zhang. Time-varying positioning error modeling and compensation for ball screw systems based on simulation and experimental analysis. The International Journal of Advanced Manufacturing Technology, 73:773–782, 2014. doi: 10.1007/s00170-014-5865-9.
[20] J.G. Yang, Y.Q. Ren, and Z.C. Du. An application of real-time error compensation on an NC twin-spindle lathe. Journal of Materials Processing Technology, 129(1-3):474–479, 2002. doi: 10.1016/S0924-0136(02)00618-0.
Przejdź do artykułu

Autorzy i Afiliacje

Van-The Than
1
ORCID: ORCID
Chi-Chang Wang
2
Thi-Thao Ngo
1
Guan-Liang Guo
2

  1. Faculty of Mechanical Engineering, Hung Yen University of Technology and Education, Khoai Chau District, Hung Yen Province, Vietnam
  2. Department of Mechanical and Computer-Adided Engineering, Feng Chia University, Taichung, Taiwan, R.O.C.
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Autonomous manipulation of group objects requires the gripper/robot hand to achieve high productivity without poor outcomes such as object slippage and damage. This article develops the robot hand capable of achieving effective performance in each trial of grasping the group objects. Our proposed robot hand consists of two symmetrical groups of hybrid fingers having soft pads on the grasping interfaces, which operate as a comb. The grasping ability of this robot hand was theoretically and experimentally validated by handling three groups of objects showcases: tea packs, toothbrushes, and mixing sticks.Additionally, validation resultswere compared with those of another soft robot hand having soft Pneunet fingers. In each trial, the experimental results showed that the proposed robot hand with hybrid fingers achieved more stable grasping states characterized by a higher number of grasped objects than those in the case of the soft robot hand. Also, experimental results were in good agreement with the predictions of the proposed theoretical analysis. Finally, better performances of the hybrid robot hand in handling the group object provide the bases for developing a novel-robotic application in industrial production.
Przejdź do artykułu

Bibliografia

[1] D. Rus and M.T. Tolley. Design, fabrication and control of soft robots. Nature, 521:467–475, 2015. doi: 10.1038/nature14543.
[2] S.N. Gorb. Biological attachment devices: exploring nature’s diversity for biomimetics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1870):1557–1574, 2008. doi: 10.1098/rsta.2007.2172.
[3] S. Kim, M. Spenko, S. Trujillo, B. Heyneman, V. Mattoli, and M.R. Cutkosky. Whole body adhesion: hierarchical, directional and distributed control of adhesive forces for a climbing robot. Proceedings 2007 IEEE International Conference on Robotics and Automation (ICRA), pages 1268–1273, 2007. doi: 10.1109/ROBOT.2007.363159.
[4] E. W. Hawkes, H. Jiang, D. L. Christensen, A. K. Han, and M. R. Cutkosky. Grasping without squeezing: Design and modeling of shear-activated grippers. IEEE Transactions on Robotics, 34(2):303–316, 2018. doi: 10.1109/TRO.2017.2776312.
[5] J. Shintake, S. Rosset, B. Schubert, D. Floreano, and H. Shea. Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators. Advanced Materials, 28(2):231–238, 2016. doi: 10.1002/adma.201504264.
[6] B. Mazzolai, A. Mondini, F. Tramacere, G. Riccomi, A. Sadeghi, G. Giordano, E. Del Dottore, M. Scaccia, M. Zampato, and S. Carminati. Octopus-inspired soft arm with suction cups for enhanced grasping tasks in confined environments. Advanced Intelligent Systems, 1(6):1900041, 2019. doi: 10.1002/aisy.201900041.
[7] P.V. Nguyen and V.A. Ho. Grasping interface with wet adhesion and patterned morphology: Case of thin shell. IEEE Robotics and Automation Letters, 4(2):792–799, 2019. doi: 10.1109/LRA.2019.2893401.
[8] D.N. Nguyen, N.L. Ho, T.-P. Dao, and C.N. Le. Multi-objective optimization design for a sand crab-inspired compliant microgripper. Microsystem Technologies, 25, 2019. doi: 10.1007/s00542-019-04331-4.
[9] J. Hughes, U. Culha, F. Giardina, F. Guenther, A. Rosendo, and F. Iida. Soft manipulators and grippers: A review. Frontiers in Robotics and AI, 3:69, 2016. doi: 10.3389/frobt.2016.00069.
[10] Phoung H. Le, Thien P. Do, and Du B. Le. A soft pneumatic finger with different patterned profile. International Journal of Mechanical Engineering and Robotics Research, 10(10):577– 582, 2021. doi: 10.18178/ijmerr.10.10.577-582.
[11] T.-P. Dao,N.L. Ho, T.T. Nguyen, H.G. Le, P.T. Thang, H.-T. Pham, H.-T. Do, M.-D. Tran, and T.T. Nguyen. Analysis and optimization of a micro-displacement sensor for compliant microgripper. Microsystem Technologies, 23:5375–5395, 2017. doi: 10.1007/s00542-017-3378-9.
[12] P.V. Nguyen, Q.K. Luu, Y. Takamura, and V.A. Ho. Wet adhesion of micro-patterned interfaces for stable grasping of deformable objects. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 9213–9219, 2020. doi: 10.1109/IROS45743.2020.9341095.
[13] M. Calisti, M. Giorelli, G. Levy, B. Mazzolai, B. Hochner, C. Laschi, and P. Dario. An octopus-bioinspired solution to movement and manipulation for soft robots. Bioinspiration & Biomimetics, 6(3):036002, 2011. doi: 10.1088/1748-3182/6/3/036002.
[14] K.C. Galloway, K.P. Becker, B. Phillips, J. Kirby, S. Licht, D. Tchernov, R.J. Wood, and D.F. Gruber. Soft robotic grippers for biological sampling on deep reefs. Soft Robotics, 3(1):23–33, 2016. doi: 10.1089/soro.2015.0019.
[15] 2F-85 and 2F-140 Grippers. https://robotiq.com/products/2f85-140-adaptive-robot-gripper.
[16] Forestry Cranes https://marchesigru.com/en/forestry-cranes-2.
[17] H. Hyyti, V.V. Lehtola, and A. Visala. Forestry crane posture estimation with a two-dimensional laser scanner. Journal of Field Robotics, 35(7):1025–1049, 2018. doi: 10.1002/rob.21793.
[18] K.W. Allen. Encyclopedia of Physical Science and Technology – Materials. Elsevier, 2001.
[19] P.V. Nguyen, T.H. Bui, and V.A. Ho. Towards safely grasping group objects by hybrid robot hand. 2021 4th International Conference on Robotics, Control and Automation Engineering (RCAE), pages 389–393, 2021. doi: 10.1109/RCAE53607.2021.9638841.
[20] T.-L. Le, J.-C. Chen, F.-S. Hwu, and H.-B. Nguyen. Numerical study of the migration of a silicone plug inside a capillary tube subjected to an unsteady wall temperature gradient. International Journal of Heat and Mass Transfer, 97:439–449, 2016. doi: 10.1016/j.ijheatmasstransfer.2015.11.098.
[21] P.V. Nguyen and V.A. Ho. Wet adhesion of soft curved interfaces with micro pattern. IEEE Robotics and Automation Letters, 6(3):4273–4280, 2021. doi: 10.1109/LRA.2021.3067277.
[22] J. Gao, W.D. Luedtke, D. Gourdon, M. Ruths, J.N. Israelachvili, and U. Landman. Frictional forces and amontons’ law: From the molecular to the macroscopic scale. The Journal of Physical Chemistry B, 108(11):3410–3425, 2004. doi: 10.1021/jp036362l.
[23] D. Maruthavanan, A. Seibel, and J. Schlattmann. Fluid-structure interaction modelling of a soft pneumatic actuator. Actuators, 10(7):163, 2021. doi: 10.3390/act10070163.
[24] D.X. Phu, V. Mien, P.H.T. Tu, N.P. Nguyen, and S.-B. Choi. A new optimal sliding mode controller with adjustable gains based on Bolza-Meyer criterion for vibration control. Journal of Sound and Vibration, 485:115542, 2020. doi: 10.1016/j.jsv.2020.115542.
Przejdź do artykułu

Autorzy i Afiliacje

Pho Van Nguyen
1 2
ORCID: ORCID
Phi N. Nguyen
2
Tan Nguyen
2
Thanh Lanh Le
2

  1. Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, Japan
  2. Department of Technology, Dong Nai Technology University, Bien Hoa 810000, Vietnam
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

In this project, two types of treated and untreated alumina nanoparticles with different weight percentages (wt%) of 0.5, 1 and 3% were mixed with polycarbonate matrix; then, the impact ballistic properties of the nano-composite targets made from them were investigated. Three types of projectile noses -cylindrical, hemispherical, and conical, each with the same mass of 5.88\;gr -- were used in the ballistic tests. The results highlighted that ballistic limit velocities were improved by increasing the percentage of alumina nanoparticles and the treatment process; changing the projectile's nose geometry from conical to blunt nose increases the ballistic limit velocity, and ultimately, by increasing the initial velocity of conical and hemispherical nosed projectiles, the failure mechanism of the targets changed from dishing to petalling; whereas for the cylindrical projectile, the failure mode was always plugging.
Przejdź do artykułu

Bibliografia

[1] S. Fu, Y. Wang, and Y. Wang. Tension testing of polycarbonate at high strain rates. Polymer Testing, 28(7):724–729, 2009. doi: 10.1016/j.polymertesting.2009.06.002.
[2] Q.H. Shah and Y.A. Abkar. Effect of distance from the support on the penetration mechanism of clamped circular polycarbonate armor plates. International Journal of Impact Engineering, 35(11):1244–125, 2008. doi: 10.1016/j.ijimpeng.2007.07.012.
[3] Q.H. Shah. Impact resistance of a rectangular polycarbonate armor plate subjected to single and multiple impacts. International Journal of Impact Engineering, 36(9):1128–113, 2009. doi: 10.1016/j.ijimpeng.2008.12.005.
[4] M.R. Edwards and H. Waterfall. Mechanical and ballistic properties of polycarbonate apposite to riot shield applications. Plastic Rubber Composites, 37(1):1–6, 2008. doi: 10.1179/174328908X283177.
[5] I. Livingstone, M. Richards, and R. Clegg. Numerical and experimental investigation of ballistic performance of transparent armour systems. Lightweight Armour Systems Symposium Conference, UK, 10-12 November, 1999.
[6] S.C. Wright, N.A. Fleck, and W.J. Stronge. Ballistic impact of polycarbonate–An experimental investigation. International Journal of Impact Engineering, 13(1):1–20, 1993. doi: 10.1016/0734-743X(93) 90105-G.
[7] M. Rahman, M. Hosur, S. Zainuddin, U. Vaidya, A. Tauhid, A. Kumar, J. Trovillion, and S. Jeelani. Effects of amino-functionalized MWCNTs on ballistic impact performance of E-glass/epoxy composites using a spherical projectile. International Journal of Impact Engineering, 57:108–118, 2013. doi: 10.1016/j.ijimpeng.2013.01.011.
[8] S.G. Kulkarni, X.L. Gao, S.E. Horner, J.Q. Zheng, and N.V. David. Ballistic helmets – Their design, materials, and performance against traumatic brain injury. Composite Structures, 101:313–331, 2013. doi: 10.1016/j.compstruct.2013.02.014.
[9] W. Al-Lafi, J. Jin, and M. Song. Mechanical response of polycarbonate nanocomposites to high velocity impact. European Polymer Journal, 85:354–262, 2016. doi: 10.1016/j.eurpolymj. 2016.10.048.
[10] A. Kurzawa, D. Pyka, and K. Jamroziak. Analysis of ballistic resistance of composites with EN AW-7075 matrix reinforced with Al2O3 particles. Archive of Foundry Engineering, 20(1):73–78, 2020. doi: 10.24425/afe.2020.131286.
[11] P.H.C. Camargo, K.G. Satyanarayana, and F. Wypych. Nanocomposite: synthesis, structure, properties and new application opportunities. Materials Research, 12(1):1–39, 2009. doi: 10.1590/S1516-14392009000100002.
[12] R. Jacob, A.P. Jacob, and D.E. Mainwaring. Mechanism of the dielectric enhancement in polymer–alumina nano-particle composites. Journal of Molecular Structure, 933(1-3):77–85, 2009. doi: 10.1016/j.molstruc.2007.05.041.
[13] X. Zhang and L.C. Simon. In situ polymerization of hybrid polyethylene-alumina nanocomposites. Macromolecular Materials and Engineering, 290(6):573–583, 2005. doi: 10.1002/mame. 200500075.
[14] S. Zhao, L.S. Schadleer, R. Duncan, H. Hillborg, and T. Auletta. Mechanisms leading to improved mechanical performance in nanoscale alumina filled epoxy. Composites Science and Technology, 68(14):2965–2975, 2008. doi: 10.1016/j.compscitech.2008.01.009.
[15] S.C. Zunjarrao and R.P. Singh. Characterization of the fracture behavior of epoxy reinforced with nanometer and micrometer sized aluminum particles. Composites Science and Technology, 66(13):2296–2305, 2006. doi: 10.1016/j.compscitech.2005.12.001.
[16] S. Amirchakhmaghi, A. Alavi Nia, Gh. Azizpour, and H. Bamdadi. The effect of surface treatment of alumina nanoparticles with a silane coupling agent on the mechanical properties of polymer nanocomposites. Mechanics of Composite Materials, 51(3):347– 358, 2015. doi: 10.1007/s11029-015-9506-7.
[17] E.A. Ferriter, A. McCulloh, and W. deRosset. Techniques used to estimate limit velocity in ballistic testing with small sample size. In Proceedings of the 13th Annual U.S. Army Research Laboratory Conference, pages 72–95, USA, 2005.
[18] Bayer MateralScience AG., Polycarbonates Business Unit., (2013). www.plastics.bayer.com/Products/Makrolon/ProductList/201305212210/Makrolon- 2807.aspx.
[19] A. Chandra, L.S. Turng, P. Gopalan, R.M. Rowell, and S. Gong. Study of utilizing thin polymer surface coating on the nanoparticles for melt compounding of polycarbonate/alumina nanocomposites and their optical properties. Composites Science and Technology, 68(3-4):768–776, 2008. doi: 10.1016/j.compscitech.2007.08.027.
[20] Z. Zatorski. Diagnostics of ballistic resistance of multi-layered shields. \textit{Archive of Mechanical Engineering, 54(3):205–218, 2007. doi: 10.24425/ame.2007.131555.
[21] H. Motulsky and A. Christopoulos. Fitting Models to Biological Data Using Linear and Nonlinear Regression, a Particle Guide to Curve Fitting. GraphPad Software Inc., San Diego CA, 2003.
Przejdź do artykułu

Autorzy i Afiliacje

Ali Alavi Nia
1
Saeed Amirchakhmaghi
2

  1. Department of Mechanical Engineering, Bu Ali Sina University, Hamedan, Iran
  2. Department of Mechanical Industrial and Aerospace engineering, Concordia University, Montreal, Canada
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

To meet the continuous demand for energy of industrial as well as commercial sectors, researchers focus on increasing the power generating capacity of gas turbine power plants. In this regard, the combined cycle is a better solution in terms of environmental aspects and power generation as compared to a simple gas turbine power plant. The present study is the thermodynamic investigation of five possible air bottoming combined cycles in which the topping cycle is a simple gas turbine cycle, regenerative gas turbine cycle, inter-cool gas turbine cycle, reheat gas turbine cycle, and intercool-reheat gas turbine cycle. The effect of pressure ratio of the topping cycle, the turbine inlet temperature of topping cycle, and ambient temperature on net power output, thermal efficiency, total exergy destruction, and exergetic efficiency of the combined cycle have been analyzed. The ratio of the net power output of the combined cycle to that of the topping cycle is maximal in the case when the topping cycle is a simple gas turbine cycle. The ratio of net power output and the total exergy destruction of the combined cycle to those of the topping cycle decrease with pressure ratio for all the combinations under study except for the case when the topping cycle is the regenerative gas turbine cycle.
Przejdź do artykułu

Bibliografia

[1] A. Valera-Medina, A. Giles, D. Pugh, S. Morris, M. Pohl, and A. Ortwein. Investigation of combustion of emulated biogas in a gas turbine test rig. Journal of Thermal Science, 27:331–340, 2018. doi: 10.1007/s11630-018-1024-1.
[2] K. Tanaka and I. Ushiyama. Thermodynamic performance analysis of gas turbine power plants with intercooler: 1st report, Theory of intercooling and performance of intercooling type gas turbine. Bulletin of JSME, 13(64):1210–1231, 1970. doi: 10.1299/jsme1958.13.1210.
[3] H.M. Kwon, T.S. Kim, J.L. Sohn, and D.W. Kang. Performance improvement of gas turbine combined cycle power plant by dual cooling of the inlet air and turbine coolant using an absorption chiller. Energy, 163:1050–1061, 2018. doi: 10.1016/j.energy.2018.08.191.
[4] A.T. Baheta and S.I.-U.-H. Gilani. The effect of ambient temperature on a gas turbine performance in part load operation. AIP Conference Proceedings, 1440:889–893, 2012. doi: 10.1063/1.4704300.
[5] F.R. Pance Arrieta and E.E. Silva Lora. Influence of ambient temperature on combined-cycle power-plant performance. Applied Energy, 80(3):261–272, 2005. doi: 10.1016/j.apenergy.2004.04.007.
[6] M. Ameri and P. Ahmadi. The study of ambient temperature effects on exergy losses of a heat recovery steam generator. In: Cen, K., Chi, Y., Wang, F. (eds) Challenges of Power Engineering and Environment. Springer, Berlin, Heidelberg, 2007. doi: 10.1007/978-3-540-76694-0_9.
[7] M.A.A. Alfellag: Parametric investigation of a modified gas turbine power plant. Thermal Science and Engineering Progress, 3:141–149, 2017. doi: 10.1016/j.tsep.2017.07.004.
[8] J.H. Horlock and W.A. Woods. Determination of the optimum performance of gas turbines. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 214:243–255, 2000. doi: 10.1243/0954406001522930.
[9] L. Battisti, R. Fedrizzi, and G. Cerri. Novel technology for gas turbine blade effusion cooling. In: Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Volume 3: Heat Transfer, Parts A and B. pages 491–501. Barcelona, Spain. May 8–11, 2006. doi: 10.1115/GT2006-90516.
[10] F.J. Wang and J.S. Chiou. Integration of steam injection and inlet air cooling for a gas turbine generation system. Energy Conversion and Management, 45(1):15–26, 2004. doi: 10.1016/S0196-8904(03)00125-0.
[11] Z. Wang. 1.23 Energy and air pollution. In I. Dincer (ed.): Comprehensive Energy Systems, pp. 909–949. Elsevier, 2018. doi: 10.1016/B978-0-12-809597-3.00127-9.
[12] Z. Khorshidi, N.H. Florin, M.T. Ho, and D.E. Wiley. Techno-economic evaluation of co-firing biomass gas with natural gas in existing NGCC plants with and without CO$_2$ capture. International Journal of Greenhouse Gas Control, 49:343–363, 2016. doi: 10.1016/j.ijggc.2016.03.007.
[13] K. Mohammadi, M. Saghafifar, and J.G. McGowan. Thermo-economic evaluation of modifications to a gas power plant with an air bottoming combined cycle. Energy Conversion and Management, 172:619–644, 2018. doi: 10.1016/j.enconman.2018.07.038.
[14] S. Mohtaram, J. Lin, W. Chen, and M.A. Nikbakht. Evaluating the effect of ammonia-water dilution pressure and its density on thermodynamic performance of combined cycles by the energy-exergy analysis approach. Mechanika, 23(2):18110, 2017. doi: 10.5755/j01.mech.23.2.18110.
[15] M. Maheshwari and O. Singh. Comparative evaluation of different combined cycle configurations having simple gas turbine, steam turbine and ammonia water turbine. Energy, 168:1217–1236, 2019. doi: 10.1016/j.energy.2018.12.008.
[16] A. Khaliq and S.C. Kaushik. Second-law based thermodynamic analysis of Brayton/Rankine combined power cycle with reheat. Applied Energy, 78(2):179–197, 2004. doi: 10.1016/j.apenergy.2003.08.002.
[17] M. Aliyu, A.B. AlQudaihi, S.A.M. Said, and M.A. Habib. Energy, exergy and parametric analysis of a combined cycle power plant. Thermal Science and Engineering Progress. 15:100450, 2020. doi: 10.1016/j.tsep.2019.100450.
[18] M.N. Khan, T.A. Alkanhal, J. Majdoubi, and I. Tlili. Performance enhancement of regenerative gas turbine: air bottoming combined cycle using bypass valve and heat exchanger—energy and exergy analysis. Journal of Thermal Analysis and Calorimetry. 144:821–834, 2021. doi: 10.1007/s10973-020-09550-w.
[19] F. Rueda Martínez, A. Rueda Martínez, A. Toleda Velazquez, P. Quinto Diez, G. Tolentino Eslava, and J. Abugaber Francis. Evaluation of the gas turbine inlet temperature with relation to the excess air. Energy and Power Engineering, 3(4):517–524, 2011. doi: 10.4236/epe.2011.34063.
[20] A.K. Mohapatra and R. Sanjay. Exergetic evaluation of gas-turbine based combined cycle system with vapor absorption inlet cooling. Applied Thermal Engineering, 136:431–443, 2018. doi: 10.1016/j.applthermaleng.2018.03.023.
[21] A.A. Alsairafi. Effects of ambient conditions on the thermodynamic performance of hybrid nuclear-combined cycle power plant. International Journal of Energy Research, 37(3):211–227, 2013. doi: 10.1002/er.1901.
[22] A.K. Tiwari, M.M. Hasan, and M. Islam. Effect of ambient temperature on the performance of a combined cycle power plant. Transactions of the Canadian Society for Mechanical Engineering, 37(4):1177–1188, 2013. doi: 10.1139/tcsme-2013-0099.
[23] T.K. Ibrahim, M.M. Rahman, and A.N. Abdalla. Gas turbine configuration for improving the performance of combined cycle power plant. Procedia Engineering, 15:4216–4223, 2011. doi: 10.1016/j.proeng.2011.08.791.
[24] M.N. Khan and I. Tlili. New advancement of high performance for a combined cycle power plant: Thermodynamic analysis. Case Studies in Thermal Engineering. 12:166–175, 2018. doi: 10.1016/j.csite.2018.04.001.
[25] S.Y. Ebaid and Q.Z. Al-hamdan. Thermodynamic analysis of different configurations of combined cycle power plants. Mechanical Engineering Research. 5(2):89–113, 2015. doi: 10.5539/mer.v5n2p89.
[26] R. Teflissi and A. Ataei. Effect of temperature and gas flow on the efficiency of an air bottoming cycle. Journal of Renewable and Sustainable Energy, 5(2):021409, 2013. doi: 10.1063/1.4798486.
[27] A.A. Bazmi, G. Zahedi, and H. Hashim. Design of decentralized biopower generation and distribution system for developing countries. Journal of Cleaner Production, 86:209–220, 2015. doi: 10.1016/j.jclepro.2014.08.084.
[28] A.I. Chatzimouratidis and P.A. Pilavachi. Decision support systems for power plants impact on the living standard. Energy Conversion and Management, 64:182–198, 2012. doi: 10.1016/j.enconman.2012.05.006.
[29] T.K. Ibrahim, F. Basrawi, O.I. Awad, A.N. Abdullah, G. Najafi, R. Mamat, and F.Y. Hagos. Thermal performance of gas turbine power plant based on exergy analysis. Applied Thermal Engineering, 115:977–985, 2017. doi: 10.1016/j.applthermaleng.2017.01.032.
[30] M. Ghazikhani, I. Khazaee, and E. Abdekhodaie. Exergy analysis of gas turbine with air bottoming cycle. Energy, 72:599–607, 2014. doi: 10.1016/j.energy.2014.05.085.
[31] M.N. Khan, I. Tlili, and W.A. Khan. thermodynamic optimization of new combined gas/steam power cycles with HRSG and heat exchanger. Arabian Journal for Science and Engineering, 42:4547–4558, 2017. doi: 10.1007/s13369-017-2549-4.
[32] N. Abdelhafidi, İ.H. Yılmaz, and N.E.I. Bachari. An innovative dynamic model for an integrated solar combined cycle power plant under off-design conditions. Energy Conversion and Management, 220:113066, 2020. doi: 10.1016/j.enconman.2020.113066.
[33] T.K. Ibrahim, M.K. Mohammed, O.I. Awad, M.M. Rahman, G. Najafi, F. Basrawi, A.N. Abd Alla, and R. Mamat. The optimum performance of the combined cycle power plant: A comprehensive review. Renewable and Sustainable Energy Reviews, 79:459–474, 2017. doi: 10.1016/j.rser.2017.05.060.
[34] M.N. Khan. Energy and exergy analyses of regenerative gas turbine air-bottoming combined cycle: optimum performance. Arabian Journal for Science and Engineering, 45:5895–5905, 2020. doi: 10.1007/s13369-020-04600-9.
[35] A.M. Alklaibi, M.N. Khan, and W.A. Khan. Thermodynamic analysis of gas turbine with air bottoming cycle. Energy, 107:603–611, 2016. doi: 10.1016/j.energy.2016.04.055.
[36] M. Ghazikhani, M. Passandideh-Fard, and M. Mousavi. Two new high-performance cycles for gas turbine with air bottoming. Energy, 36(1):294–304, 2011. doi: 10.1016/j.energy.2010.10.040.
[37] M.N. Khan and I. Tlili. Innovative thermodynamic parametric investigation of gas and steam bottoming cycles with heat exchanger and heat recovery steam generator: Energy and exergy analysis. Energy Reports, 4:497–506, 2018. doi: 10.1016/j.egyr.2018.07.007.
[38] M.N. Khan and I. Tlili. Performance enhancement of a combined cycle using heat exchanger bypass control: A thermodynamic investigation. Journal of Cleaner Production, 192:443–452, 2018. doi: 10.1016/j.jclepro.2018.04.272.
[39] M. Korobitsyn. Industrial applications of the air bottoming cycle. Energy Conversion and Management, 43(9-12):1311–1322, 2002. doi: 10.1016/S0196-8904(02)00017-1.
[40] T.K. Ibrahim and M.M. Rahman. optimum performance improvements of the combined cycle based on an intercooler–reheated gas turbine. Journal of Energy Resources Technology, 137(6):061601, 2015. doi: 10.1115/1.4030447.
Przejdź do artykułu

Autorzy i Afiliacje

Mohammad N. Khan
1
ORCID: ORCID
Dhare Alzafiri
1
ORCID: ORCID

  1. Department of Mechanical Engineering, College of Engineering, Majmaah University, Al-Majmaah, Saudi Arabia
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Biogas is a gaseous biofuel predominantly composed of methane and carbon-dioxide. Stability of biogas flames strongly depend upon the amount of carbon-dioxide present in biogas, which varies with the source of biomass and reactor. In this paper, a comprehensive study on the stability and flame characteristics of coflow biogas diffusion flames is reported. Numerical simulations are carried out using reactive flow module in OpenFOAM, incorporated with variable thermophysical properties, Fick’s and Soret diffusion, and short chemical kinetics mechanism. Effects of carbon-dioxide content in the biogas, temperatures of the fuel or coflowing air streams (preheated reactant) and hydrogen addition to fuel or air streams are analyzed. Entropy generation in these flames is also predicted. Results show that the flame temperature increases with the degree of preheat of reactants and the flames show better stability with the preheated air stream. Preheating the air contributes to increased flame stability and also to a significant decrease in entropy generation. Hydrogen addition, contributing to the same power rating, is seen to be relatively more effective in increasing the flame stability when added to the fuel stream. Results in terms of flow, temperature, species and entropy fields, are used to describe the stability and flame characteristics.
Przejdź do artykułu

Bibliografia

[1] Z. Recebli, S. Selimli, M. Ozkaymak, and O. Gonc. Biogas production from animal manure. Journal of Engineering Science and Technology, 10(6):722–729, 2015.
[2] S. Rasi, A.Veijanen, and J. Rintala. Trace compounds of biogas from different biogas production plants. Energy, 32(8):1375–1380, 2007. doi: 10.1016/j.energy.2006.10.018.
[3] O. Jonsson, E. Polman, J.K. Jensen, R. Ekund, H. Schyl, and S. Ivarsson. Sustainable gas enters the European gas distribution system. In World Gas Conference, Tokyo, Japan, 2003.
[4] I.U. Khan, M.H.D. Othman, H. Hashim, T. Matsuura, A.F. Ismail, M. Rezaei-DashtArzhandi, and I.W. Azelee. Biogas as a renewable energy fuel – a review of biogas upgrading, utilization and storage. Energy Conversion and Management, 150:277–294, 2017. doi: 10.1016/j.enconman.2017.08.035.
[5] H.O.B. Nonaka and F.M. Pereira. Experimental and numerical study of CO 2 content effects on the laminar burning velocity of biogas. Fuel, 182:382–390, 2016. doi: j.fuel.2016.05.098.
[6] M.S. Abdallah, M.S. Mansour, and N.K. Allam. Mapping the stability of free-jet biogas flames under partially premixed combustion. Energy, 220:119749, 2021. doi: 10.1016/j.energy.2020.119749.
[7] L. Zhang, X. Ren, R. Sun, andY.A. Levendis. A numerical and experimental study on the effects of CO 2 on laminar diffusion methane/air flames. Journal of Energy Resources Technology, 142(8):82307, 2020. doi: 10.1115/1.4046228.
[8] T. Leung and I. Wierzba. The effect of hydrogen addition on biogas non-premixed jet flame stability in a co-flowing air stream. International Journal of Hydrogen Energy, 33(14):3856–3862, 2008. doi: 10.1016/j.ijhydene.2008.04.030.
[9] S. Verma, K. Kumar, L.M. Das, and S.C. Kaushik. Effects of hydrogen enrichment strategy on performance and emission features of biodiesel-biogas dual fuel engine using simulation and experimental analyses. Journal of Energy Resources Technology, 143(9):092301, 2021. doi: 10.1115/1.4049179.
[10] H.S. Zhen, C.W. Leung, and C.S. Cheung. Effects of hydrogen addition on the characteristics of a biogas diffusion flame. International Journal of Hydrogen Energy, 38(16):6874–6881, 2013. doi: 10.1016/j.ijhydene.2013.02.046.
[11] H.S. Zhen, C.W. Leung, and C.S. Cheung. A comparison of the heat transfer behaviors of biogas–H 2 diffusion and premixed flames. International Journal of Hydrogen Energy, 39(2):1137–1144, 2014. doi: 10.1016/j.ijhydene.2013.10.100.
[12] H.S. Zhen, Z.L. Wei, Z.B. Chen, M.W. Xiao, L.R. Fu, and Z.H. Huang. An experimental comparative study of the stabilization mechanism of biogas-hydrogen diffusion flame. International Journal of Hydrogen Energy, 44(3):1988–1997, 2019. doi: 10.1016/j.ijhydene.2018.11.171.
[13] M.R.J. Charest, Ö.L. Gülder, and C.P.T. Groth. Numerical and experimental study of soot formation in laminar diffusion flames burning simulated biogas fuels at elevated pressures. Combustion and Flame, 161(10):2678–2691, 2014. doi: 10.1016/j.combustflame.2014.04.012.
[14] Z.L.Wei, C.W. Leung, C.S. Cheung, and Z.H. Huang. Effects of H 2 andCO 2 addition on the heat transfer characteristics of laminar premixed biogas-hydrogen Bunsen flame. International Journal of Heat Mass Transfer, 98:359–366, 2016. doi: 10.1016/j.ijheatmasstransfer.2016.02.064.
[15] A. Mameri and F. Tabet. Numerical investigation of counter-flow diffusion flame of biogas-hydrogen blends: Effects of biogas composition, hydrogen enrichment and scalar dissipation rate on flame structure and emissions. International Journal of Hydrogen Energy, 41 (3):2011–2022, 2016. doi: 10.1016/j.ijhydene.2015.11.035.
[16] X. Li, S. Xie, J. Zhang, T. Li, and X. Wang. Combustion characteristics of non-premixed CH 4/CO 2 jet flames in coflow air at normal and elevated temperatures. Energy, 214:118981, 2021. doi: 10.1016/j.energy.2020.118981.
[17] A.V. Prabhu, A. Avinash, K. Brindhadevi, and A. Pugazhendhi. Performance and emission evaluation of dual fuel CI engine using preheated biogas-air mixture. Science of The Total Environment, 754:142389, 2021. doi: 10.1016/j.scitotenv.2020.142389.
[18] M.H. Moghadasi, R. Riazi, S. Tabejamaat, and A. Mardani. Effects of preheating and CO 2 dilution on Oxy-MILD combustion of natural gas. Journal of Energy Resources Technology, 141(12):12200, 2019. doi: 10.1115/1.4043823.
[19] A. Harish, H.R. Rakesh Ranga, A. Babu, and V. Raghavan. Experimental study of the flame characteristics and stability regimes of biogas – air cross flow non-premixed flames. Fuel, 223:334–343, 2018. doi: 10.1016/j.fuel.2018.03.055.
[20] G. Tsatsaronis, T. Morosuk, D. Koch, and M. Sorgenfrei. Understanding the thermodynamic inefficiencies in combustion processes. Energy, 62:3–11, 2013. doi: 10.1016/j.energy.2013.04.075.
[21] A. Datta. Entropy generation in a confined laminar diffusion flame. Combustion Science and Technology, 159(1):39–56, 2000. doi: 10.1080/00102200008935776.
[22] K.M. Saqr and M.A. Wahid. Entropy generation in turbulent swirl-stabilized flame: Effect of hydrogen enrichment. Applied Mechanics and Materials, 388:280–284, 2013. doi: 10.4028/www.scientific.net/AMM.388.280.
[23] H.R. Arjmandi and E. Amani. A numerical investigation of the entropy generation in and thermodynamic optimization of a combustion chamber. Energy, 81:706–718, 2015. doi: 10.1016/j.energy.2014.12.077.
[24] A.M. Briones, A. Mukhopadhyay, and S.K. Aggarwal. Analysis of entropy generation in hydrogen-enriched methane–air propagating triple flames. International Journal of Hydrogen Energy, 34(2):1074–1083, 2009. doi: 10.1016/j.ijhydene.2008.09.103.
[25] K. Nishida, T. Takagi, and S. Kinoshita. Analysis of entropy generation and exergy loss during combustion. Proceedings of the Combustion Institute, 29(1):869–874, 2002. doi: 10.1016/S1540-7489 (02)80111-0.
[26] W. Wang, Z. Zuo, J. Liu, and W. Yang. Entropy generation analysis of fuel premixed CH 4/H 2/air flames using multistep kinetics. International Journal of Hydrogen Energy, 41(45):20744–20752, 2016. doi: 10.1016/j.ijhydene.2016.08.103.
[27] R.S. Barlow, N.S.A. Smith, J.Y. Chen, and R.W. Bilger. Nitric oxide formation in dilute hydrogen jet flames: isolation of the effects of radiation and turbulence–chemistry sub models. Combustion and Flame, 117(1-2):4–31, 1999. doi: 10.1016/S0010-2180(98)00071-6.
[28] J.O. Hirschfelder, C.F. Curtiss, and R.B. Bird. Molecular Theory of Gases and Liquids. Wiley, New York, 1954.
[29] K.K.Y. Kuo. Principles of Combustion. Wiley, New York, 1986.
[30] C.T. Bowman, R.K. Hanson, D.F. Davidson, W.C. Gardiner, Jr., V. Lissianski, G.P. Smith, D.M. Golden, M. Frenklach, and M. Goldenberg. GRI_Mech 2.11. Available: http://combustion.berkeley.edu/gri-mech/new21/version21/text21.html.
[31] D.N. Pope, V. Raghavan, and G. Gogos. Gas-phase entropy generation during transient methanol droplet combustion. International Journal of Thermal Sciences, 49(7):1288–1302, 2010. doi: 10.1016/j.ijthermalsci.2010.02.012.
[32] A.V. Mokhov, B.A.V Bennett, H.B. Levinsky, and M.D. Smooke. Experimental and computational study of C 2H 2 and CO in a laminar axisymmetric methane-air diffusion flame. Proceedings of the Combustion Institute, 31(1):997–1004, 2007. doi: 10.1016/j.proci.2006.08.094.
[33] J. Lim, J. Gore, and R. Viskanta. A study of the effects of air preheat on the structure of methane/air counterflow diffusion flames. Combustion and Flame, 121(1-2):262–274, 2000. doi: 10.1016/S0010-2180(99)00137-6.
[34] H.S. Zhen, J. Miao, C.W. Leung, C.S. Cheung, and Z.H. Huang. A study on the effects of air preheat on the combustion and heat transfer characteristics of Bunsen flames. Fuel, 184:50–58, 2016. doi: 10.1016/j.fuel.2016.07.007.
[35] C.J. Sung, J.B. Liu, and C.K. Law. Structural response of counterflow diffusion flames to strain rate variations. Combustion and Flame, 102(4):481–492, 1995. doi: 10.1016/0010-2180(95)00041-4.
Przejdź do artykułu

Autorzy i Afiliacje

R. Nivethana Kumar
1
S. Muthu Kumaran
1
Vasudevan Raghavan
1

  1. Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai – 600036, India
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

This paper concerns the analytical investigation of the axisymmetric and steady flow of incompressible couple stress fluid through a rigid sphere embedded in a porous medium. In the porous region, the flow field is governed by Brinkman's equation. Here we consider uniform flow at a distance from the sphere. The boundary conditions applied on the surface of the sphere are the slip condition and zero couple stress. Analytical solution of the problem in the terms of stream function is presented by modified Bessel functions. The drag experienced by an incompressible couple stress fluid on the sphere within the porous medium is calculated. The effects of the slip parameter, the couple stress parameter, and permeability on the drag are represented graphically. Special cases of viscous flow through a sphere are obtained and the results are compared with earlier published results.
Przejdź do artykułu

Bibliografia

[1] J. Bear. Dynamics of fluids in porous media. Courier Corporation, 2013.
[2] H.C. Brinkman. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Flow, Turbulence and Combustion, 1(1):27–34, 1949. doi: 10.1007/bf02120313.
[3] R.H. Davis and H.A. Stone. Flow through beds of porous particles. Chemical Engineering Science, 48(23):3993–4005, 1993. doi: 10.1016/0009-2509(93)80378-4.
[4] B. Barman. Flow of a Newtonian fluid past an impervious sphere embedded in a porous medium. Indian Journal of Pure and Applied Mathematics, 27:1249–1256, 1996.
[5] I. Pop and D.B. Ingham. Flow past a sphere embedded in a porous medium based on the Brinkman model. International Communications in Heat and Mass Transfer, 23(6):865–874, 1996. doi: 10.1016/0735-1933(96)00069-3.
[6] D. Srinivasacharya and J.V. Ramana Murthy. Flow past an axisymmetric body embedded in a saturated porous medium. Comptes Rendus Mécanique, 330(6):417–423, 2002. doi: 10.1016/s1631-0721(02)01478-x.
[7] T. Grosan, A. Postelnicu, and I. Pop. Brinkman flowof a viscous fluid through a spherical porous medium embedded in another porous medium. Transport in Porous Media, 81(1):89–103, 2010. doi: 10.1007/s11242-009-9389-y.
[8] S. Deo and B.R. Gupta. Drag on a porous sphere embedded in another porous medium. Journal of Porous Media, 13(11):1009–1016, 2010. doi: 10.1615/JPorMedia.v13.i11.70.
[9] N.E. Leontev. Flow past a cylinder and a sphere in a porous medium within the framework of the Brinkman equation with the Navier boundary condition. Fluid Dynamics, 49(2):232–237, 2014. doi: 10.1134/S0015462814020112.
[10] S. El-Sapa. Effect of permeability of Brinkman flow on thermophoresis of a particle in a spherical cavity. European Journal of Mechanics-B/Fluids, 79:315–323, 2020. doi: 10.1016/j.euromechflu.2019.09.017.
[11] M.S. Faltas, H.H. Sherief, A.A. Allam, and B.A. Ahmed. Mobilities of a spherical particle straddling the interface of a semi-infinite Brinkman flow. Journal of Fluids Engineering, 143(7):071402, 2021. doi: 10.1115/1.4049931.
[12] M. Krishna Prasad and D. Srinivasacharya. Micropolar fluid flow through a cylinder and a sphere embedded in a porous medium. International Journal of Fluid Mechanics Research, 44(3):229–240, 2017. doi: 10.1615/InterJFluidMechRes.2017015283.
[13] B.R. Jaiswal. A non-Newtonian liquid sphere embedded in a polar fluid saturated porous medium: Stokes flow. Applied Mathematics and Computation, 316:488–503, 2018. doi: 10.1016/j.amc.2017.08.009.
[14] K. Ramalakshmi and P. Shukla. Drag on a fluid sphere embedded in a porous medium with solid core. International Journal of Fluid Mechanics Research, 46(3):219–228, 2019. doi: 10.1615/InterJFluidMechRes.2018025197.
[15] K.P. Madasu and T. Bucha. Influence of mhd on micropolar fluid flow past a sphere implanted in porous media. Indian Journal of Physics, 95(6):1175–1183, 2021. doi: 10.1007/s12648-020-01759-7.
[16] V.K. Stokes. Couple stresses in fluids. In Theories of Fluids with Microstructure, pages 34–80. Springer, 1966. doi: 10.1007/978-3-642-82351-0_4.
[17] V.K. Stokes. Theories of Fluids with Microstructure: An Introduction. Springer Science & Business Media, 2012. doi: 10.1007/978-3-642-82351-0.
[18] D. Pal, N. Rudraiah, and R. Devanathan. A couple stress model of blood flow in the microcirculation. Bulletin of Mathematical Biology, 50(4):329–344, 1988. doi: 10.1007/BF02459703.
[19] N.A. Khan, A. Mahmood, and A. Ara. Approximate solution of couple stress fluid with expanding or contracting porous channel. Engineering Computations, 30(3):399–408, 2013. doi: 10.1108/02644401311314358.
[20] D. Srinivasacharya and K. Kaladhar. Mixed convection flowof couple stress fluid in a non-Darcy porous medium with Soret and Dufour effects. Journal of Applied Science and Engineering, 15(4):415–422, 2012.
[21] M. Devakar, D. Sreenivasu, and B. Shankar. Analytical solutions of couple stress fluid flows with slip boundary conditions. Alexandria Engineering Journal, 53(3):723–730, 2014. doi: 10.1016/j.aej.2014.06.005.
[22] D. Srinivasacharya, N. Srinivasacharyulu, and O. Odelu. Flow of couple stress fluid between two parallel porous plates. International Journal of Applied Mathematics, 41(2).
[23] E.A. Ashmawy. Drag on a slip spherical particle moving in a couple stress fluid. Alexandria Engineering Journal, 55(2):1159–1164, 2016. doi: 10.1016/j.aej.2016.03.032.
[24] P. Aparna, P. Padmaja, N. Pothanna, and J.V. Ramana Murthy. Couple stress fluid flow due to slow steady oscillations of a permeable sphere. Nonlinear Engineering, 9(1):352–360, 2020. doi: 10.1515/nleng-2020-0021.
[25] S.O. Adesanya, S.O. Kareem, J.A. Falade, and S.A. Arekete. Entropy generation analysis for a reactive couple stress fluid flow through a channel saturated with porous material. Energy, 93:1239–1245, 2015. doi: 10.1016/j.energy.2015.09.115.
[26] A.R. Hassan. The entropy generation analysis of a reactive hydromagnetic couple stress fluid flow through a saturated porous channel. Applied Mathematics and Computation, 369:124843, 2020. doi: 10.1016/j.amc.2019.124843.
[27] S.I.Abdelsalam, J.X.Velasco-Hernández, and A.Z. Zaher. Electro-magnetically modulated selfpropulsion of swimming sperms via cervical canal. Biomechanics and Modeling in Mechanobiology, 20(3):861–878, 2021. doi: 10.1007/s10237-020-01407-3.
[28] M.M. Bhatti, S.Z. Alamri, R. Ellahi, and S.I. Abdelsalam. Intra-uterine particle–fluid motion through a compliant asymmetric tapered channel with heat transfer. Journal of Thermal Analysis and Calorimetry, 144(6):2259–2267, 2021. doi: 10.1007/s10973-020-10233-9.
[29] A.R. Hadjesfandiari and G.F. Dargush. Polar continuum mechanics. arXiv preprint arXiv:1009.3252, 2010.
[30] A.R. Hadjesfandiari and G.F. Dargush. Couple stress theory for solids. International Journal of Solids and Structures, 48(18):2496–2510, 2011. doi: 10.1016/j.ijsolstr.2011.05.002.
[31] A.R. Hadjesfandiari, G.F. Dargush, and A. Hajesfandiari. Consistent skew-symmetric couple stress theory for size-dependent creeping flow. Journal of Non-Newtonian Fluid Mechanics, 196:83–94, 2013. doi: 10.1016/j.jnnfm.2012.12.012.
[32] A.R. Hadjesfandiari, A. Hajesfandiari, and G.F. Dargush. Skew-symmetric couple-stress fluid mechanics. Acta Mechanica, 226(3):871–895, 2015. doi: 10.1007/s00707-014-1223-0.
[33] C.L.M.H. Navier. Mémoires de l’Académie Royale des Sciences de l’Institut de France. Royale des Sciences de l’Institut de France, 1823.
[34] I.M. Eldesoky, S.I. Abdelsalam, W.A. El-Askary, A.M. El-Refaey, and M.M. Ahmed. Joint effect of magnetic field and heat transfer on particulate fluid suspension in a catheterized wavy tube. BioNanoScience, 9(3):723–739, 2019. doi: >10.1007/s12668-019-00651-x.
[35] M.M. Bhatti and S.I. Abdelsalam. Thermodynamic entropy of a magnetized ree-eyring particle-fluid motion with irreversibility process: A mathematical paradigm. Journal of Applied Mathmatics nd Mechanics/Zeitschrift fur Angewandte Mathematik und Mechanik, 101(6):e202000186, 2021. doi: 10.1002/zamm.202000186.
[36] S. El-Sapa and N.S. Alsudais. Effect of magnetic field on the motion of two rigid spheres embedded in porous media with slip surfaces. The European Physical Journal E, 44(5):1–11, 2021. doi: 10.1140/epje/s10189-021-00073-2.
[37] K.P. Madasu, M. Kaur, and T. Bucha. Slow motion past a spheroid implanted in a Brinkman medium: Slip condition. International Journal of Applied and Computational Mathematics, 7(4):1–15, 2021. doi: 10.1007/s40819-021-01104-4.
[38] J. Happel and H. Brenner. Low Reynolds Number Hydrodynamics: with Special Applications to Particulate Media. Springer Science & Business Media, 2012.
[39] S. El-Sapa, E.I. Saad, and M.S. Faltas. Axisymmetric motion of two spherical particles in a brinkman medium with slip surfaces. European Journal of Mechanics-B/Fluids, 67:306–313, 2018. doi: 10.1016/j.euromechflu.2017.10.003.
[40] V.K. Stokes. Effects of couple stresses in fluids on the creeping flow past a sphere. The Physics of Fluids, 14(7):1580–1582, 1971. doi: 10.1063/1.1693645.
Przejdź do artykułu

Autorzy i Afiliacje

Krishna Prasad Madasu
1
ORCID: ORCID
Priya Sarkar
1
ORCID: ORCID

  1. Department of Mathematics, National Institute of Technology, Raipur-492010, Chhattisgarh, India
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Human motion is required in many simulation models. However, generating such a motion is quite complex and in industrial simulation cases represents an overhead that often cannot be accepted. There are several common file formats that are used nowadays for saving motion data that can be used in gaming engines or 3D editing software. Using such motion sets still requires considerable effort in creating logic for motion playing, blending, and associated object manipulation in the scene. Additionally, every action needs to be described with the motion designed for the target scene environment. This is where the Motion Model Units (MMU) concept was created. Motion Model Units represent a new way of transferring human motion data together with logic and scene manipulation capabilities between motion vendors and simulation platforms. The MMU is a compact software bundle packed in a standardized way, provides machine-readable capabilities and interface description that makes it interchangeable, and is adaptable to the scene. Moreover, it is designed to represent common actions in a task-oriented way, which allows simplifying the scenario creation to a definition of tasks and their timing. The underlying Motion Model Interface (MMI) has become an open standard and is currently usable in MOSIM framework, which provides the implementation of the standard for the Unity gaming engine and works on implementation for the Unreal Engine are under way. This paper presents two implementation examples for the MMU using direct C# programming, and using C# for Unity and MOSIM MMU generator as a helping tool. The key points required to build a working MMU are presented accompanied by an open-source code that is available for download and experimenting.
Przejdź do artykułu

Bibliografia

[1] Manufacturing statistics – NACE Rev. 2. https://ec.europa.eu/eurostat/ statistics-explained/index.php? title=Manufacturing_statistics_-_NACE_ Rev._2&oldid=502915. 2021-03-04.
[2] D. Sabadka, V. Molnar, and G. Fedorko. Shortening of life cycle and complexity impact on the automotive industry. TEM Journal, 8(4):1295–1301, 2019. doi: 10.18421/TEM84-27.
[3] J. Ajaefobi and R. Weston. Modelling human systems in support of process engineering. In G. Zülch, H. Jagdev, and P. Stock, editors, Integrating Human Aspects in Production Management. IFIP International Conference for Information Processing, volume 160, pages 3–16, Boston, MA, 2005. Springer US. doi: 10.1007/0-387-23078-5_1.
[4] D. Lämkull, L. Hanson, and R. Örtengren. A comparative study of digital human modelling simulation results and their outcomes in reality: A case study within manual assembly of automobiles. International Journal of Industrial Ergonomics, 39(2):428–441, 2009. doi: 10.1016/j.ergon.2008.10.005.
[5] D. B. Chaffin, C. Nelson, et al. Digital Human Modeling for Vehicle and Workplace Design. Society of Automotive Engineers Warrendale, PA, USA, 2001.
[6] H.O. Demirel and V.G. Duffy. Applications of digital human modeling in industry. In V.G. Duffy, editor, Digital Human Modeling, pages 824–832. Springer, 2007. doi: 10.1007/978-3- 540-73321-8_93.
[7] A. Naumann and M. Rötting. Digital human modeling for design and evaluation of humanmachine systems. MMI Interaktiv, 12:27–35, 2007.
[8] V. Duffy. Handbook of Digital Human Modelling: Research for Applied ergonomics and Human Factors Engineering. CRC Press, 2008. doi: 10.1201/9781420063523.
[9] C.B. Phillips and N.I. Badler. JACK: A toolkit for manipulating articulated figures. In Proceedings of the 1st Annual ACM SIGGRAPH Symposium on User Interface Software, UIST ’88, page 221–229, New York, NY, USA, 1988. doi: 10.1145/62402.62436.
[10] R. Gilbert, R. Carrier, J. Schiettekatte, C. Fortin, B. Dechamplain, H.N. Cheng, A. Savard, C. Benoit, and M. Lachapelle. SAFEWORK: Software to analyse and design workplaces. In G.R. McMillan et al., editors, Applications of Human Performance Models to System Design, pages 389–396. Springer, 1989. doi: 10.1007/978-1-4757-9244-7_28.
[11] K. Abdel-Malek, J. Yang, J. H. Kim, T. Marler, S. Beck, C. Swan, L. Frey-Law, A. Mathai, C. Murphy, S. Rahmatallah, and J. Arora. Development of the virtual-human santostm. In V.G. Duffy, editor, Digital Human Modeling, pages 490–499. Springer, 2007. doi: 10.1007/978-3- 540-73321-8_57.
[12] MSCAdams software. https://www.mscsoftware.com/product/adams. Accessed: 2021- 03-22.
[13] S.L. Delp, F.C. Anderson, A.S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman, and D. G. Thelen. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Transactions on Biomedical Engineering, 54(11):1940–1950, 2007. doi: 10.1109/TBME.2007.901024.
[14] P.-B. Wieber, F. Billet, L. Boissieux, and R. Pissard-Gibollet. The humans toolbox, a homogenous framework for motion capture, analysis and simulation. In International Symposium on the 3D Analysis of Human Movement, 2006.
[15] H.-J. Wirsching. Human solutions RAMSIS. In S. Scataglini and G. Paul, editors, DHM and Posturography, pages 49–55.Academic Press, 2019.doi: 10.1016/B978-0-12-816713-7.00004-0.
[16] M. Hovanec, P. Korba, and M. Solc. TECNOMATIX for successful application in the area of simulation manufacturing and ergonomics. In 1 5th International SGEM Geoconference on Informatics, Albena, Bulgaria, 2015.
[17] J. Rasmussen. The AnyBody modeling system. In S. Scataglini and G. Paul, editors, DHM and Posturography, pages 85–96. Academic Press, 2019. doi: 10.1016/B978-0-12-816713- 7.00008-8.
[18] Simcenter Madymo. https://www.plm.automation.siemens.com/global/en/ products/simcenter/madymo.html. Accessed: 2022-04-07.
[19] F. Gaisbauer, P. Agethen, M. Otto, T. Bär, J. Sues, and E. Rukzio. Presenting a modular framework for a holistic simulation of manual assembly tasks. Procedia CIRP, 72:768–773, 2018. doi: 10.1016/j.procir.2018.03.281.
[20] FMI standard. https://fmi-standard.org/. Accessed: 2021-03-22.
[21] Unity. https://unity.com/. Accessed: 2021-03-22.
[22] Unreal engine. https://www.unrealengine.com/en-US/. Accessed: 2021-03-22.
[23] F. Gaisbauer, E. Lampen, P. Agethen, and E. Rukzio. Combining heterogeneous digital human simulations: presenting a novel co-simulation approach for incorporating different character animation technologies. The Visual Computer, 37:717–734, 2020. doi: 10.1007/s00371-020- 01792-x.
[24] MOSIM. https://mosim.eu. Accessed: 2021-03-22.
[25] A. Safonova, J.K. Hodgins, and N.S. Pollard. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. ACM Transactions on Graphics, 23(3):514–521, 2004. doi: 10.1145/1186562.1015754.
[26] K. Rakowski. Learning Apache Thrift. Packt Publishing Ltd, 2015.
[27] M. Sporny, D. Longley, G. Kellogg, M. Lanthaler, and N. Lindström. JSON-LD 1.0. W3C recommendation, 16:41, 2014.
[28] MOSIM download section. https://mosim.eu/download.php. Accessed: 2021-03-22.
[29] K. Pietroszek, P. Pham, S. Rose, L. Tahai, I. Humer, and C. Eckhardt. Real-time avatar animation synthesis from coarse motion input. In Proceedings of the 23rd ACM Symposium on Virtual Reality Software and Technology, Gothenburg, Sweden, 2017. doi: 10.1145/3139131.3141223.
[30] RFC CSV file specification. https://tools.ietf.org/html/rfc4180. Accessed: 2021- 03-29.
Przejdź do artykułu

Autorzy i Afiliacje

Adam Kłodowski
1
Ilya Kurinov
1
Grzegorz Orzechowski
1
Aki Mikkola
1

  1. Department of Mechanical Engineering, LUT University, Lappeenranta, Finland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The present study investigates the 2D numerical analogies to the changes of the droplet shapes during the freefall for a wide range of droplet sizes through the stagnation air. The freefall velocity, shape change due to frictional force during free-fall is studied for different considered cases. With the elapse of time, a droplet with a larger initial diameter is changing its original shape more compared to droplets with a smaller diameter. In addition, the spreading of the droplet during the freefall seems more rapid for the larger-diameter droplet. When a droplet with an initial diameter of 15 mm starts to fall with gravitational force, the diameter ratio is decreasing for droplets with higher density and surface tension while droplets having lower density and surface tension show a diameter ratio greater than one. The spreading and splashing of the droplet on a solid surface and liquid storage at the time of impact are much influenced by the freefall memories of the droplet during the freefall from a certain height. These freefall memories are influenced by the fluid properties, drag force, and the freefall height. However, these freefall memories eventually regulate the deformation of the droplet during the freefall.
Przejdź do artykułu

Bibliografia

[1] X. Cao, Y. Ye, Q. Tang, E. Chen, Z. Jiang, J. Pan, and T. Guo. Numerical analysis of droplets from multinozzle inkjet printing. The Journal of Physical Chemistry Letters, 11(19):8442–8450, 2020. doi: 10.1021/acs.jpclett.0c02250.
[2] H. Wijshoff. Drop dynamics in the inkjet printing process. Current Opinion in Colloid & Interface Science, 36:20–27, 2018. doi: 10.1016/j.cocis.2017.11.004.
[3] W. Zhou, D. Loney, A.G. Fedorov, F.L. Degertekin, and D.W. Rosen. Shape evolution of droplet impingement dynamics in ink-jet manufacturing. Proceedings for the 2011 International Solid Freeform Fabrication Symposium, pages 309–325, Austin, USA, 2011. doi: 10.26153/tsw/15297.
[4] L. Mouzai and M. Bouhadef. Water drop erosivity: Effects on soil splash. Journal of Hydraulic Research, 41(1):61–68, 2003. doi: 10.1080/00221680309499929.
[5] M. Hajigholizadeh, A.M. Melesse, and H.R. Fuentes. Raindrop-induced erosion and sediment transport modelling in shallow waters: A review. Journal of Soil and Water Science, 1(1):15–25, 2018. doi: 10.36959/624/427.
[6] P.C. Ekern. Raindrop impact as the force initiating soil erosion. Soil Science Society of America Journal, 15(C):7–10, 1951. doi: 10.2136/sssaj1951.036159950015000C0002x.
[7] R. Andrade, O. Skurtys, and F. Osorio. Drop impact behavior on food using spray coating: Fundamentals and applications. Food Research International, 54(1):397–405, 2013. doi: 10.1016/j.foodres.2013.07.042.
[8] M. Toivakka. Numerical investigation of droplet impact spreading in spray coating of paper. Proceedings of the 2003 Spring Advanced Coating Fundamentals Symposium, Atlanta, USA, 2003.
[9] A. Prasad and H. Henein. Droplet cooling in atomization sprays. Journal of Materials Science, 43(17):5930–5941, 2008. doi: 10.1007/s10853-008-2860-2.
[10] W. Jia and H.-H. Qiu. Experimental investigation of droplet dynamics and heat transfer in spray cooling. Experimental Thermal and Fluid Science, 27(7):829–838, 2003. doi: 10.1016/S0894-1777(03)00015-3.
[11] G. Duursma, K. Sefiane, and A. Kennedy. Experimental studies of nanofluid droplets in spray cooling. Heat Transfer Engineering, 30(13):1108–1120, 2009. doi: 10.1080/01457630902922467.
[12] W.-C. Qin, B.-J. Qiu, X.-Y. Xue, C. Chen, Z.-F. Xu, and Q.-Q. Zhou. Droplet deposition and control effect of insecticides sprayed with an unmanned aerial vehicle against plant hoppers. Crop Protection, 85:79–88, 2016. doi: 10.1016/j.cropro.2016.03.018.
[13] S. Chen, Y. Lan, Z. Zhou, F. Ouyang, G. Wang, X. Huang, X. Deng, and S. Cheng. Effect of droplet size parameters on droplet deposition and drift of aerial spraying by using plant protection UAV. Agronomy, 10(2):195, 2020. doi: 10.3390/agronomy10020195.
[14] D.T. Sheppard. Spray Characteristics of Fire Sprinklers. Ph.D. Thesis, Northwestern University, Evanston, USA, June 2002.
[15] H. Liu, C.Wang, I.M. De Cachinho Cordeiro, A.C.Y. Yuen, Q. Chen, Q.N. Chan, S. Kook, and G.H. Yeoh. Critical assessment on operating water droplet sizes for fire sprinkler and water mist systems. Journal of Building Engineering, 28:100999, 2020. doi: 10.1016/j.jobe.2019.100999.
[16] D.C. Blanchard. The behavior of water drops at terminal velocity in air. Eos, Transactions American Geophysical Union, 31(6):836–842, 1950. doi: 10.1029/TR031i006p00836.
[17] H.R. Pruppacher and K.V. Beard. A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air. Quarterly Journal of the Royal Meteorological Society, 96(408):247–256, 1970. doi: 10.1002/qj.49709640807.
[18] H.R. Pruppacher and R.L. Pitter. A semi-empirical determination of the shape of cloud and rain drops. Journal of the Atmospheric Sciences, 28(1):86–94, 1971. doi: 10.1175/1520-0469(1971)0280086:ASEDOT>2.0.CO;2.
[19] K.V. Beard and C. Chuang. A new model for the equilibrium shape of raindrops. Journal of the Atmospheric Sciences, 44(11):1509–1524, Jun. 1987. doi: 10.1175/1520-0469(1987)0441509:ANMFTE>2.0.CO;2.
[20] É.Reyssat, F. Chevy, A.L. Biance, L. Petitjean, and D. Quéré. Shape and instability of free-falling liquid globules. Europhysics Letters, 80(3):34005, 2007. doi: 10.1209/0295-5075/80/34005.
[21] R. Clift, J.R. Grace, and M.E. Weber. Bubbles, Drops and Particles. Academic Press, 1978.
[22] S.-C. Yao and V.E. Schrock. Heat and mass transfer from freely falling drops. Journal of Heat Transfer, 98(1):120–126, 1976. doi: 10.1115/1.3450453.
[23] T.J. Horton, T.R. Fritsch, and R.C. Kintner. Experimental determination of circulation velocities inside drops. The Canadian Journal of Chemical Engineering, 43(3):143–146, 1965. doi: 10.1002/cjce.5450430309.
[24] R.H. Magarvey and B.W. Taylor. Free fall breakup of large drops. Journal of Applied Physics, 27(10):1129–1135, 1956. doi: 10.1063/1.1722216.
[25] M.N. Chowdhury, F.Y. Testik, M.C. Hornack, and A.A. Khan. Free fall of water drops in laboratory rainfall simulations. Atmospheric Research, 168:158–168, 2016. doi: 10.1016/j.atmosres.2015.08.024.
[26] M. Abdelouahab and R. Gatignol. Study of falling water drop in stagnant air. European Journal of Mechanics - B/Fluids, 60:82–89, 2016. doi: 10.1016/j.euromechflu.2016.07.007.
[27] J.H. van Boxel. Numerical model for the fall speed of raindrops in a rainfall simulator. I.C.E Special Report, 1998/1, 77–85,
[28] A.K. Kamra and D.V Ahire. Wind-tunnel studies of the shape of charged and uncharged water drops in the absence or presence of an electric field. Atmospheric Research, 23(2):117–134, 1989. doi: 10.1016/0169-8095(89)90003-3.
[29] M. Thurai and V.N. Bringi. Drop axis ratios from a 2D video disdrometer. Journal of Atmospheric and Oceanic Technology, 22(7):966–978, 2005. doi: 10.1175/JTECH1767.1.
[30] C. Josserand and S.T. Thoroddsen. Drop impact on a solid surface. Annual Review of Fluid Mechanics, 48:365–391, 2016. doi: 10.1146/annurev-fluid-122414-034401.
[31] J. Eggers, M.A. Fontelos, C. Josserand, and S. Zaleski. Drop dynamics after impact on a solid wall: Theory and simulations. Physics of Fluids, 22(6):062101, 2010. doi: 10.1063/1.3432498.
[32] S. Chandra and C.T. Avedisian. On the collision of a droplet with a solid surface. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 432(1884):13–41, 1991. doi: 10.1098/rspa.1991.0002.
[33] O.G. Engel. Waterdrop collisions with solid surfaces. Journal of Research of the National Bureau of Standards, 54(5):281–298, 1955. doi: 10.6028/jres.054.033.
[34] I.V. Roisman, R. Rioboo, and C. Tropea. Normal impact of a liquid drop on a dry surface: model for spreading and receding. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 458(2022):1411–1430, 2002. doi: 10.1098/rspa.2001.0923.
[35] Y. Renardy, S. Popinet, L. Duchemin, M. Renardy, S. Zaleski, C. Josserand, M.A. Drumright-Carke, D. Richard, C. Clanet, and D. Quéré. Pyramidal and toroidal water drops after impact on a solid surface. Journal of Fluid Mechanics, 484:69–83, 2003. doi: 10.1017/S0022112003004142.
[36] D. Bartolo, F. Bouamrirene, É. Verneuil, A. Buguin, P. Silberzan, and S. Moulinet. Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces. Europhysics Letters, 74(2):299–305, 2006. doi: 10.1209/epl/i2005-10522-3.
[37] D. Bartolo, C. Josserand, and D. Bonn. Singular jets and bubbles in drop impact. Physical Review Letters, 96:124501, 2006. doi: 10.1103/PhysRevLett.96.124501.
[38] C. Clanet, C. Béguin, D. Richard, and D. Quéré. Maximal deformation of an impacting drop. Journal of Fluid Mechanics, 517:199–208, 2004. doi: 10.1017/S0022112004000904.
[39] L.H.J. Wachters, L. Smulders, J.R. Vermeulen, and H.C. Kleiweg. The heat transfer from a hot wall to impinging mist droplets in the spheroidal state. Chemical Engineering Science, 21(12):1047–1056, 1966. doi: 10.1016/0009-2509(66)85042-X.
[40] C.O. Pedersen. An experimental study of the dynamic behavior and heat transfer characteristics of water droplets impinging upon a heated surface. International Journal of Heat and Mass Transfer, 13(2):369–381, 1970. doi: 10.1016/0017-9310(70)90113-4.
[41] M.A. Styricovich, Y.V. Baryshev, G.V. Tsiklauri and M E. Grigorieva. The mechanism of heat and mass transfer between a water drop and a heated surface. Proceedings of the Sixth International Heat Transfer Conference, Vol. 1, pages 239-243, Toronto, Canada, August 7-11, 1978.
[42] P. Savic and G.T. Boult. The fluid flow associated with the impact of liquid drops with solid surfaces. Proceedings of Heat Transfer Fluid Mechanics Institution, 43-84, 1957.
[43] S.E. Hinkle. Water drop kinetic energy and momentum measurement considerations. Applied Engineering in Agriculture, 5(3):386–391, 1989. doi: 10.13031/2013.26532.
[44] C.D. Stow and R.D. Stainer. The physical products of a splashing water drop. Journal of Meteorological Society of Japan, 55(5):518–532, 1977.
[45] Z. Levin and P.V. Hobbs. Splashing of water drops on solid and wetted surfaces, Hydrodynamics and charge separation. Philosophical Transactions of the Royal Society A Mathematical, Physical and Engineering Sciences, 269(1200):555–585, 1971. doi: 10.1098/rsta.1971.0052.
[46] C.D. Stow, M.G. Hadfield. An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 37(1755):419–441, 1981. doi: 10.1098/rspa.1981.0002.
[47] C. Mundo, M. Sommerfeld, and C. Tropea. Droplet-wall collisions: Experimental studies of the deformation and breakup process. I nternational Journal of Multiphase Flow, 21(2):151–173, 1995. doi: 10.1016/0301-9322(94)00069-V.
[48] M. Bussmann, S. Chandra, and J. Mostaghimi. Modeling the splash of a droplet impacting a solid surface. Physics of Fluids, 12(12):3121–3132, 2000. doi: 10.1063/1.1321258.
[49] L. Xu, W.W. Zhang, and S.R. Nagel. Drop splashing on a dry smooth surface. Physical Review Letters, 94(18):184505, 2005. doi: 10.1103/PhysRevLett.94.184505.
[50] B.T. Helenbrook and C.F. Edwards. Quasi-steady deformation and drag of uncontaminated liquid drops. International Journal of Multiphase Flow, 28(10):1631–1657, 2002. doi: 10.1016/S0301-9322(02)00073-3.
[51] J.Q. Feng. A deformable liquid drop falling through a quiescent gas at terminal velocity. Journal of Fluid Mechanics, 658:438–462, 2010. doi: 10.1017/S0022112010001825.
[52] J.Q. Feng and K.V. Beard. Raindrop shape determined by computing steady axisymmetric solutions for Navier-Stokes equations. Atmospheric Research, 101(1–2):480–491, 2011. doi: 10.1016/j.atmosres.2011.04.012.
[53] J. Han and G. Tryggvason. Secondary breakup of axisymmetric liquid drops. I. Acceleration by a constant body force. Physics of Fluids, 11(12):3650–3667, 1999. doi: 10.1063/1.870229.
[54] J. Han and G. Tryggvason. Secondary breakup of a axisymmetric liquid drops. II. Impulsive acceleration. Physics of Fluids, 13(6):1554–1565, 2001. doi: 10.1063/1.1370389.
[55] P. Khare and V. Yang. Breakup of non-Newtonian liquid droplets. 44th AIAA Fluid Dynamics Conference, Atlanta, USA, 16-20 June 2014. doi: 10.2514/6.2014-2919.
[56] M. Sussman and E.G. Puckett. A Coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. Journal of Computational Physics, 162(2):301–337, 2000. doi: 10.1006/jcph.2000.6537.
[57] R. Scardovelli and S. Zaleski. Direct numerical simulation of free-surface and interfacial flow. Annual Review of Fluid Mechanics, 31:567–603, 1999. doi: 10.1146/annurev.fluid.31.1.567.
[58] S. Shin and D. Juric. Simulation of droplet impact on a solid surface using the level contour reconstruction method. Journal of Mechanical Science and Technology, 23:2434–2443, 2009. doi: 10.1007/s12206-009-0621-z.
[59] M. García Pérez and E. Vakkilainen. A comparison of turbulence models and two and three dimensional meshes for unsteady CFD ash deposition tools. Fuel, 237:806–811, 2019. doi: 10.1016/j.fuel.2018.10.066.
[60] M. Mezhericher, A. Levy, and I. Borde. Modeling of droplet drying in spray chambers using 2D and 3D computational fluid dynamics. Drying Technology, 27(3):359–370, 2009. doi: 10.1080/07373930802682940.
[61] S. Afkhami and M. Bussmann. Height functions for applying contact angles to 2D VOF simulations. International Journal for Numerical Methods in Fluids, 57(4):453-472, 2008. doi: 10.1002/fld.1651.
[62] J. Zheng, J. Wang, Y. Yu, and T. Chen. Hydrodynamics of droplet impingement on a thin horizontal wire. Mathematical Problems in Engineering, 2018:9818494, 2018. doi: 10.1155/2018/9818494.
[63] J. Thalackottore Jose and J.F. Dunne. Numerical simulation of single-droplet dynamics, vaporization, and heat transfer from impingement onto static and vibrating surfaces. Fluids, 5(4):188, 2020. doi: 10.3390/fluids5040188.
[64] H. Liu. Science and Engineering of Droplets: Fundamentals and Applications. Noyes Publications, USA, 1999.
Przejdź do artykułu

Autorzy i Afiliacje

Abid Hasan Rafi
1
ORCID: ORCID
Mohammad Rejaul Haque
1
ORCID: ORCID
Dewan Hasan Ahmed
1
ORCID: ORCID

  1. Department of Mechanical and Production Engineering, Ahsanullah University of Science and Technology, Dhaka, Bangladesh
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

In this paper, neural networks are presented to solve the inverse kinematic models of continuum robots. Firstly, the forward kinematic models are calculated for variable curvature continuum robots. Then, the forward kinematic models are implemented in the neural networks which present the position of the continuum robot’s end effector. After that, the inverse kinematic models are solved through neural networks without setting up any constraints. In the same context, to validate the utility of the developed neural networks, various types of trajectories are proposed to be followed by continuum robots. It is found that the developed neural networks are powerful tool to deal with the high complexity of the non-linear equations, in particular when it comes to solving the inverse kinematics model of variable curvature continuum robots. To have a closer look at the efficiency of the developed neural network models during the follow up of the proposed trajectories, 3D simulation examples through Matlab have been carried out with different configurations. It is noteworthy to say that the developed models are a needed tool for real time application since it does not depend on the complexity of the continuum robots' inverse kinematic models.
Przejdź do artykułu

Bibliografia

[1] D. Trivedi, C.D. Rahn, W.M. Kier, and I.D. Walker. Soft robotics: Biological inspiration, state of the art, and future research. Applied Bionics and Biomechanics, 5(3):99–117, 2008. doi: 10.1080/11762320802557865.
[2] G. Robinson and J.B.C. Davies. Continuum robots – a state of the art. In Proceedings 1999 IEEE International Conference on Robotics and Automation, volume 4, pages 2849–2854, 1999. doi: 10.1109/ROBOT.1999.774029.
[3] I.D. Walker. Continuous backbone “continuum” robot manipulators. International Scholarly Research Notices, 2013:726506, 2013. doi: 10.5402/2013/726506.
[4] H.-S. Yoon and B.-J. Yi. Development of a 4-DOF continuum robot using a spring backbone. The Journal of Korea Robotics Society, 3(4):323–330, 2008.
[5] M. Li, R. Kang, S. Geng, and E. Guglielmino. Design and control of a tendon-driven continuum robot. Transactions of the Institute of Measurement and Control, 40(11):3263–3272, 2018. doi: 10.1177/0142331216685607.
[6] G. Gao, H. Wang, J. Fan, Q. Xia, L. Li, and H. Ren. Study on stretch-retractable single-section continuum manipulator. Advanced Robotics, 33(1):1–12, 2019. doi: 10.1080/01691864.2018.1554507.
[7] C. Laschi, B. Mazzolai, V. Mattoli, M. Cianchetti, and P. Dario. Design of a biomimetic robotic octopus arm. Bioinspiration & Biomimetics, 4(1):15006, 2009. doi: 10.1088/1748- 3182/4/1/015006.
[8] F. Renda, M. Cianchetti, M. Giorelli, A. Arienti, and C. Laschi. A 3D steady-state model of a tendon-driven continuum soft manipulator inspired by the octopus arm. Bioinspiration & Biomimetics, 7(2):25006, 2012. doi: 10.1088/1748-3182/7/2/025006.
[9] F. Renda, M. Giorelli, M. Calisti, M. Cianchetti, and C. Laschi. Dynamic model of a multibending soft robot arm driven by cables. IEEE Transactions on Robotics, 30(5):1109–1122, 2014. doi: 10.1109/TRO.2014.2325992.
[10] Y. Peng, Y. Liu, Y. Yang, N. Liu, Y. Sun, Y. Liu, H. Pu, S. Xie, and J. Luo. Development of continuum manipulator actuated by thin McKibben pneumatic artificial muscle. Mechatronics, 60:56–65, 2019. doi: 10.1016/j.mechatronics.2019.05.001.
[11] G. Gao, H. Ren, Q. Xia, H. Wang, and L. Li. Stretched backboneless continuum manipulator driven by cannula tendons. Industrial Robot, 45(2):237–243, 2018. doi: 10.1108/IR-06-2017-0124.
[12] R.J. Webster III and B.A. Jones. Design and kinematic modeling of constant curvature continuum robots: A review. The International Journal of Robotics Research, 29(13):1661–1683, 2010. doi: 10.1177/0278364910368147.
[13] S. Mosqueda, Y. Moncada, C. Murrugarra, and H. León-Rodriguez. Constant curvature kinematic model analysis and experimental validation for tendon driven continuum manipulators. In Proceedings of the 15th International Conference on Informatics in Control, Automation and Robotics ICINCO (2), volume 2, pages 211–218, 2018. doi: 10.5220/0006913502110218.
[14] A. Ghoul, K. Kara, M. Benrabah, and M.L. Hadjili. Optimized nonlinear sliding mode control of a continuum robot manipulator. Journal of Control, Automation and Electrical Systems, pages 1–9, 2022. doi: 10.1007/s40313-022-00914-1.
[15] C. Escande. Towards Modeling of a Class of Bionic Manipulator Robots. PhD Thesis, Lille, France, 2013.
[16] T. Mahl, A. Hildebrandt, and O. Sawodny. A variable curvature continuum kinematics for kinematic control of the bionic handling assistant. IEEE Transactions on Robotics, 30(4):935– 949, 2014. doi: 10.1109/TRO.2014.2314777.
[17] S. Djeffal, A. Amouri, and C. Mahfoudi. Kinematics modeling and simulation analysis of variable curvature kinematics continuum robots. UPB Scientific Bulletin, Series D: Mechanical Engineering, 83:28–42, 2021.
[18] S. Djeffal, C. Mahfoudi, and A. Amouri. Comparison of three meta-heuristic algorithms for solving inverse kinematics problems of variable curvature continuum robots. In 2021 European Conference on Mobile Robots (ECMR), pages 1–6, 2021. doi: 10.1109/ECMR50962.2021.9568789.
[19] O. Lakhal, A. Melingui, A. Shahabi, C. Escande, and R. Merzouki. Inverse kinematic modeling of a class of continuum bionic handling arm. In 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pages 1337–1342, 2014. doi: 10.1109/AIM.2014.6878268.
[20] D. Trivedi, A. Lotfi, and C.D. Rahn. Geometrically exact dynamic models for soft robotic manipulators. In 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1497–1502, 2007. doi: 10.1109/IROS.2007.4399446.
[21] A. Amouri, C. Mahfoudi, A. Zaatri, O. Lakhal, and R. Merzouki. A metaheuristic approach to solve inverse kinematics of continuum manipulators. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 231(5):380– 394, 2017. doi: 10.1177/0959651817700779.
[22] E. Shahabi and C.-H. Kuo. Solving inverse kinematics of a planar dual-backbone continuum robot using neural network. In B. Corves, P. Wenger, and M. Hüsing, editors, EuCoMeS 2018, pages 355–361. Springer, Cham, 2019. doi: 10.1007/978-3-319-98020-1_42.
[23] T.G. Thuruthel, E. Falotico, M. Cianchetti, and C. Laschi. Learning global inverse kinematics solutions for a continuum robot. In V. Parenti-Castelli andW. Schiehlen, editors, ROMANSY 21 - Robot Design, Dynamics and Control, pages 47–54. Springer, Cham, 2016. doi: 10.1007/978-3-319-33714-2_6.
[24] L. Jiajia, D. Fuxin, L. Yibin, L. Yanqiang, Z. Tao, and Z. Gang. A novel inverse kinematics algorithm using the Kepler oval for continuum robots. Applied Mathematical Modelling, 93:206–225, 2021. doi: 10.1016/j.apm.2020.12.014.
[25] D.Y. Kolpashchikov, N.V. Laptev, V.V. Danilov, I.P. Skirnevskiy, R.A. Manakov, and O.M. Gerget. FABRIK-based inverse kinematics for multi-section continuum robots. In 2018 18th International Conference on Mechatronics-Mechatronika (ME), pages 1–8. IEEE, 2018.
[26] R. Köker, C. Öz, T. Çakar, and H. Ekiz. A study of neural network based inverse kinematics solution for a three-joint robot. Robotics and Autonomous Systems, 49(3-4):227–234, 2004. doi: 10.1016/j.robot.2004.09.010.
[27] R.Y. Putra, S. Kautsar, R.Y. Adhitya, M. Syai’in, N. Rinanto, I. Munadhif, S.T. Sarena, J. Endrasmono, and A. Soeprijanto. Neural network implementation for invers kinematic model of arm drawing robot. In 2016 International Symposium on Electronics and Smart Devices (ISESD), pages 153–157, 2016. doi: 10.1109/ISESD.2016.7886710.
[28] N. Bigdeli, K. Afsar, B.I. Lame, and A. Zohrabi. Modeling of a five link biped robot dynamics using neural networks. Journal of Applied Sciences, 8(20):3612–3620, 2008.
[29] Z. Bingul, H.M. Ertunc, and C. Oysu. Comparison of inverse kinematics solutions using neural network for 6r robot manipulator with offset. In 2005 ICSC Congress on Computational Intelligence Methods and Applications, page 5, 2005. doi: 10.1109/CIMA.2005.1662342.
[30] X. Zhang, Y. Liu, D.T. Branson, C. Yang, J. S Dai, and R. Kang. Variable-gain control for continuum robots based on velocity sensitivity. Mechanism and Machine Theory, 168:104618, 2022. doi: 10.1016/j.mechmachtheory.2021.104618.
[31] A. Liegeois. Automatic supervisory control of the configuration and behavior of multibody mechanisms. IEEE Transactions on Systems, Man, and Cybernetics, 7(12):868–871, 1977.
Przejdź do artykułu

Autorzy i Afiliacje

Abdelhamid Ghoul
1
Kamel Kara
1
Selman Djeffal
2
Mohamed Benrabah
3
Mohamed Laid Hadjili
4

  1. Université of Blida 1, Laboratoire des systèmes électriques et télécommande, Faculty of Technology, Blida, Algeria
  2. University of Larbi Ben M’hidi, Faculty of Science and Applied Sciences, Oum El Bouaghi, Algeria
  3. University of Sciences and Technology Houari Boumediene, Laboratoire des systèmes électriques et télécommande, Faculty of Electrical Engineering, Algiers, Algeria
  4. Haute Ecole Bruxelles, Ecole Supérieure d’Informatique, Brussels, Belgium
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The numerical solutions are obtained for rotating beams; the inclusion of centrifugal force term makes it difficult to get the analytical solutions. In this paper, we solve the free vibration problem of rotating Rayleigh beam using Chebyshev and Legendre polynomials where weak form of meshless local Petrov-Galerkin method is used. The equations which are derived for rotating beams result in stiffness matrices and the mass matrix. The orthogonal polynomials are used and results obtained with Chebyshev polynomials and Legendre polynomials are exactly the same. The results are compared with the literature and the conventional finite element method where only first seven terms of both the polynomials are considered. The first five natural frequencies and respective mode shapes are calculated. The results are accurate when compared to literature.
Przejdź do artykułu

Bibliografia

[1] R. Ganguli. Finite Element Analysis of Rotating Beams. Springer, Singapore, 2017.
[2] R. Ganguli and V. Panchore. The Rotating Beam Problem in Helicopter Dynamics. Springer, Singapore, 2018.
[3] S.N. Atluri. The Meshless Method (MLPG) for Domain and BIE Discretizations. Tech Science Press, Forsyth, 2004.
[4] G.R. Liu. Meshfree Methods. CRC Press, New York, 2003.
[5] I.S. Raju, D.R. Phillips, and T. Krishnamurthy. A radial basis function approach in the meshless local Petrov-Galerkin method for Euler-Bernoulli beam problems. Computational Mechanics, 34:464–474, 2004. doi: 10.1007/s00466-004-0591-z.
[6] D. Hu, Y. Wang, Y. Li, Y. Gu and X. Han. A meshfree-based local Galerkin method with condensation of degree of freedom. Finite Elements in Analysis and Design, 78:16–24, 2014. doi: 10.1016/j.finel.2013.09.004.
[7] S. De Marchi and M.M. Cecchi. The polynomial approximation in finite element method. Journal of Computational and Applied Mathematics, 57(1-2):99–114, 1995. doi: 10.1016/0377-0427(93)E0237-G.
[8] V. Panchore, R. Ganguli, and S.N. Omkar. Meshless local Petrov-Galerkin method for rotating Euler-Bernoulli beam. Computer Modeling in Engineering and Sciences, 104(5):353–373, 2015. doi: 10.3970/cmes.2015.104.353.
[9] V. Panchore, R. Ganguli, and S.N. Omkar. Meshless local Petrov-Galerkin method for rotating Timoshenko beam: a locking-free shape function formulation. Computer Modeling in Engineering and Sciences, 108(4):215–237, 2015. doi: 10.3970/cmes.2015.108.215.
[10] W. Johnson. Helicopter Theory. Dover Publications, New York, 1980.
[11] A. Bokaian. Natural frequencies of beams under tensile axial loads. Journal of Sound and Vibration, 142(3):481–498, 1990. doi: 10.1016/0022-460X(90)90663-K.
[12] S.V. Hoa. Vibration of a rotating beam with tip mass. Journal of Sound and Vibration, 67(3):369–381, 1979. doi: 10.1016/0022-460X(79)90542-X.
[13] H.D. Hodges and M.J. Rutkowski. Free-vibration analysis of rotating beams by a variable-order finite element method. AIAA Journal, 19(11):1459–1466, 1981. doi: 10.2514/3.60082.
[14] J. Chung and H.H. Yoo. Dynamic analysis of a rotating cantilever beam by using the finite element method. Journal of Sound and Vibration, 249:147–164, 2002. doi: 10.1006/jsvi.2001.3856.
[15] R.L. Bisplinghoff, H. Ashley, and R.L. Halfman. Aeroelasticity. Dover Publications, New York, 1996.
[16] V. Giurgiutiu and R.O. Stafford. Semi-analytical methods for frequencies and mode shapes of rotor blades. Vertica, 1:291–306, 1977.
[17] J.B. Gunda and R. Ganguli. Stiff-string basis functions for vibration analysis of high speed rotating beams. Journal of Applied Mechanics, 75(2):0245021, 2008. doi: 10.1115/1.2775497.
[18] V. Panchore and R. Ganguli. Quadratic B-spline finite element method for a rotating non-uniform Rayleigh beam. Structural Engineering and Mechanics, 61(6):765–773, 2017. doi: 10.12989/sem.2017.61.6.765.
[19] V. Panchore and R. Ganguli. Quadratic B-spline finite element method for a rotating non-uniform Euler-Bernoulli beam. International Journal for Computational Methods in Engineering Science and Mechanics, 19(5):340–350, 2018. doi: 10.1080/15502287.2018.1520757.
[20] T. Rabczuk, J-H Song, X. Zhuang, and C. Anitescu. Extended Finite Element and Meshfree Methods. Elsevier, London, 2020.
[21] J.R. Xiao and M.A. McCarthy. Meshless analysis of the obstacle problem for beams by the MLPG method and subdomain variational formulations. European Journal of Mechanics – A/Solids, 22(3):385–399, 2003. doi: 10.1016/S0997-7538(03)00050-0.
[22] J.Y. Cho and S. N. Atluri. Analysis of shear flexible beams, using the meshless local Petrov-Galerkin method, based on a locking-free formulation. Engineering Computations, 18(1-2):215–240, 2001. doi: 10.1108/02644400110365888.
[23] J. Sladek, V. Sladek, S. Krahulec, and E. Pan. The MLPG analyses of large deflections of magnetoelectroelastic plates. Engineering Analysis with Boundary Elements, 37(4):673–682, 2013. doi: 10.1016/j.enganabound.2013.02.001.
[24] S.N. Atluri, J.Y. Cho, and H.-G. Kim. Analysis of thin beams, using the meshless local Petrov-Galerkin method, with generalized moving least squares interpolations. Computational Mechanics, 24:334–347, 1999. doi: 10.1007/s004660050456.
[25] J.R. Banerjee and D.R. Jackson. Free vibration of a rotating tapered Rayleigh beam: A dynamic stiffness method of solution. Computers and Structures, 124:11–20, 2013. doi: 10.1016/j.compstruc.2012.11.010.
Przejdź do artykułu

Autorzy i Afiliacje

Vijay Panchore
1

  1. Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal, India
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

In this paper the analysis of backlash influence on the spectrum of torque at the output shaft of a cycloidal gearbox has been performed. The model of the single stage cycloidal gearbox was designed in the MSC Adams. The analysis for the excitation with the torque and the analysis with constant angular velocity of the input shaft were performed. For these analyses, the amplitude spectrums of the output torque for different backlashes was solved using FFT algorithm. The amplitude spectrums of the combined sine functions composed of the impact to impact times between the cycloidal wheel and the external sleeves were computed for verification. The performed studies show, that the backlash has significant influence on the output torque amplitude spectrum. Unfortunately the dependencies between the components of the spectrum and the backlash could not be expressed by linear equations, when vibrations of the output torque in the range of (350 Hz – 600 Hz) are considered. The gradual dependence can be found in the spectrum determined for the combined sine functions with half-periods equal impact-to-impact times. The spectrum is narrower for high values of backlash.
Przejdź do artykułu

Bibliografia

[1] M. Blagojević, M. Matejić, and N. Kostić. Dynamic behaviour of a two-stage cycloidal speed reducer of a new design concept. Tehnički Vjesnik, 25(2):291–298, 2018, doi: 10.17559/TV- 20160530144431.
[2] M. Wikło, R. Król, K. Olejarczyk, and K. Kołodziejczyk. Output torque ripple for a cycloidal gear train. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(21–22):7270–7281, 2019, doi: 10.1177/0954406219841656.
[3] N. Kumar, V. Kosse, and A. Oloyede. A new method to estimate effective elastic torsional compliance of single-stage Cycloidal drives. Mechanism and Machine Theory, 105:185–198, 2016, doi: 10.1016/j.mechmachtheory.2016.06.023.
[4] C.F. Hsieh. The effect on dynamics of using a new transmission design for eccentric speed reducers. Mechanism and Machine Theory, 80:1–16, 2014, doi: 10.1016/j.mechmachtheory.2014.04.020.
[5] R. Król. Kinematics and dynamics of the two stage cycloidal gearbox. AUTOBUSY – Technika, Eksploatacja, Systemy Transportowe, 19(6):523–527, 2018, doi: 10.24136/atest.2018.125.
[6] K.S. Lin, K.Y. Chan, and J.J. Lee. Kinematic error analysis and tolerance allocation of cycloidal gear reducers. Mechanism and Machine Theory, 124:73–91, 2018, doi: 10.1016/j.mechmachtheory.2017.12.028.
[7] L.X. Xu, B.K. Chen, and C.Y. Li. Dynamic modelling and contact analysis of bearing-cycloid-pinwheel transmission mechanisms used in joint rotate vector reducers. Mechanism and Machine Theory, 137:432–458, 2019, doi: 10.1016/j.mechmachtheory.2019.03.035.
[8] D.C.H. Yang and J.G. Blanche. Design and application guidelines for cycloid drives with machining tolerances. Mechanism and Machine Theory, 25(5):487–501, 1990, doi: 10.1016/0094-114X(90) 90064-Q.
[9] J.W. Sensinger. Unified approach to cycloid drive profile, stress, and efficiency optimization. Journal of Mechanical Design, 132(2):024503, 2010, doi: 10.1115/1.4000832.
[10] Y. Li, K. Feng, X. Liang, and M.J. Zuo. A fault diagnosis method for planetary gearboxes under non-stationary working conditions using improved Vold-Kalman filter and multi-scale sample entropy. Journal of Sound and Vibration, 439:271–286, 2019, doi: 10.1016/j.jsv.2018.09.054.
[11] Z.Y. Ren, S.M. Mao, W.C. Guo, and Z. Guo. Tooth modification and dynamic performance of the cycloidal drive. Mechanical Systems and Signal Processing, 85:857–866, 2017, doi: 10.1016/j.ymssp.2016.09.029.
[12] L.X. Xu and Y.H. Yang. Dynamic modeling and contact analysis of a cycloid-pin gear mechanism with a turning arm cylindrical roller bearing. Mechanism and Machine Theory, 104:327–349, 2016, doi: 10.1016/j.mechmachtheory.2016.06.018.
[13] S. Schmidt, P.S. Heyns, and J.P. de Villiers. A novelty detection diagnostic methodology for gearboxes operating under fluctuating operating conditions using probabilistic techniques, Mechanical Systems and Signal Processing, vol. 100, pp. 152–166, 2018, doi: 10.1016/j.ymssp.2017.07.032.
[14] Y. Lei, D. Han, J. Lin, and Z. He. Planetary gearbox fault diagnosis using an adaptive stochastic resonance method. Mechanical Systems and Signal Processing, 38(1):113–124, 2013, doi: 10.1016/j.ymssp.2012.06.021.
[15] Y. Chen, X. Liang, and M.J. Zuo. Sparse time series modeling of the baseline vibration from a gearbox under time-varying speed condition. Mechanical Systems and Signal Processing, 134:106342, 2019, doi: 10.1016/j.ymssp.2019.106342.
[16] G. D’Elia, E. Mucchi, and M. Cocconcelli. On the identification of the angular position of gears for the diagnostics of planetary gearboxes. Mechanical Systems and Signal Processing, 83:305–320, 2017, doi: 10.1016/j.ymssp.2016.06.016.
[17] X. Chen and Z. Feng. Time-frequency space vector modulus analysis of motor current for planetary gearbox fault diagnosis under variable speed conditions. Mechanical Systems and Signal Processing, 121:636–654, 2019, doi: 10.1016/j.ymssp.2018.11.049.
[18] S. Schmidt, P.S. Heyns, and K.C. Gryllias. A methodology using the spectral coherence and healthy historical data to perform gearbox fault diagnosis under varying operating conditions. Applied Acoustics, 158:107038, 2020, doi: 10.1016/j.apacoust.2019.107038.
[19] D. Zhang and D. Yu. Multi-fault diagnosis of gearbox based on resonance-based signal sparse decomposition and comb filter. Measurement, 103:361–369, 2017, doi: 10.1016/j.measurement.2017.03.006.
[20] C. Wang, H. Li, J. Ou, R. Hu, S. Hu, and A. Liu. Identification of planetary gearbox weak compound fault based on parallel dual-parameter optimized resonance sparse decomposition and improved MOMEDA. Measurement, 165:108079, 2020, doi: 10.1016/j.measurement.2020.108079.
[21] W. Teng, X. Ding, H. Cheng, C. Han, Y. Liu, and H. Mu. Compound faults diagnosis and analysis for a wind turbine gearbox via a novel vibration model and empirical wavelet transform. Renewable Energy, 136:393–402, 2019, doi: 10.1016/j.renene.2018.12.094.
[22] R. Król. Resonance phenomenon in the single stage cycloidal gearbox. Analysis of vibrations at the output shaft as a function of the external sleeves stiffness. Archive of Mechanical Engineering, 68(3):303–320, 2021, doi: 10.24425/ame.2021.137050.
[23] MSC Software. MSC Adams Solver Documentation.
[24] MSC Software. MSC Adams View Documentation.
Przejdź do artykułu

Autorzy i Afiliacje

Roman Król
1
ORCID: ORCID

  1. Faculty of Mechanical Engineering, Kazimierz Pulaski University of Technology and Humanities in Radom, Poland

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji