Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 252
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The ability of parasitoids in locating hosts determines their success in suppressing the pest population. Chemical stimuli emitted from food products and hosts provoke the searching behavior of parasitoids. Anisopteromalus calandrae (Howard) (Hymenoptera: Pteromalidae) is a generalist idiobiont ectoparasitoid of coleopteran pests in stored products. In the current study, the behavioral responses of A. calandrae females were evaluated regarding host food and different life stages of the host, Callosobruchus maculatus F. (Coleoptera: Chrysomelidae), using a Y-tube olfactometer. The parasitoid was offered uninfested chickpea kernels, damaged chickpea without larvae of C. maculatus, damaged chickpea with preferred stage (4th instar) larvae of C. maculatus, uninfested chickpea + C. maculatus adults, and eggs of C. maculatus on chickpea. In another test, the preference of A. calandrae for either damaged chickpea without larva of C. maculatus or damaged chickpea with nonpreferred stage (1st instar) larvae of C. maculatus was studied. The results showed that the females did not prefer uninfested chickpea kernels and adults of C. maculatus. However, they were attracted to damaged kernels with or without larvae, and the kernels containing eggs of C. maculatus. When the female parasitoids had a choice between damaged chickpea without larva of C. maculatus and damaged chickpea with 1st instar larva, they did not prefer one over the other. The results of this investigation can be helpful for using A. calandrae as a biological control agent in stored products.
Go to article

Authors and Affiliations

Masoomeh Moosavi
1
Nooshin Zandi-Sohani
1
Ali Rajabpour
1

  1. Plant Protection Department, Agricultural Sciences and Natural Resources University of Khuzestan, Ahvaz, Iran
Download PDF Download RIS Download Bibtex

Abstract

Currently, Prosopis laevigata (mesquite) has been affected by the Bruchinae coleoptera pest, whic feeds on its seed and causes significant losses in production and grain storage. In the Hñähñu community El Alberto (Ixmiquilpan, Hidalgo, Mexico), the use of aqueous extracts from garlic and nettle as botanical insecticides against different pests in agricultural fields is a known practice. Herein, we assess the efficacy of the method known by locals in the protection of mesquite seeds. Two tests were conducted: 1) Insecticidal effect on adult bruchins, and 2) Seed preservation test from Bruchinae infestation, with a germination test in seeds exposed to the treatments. There are probable insecticidal effects on immature stages of Bruchinae since there were no mortality effects on their adults during the first test. Mortality on adults in the second test was 75.6% with garlic and 50% with nettle. Nettle extract had more efficacy in seed protection with an infestation rate of 4%, whereas 27.5% of the seeds exposed to garlic extract were infested. Seed germination rate was 2.38% with nettle extract, and 1.19% with garlic extract. The method known by local inhabitants requires modifications to increase its efficacy and possible use in Integrated Pest Management in the future.
Go to article

Authors and Affiliations

Mariana González-Macedo
1
Nathalie Cabirol
1
Marcelo Rojas-Oropeza
1

  1. Functional Soil Microbial Ecology and Environmental Protection Group − Department of Ecology and Natural Resources, Facultad de Ciencias − Universidad Nacional Autonoma de Mexico, Mexico
Download PDF Download RIS Download Bibtex

Abstract

Plants can recognize molecules derived from pathogens and trigger systemic acquired resistance (SAR). In phytopathogenic bacteria, elicitors are constituent components of cellular structures, such as flagellin. We sought to select structural components of Xanthomonas spp. incompatible with tomato, aiming to control bacterial spot ( Xanthomonas perforans). Initially, cell suspensions from 11 Xanthomonas spp. isolates were infiltrated into the leaves to assess their ability to cause a hypersensitivity response (HR) and the incompatible ones had their flagellin purified. The flagellin of the isolates were first applied at different concentrations, via infiltration and spraying. The pathogen, X. perforans, was inoculated after 24 h, to assess whether there would be any harmful reaction. No harmful reaction was observed in any treatment. Then, a second experiment was conducted to assess the severity of all isolates, at a concentration of 8.35 μg · ml–1, via spraying, infiltration, and soil. The greatest reduction in Area Under the Disease Progress Curve (AUDPC) was observed in the treatment with XapRR, applied via spraying. Thus, prospecting for elicitors is the first step in developing a product for agricultural use. The flagellin elicitor of XapRR is promising and capable of producing these molecules on a large scale.
Go to article

Authors and Affiliations

Camila Tonelotti Simões
1
ORCID: ORCID
Valdeir Nunes Carvalho
1
ORCID: ORCID
Bernardo de Almeida Halfeld-Vieira
2
ORCID: ORCID

  1. Faculdade de Ciências Agronômicas, Universidade Estadual Paulita “Júlio de Mesquita Filho”, Botucatu, Brazil
  2. Fitopatologia, Embrapa Meio Ambiente, Jaguariúna, São Paulo, Brazil
Download PDF Download RIS Download Bibtex

Abstract

Annual losses of cocoa in Ghana to insect pests are significant. The use of integrated pest management (IPM) tools is critical for effective pest management. Previous studies on the subject have considered how farmers perceive the economic impact of insect pests on cocoa. These studies however did not investigate farmers’ ability to identify pests, associated damage symptoms and their implications for pest management. The current study, therefore, assessed farmers’ ability to correctly associate insect damage with the pest species that caused it. A total of 600 farmers were interviewed in the Eastern, Ashanti, Western, Brong Ahafo and Central Regions of Ghana with a structured open and closedended questionnaire. Most farmers (>85%) were unable to correctly identify and associate pests to their damage. The majority (>80%) of farmers also could not link the immature stages of insect pests to their adult stages. Wrong identification of the major pests (>85%) led to a wide variation in the timing of insecticide application amongst farmers. The majority of the farmers (60%) interviewed had not received training in insect pest identification. The study shows that 90% of the farmers, who had received some training, got it from the Cocoa Health and Extension Division (CHED) of the Ghana Cocoa Board (COCOBOD). Almost all respondents (98%) agreed that correct pest identification is critical for effective pest control. The importance of pest identification and monitoring as a component of IPM is discussed.
Go to article

Authors and Affiliations

Godfred Kweku Awudzi
1
Richard Adu-Acheampong
1
Silas Wintuma Avicor
1
Yahaya Bukari
2
Millicent Adomaa Yeboah
3
Edmond Kwadwo Oti Boateng
4
Stephen Kwame Ahadzi
1

  1. Entomology, Cocoa Research Institute of Ghana (CRIG), Ghana
  2. Plant Pathology, Cocoa Research Institute of Ghana (CRIG), Ghana
  3. Extension, Cocoa Health and Extension Division (CHED), Ghana
  4. Social Science and Statistics Unit (SSU), Cocoa Research Institute of Ghana (CRIG), Ghana
Download PDF Download RIS Download Bibtex

Abstract

Presently, finding effective, simple, inexpensive, hygienic and safe pest control agents are the biggest challenges in management of stored product insects, where those features are available in most physical factors. The insecticidal efficiency of four diversified physical control agents (ultraviolet and microwave irradiations, thermal remediation and silica nanoparticles) were assayed against the most common coleopteran insect species ( Sitophilus oryzae L. and Tribolium castaneum Herbst) on stored wheat. Exposing tested insects to microwave irradiations (2450 MHz) for 25 sec gave preventive efficiency for stored material, which reached 97.68 and 99.02%, respectively. Sufficient exposure periods to kill 50% of the coleopteran adults (LT50%) were 13 and 14 sec, respectively. For effective control with UV radiations, S. oryzae should be exposed for 12 h and T. castaneum for 24 h. An exposure period of 24 h caused progeny reduction 95.24 and 89.72% and gave preventive efficiency of 94.25 and 93.37%, respectively. Values of LT50% were 56.76 and 74.04 h, respectively. Exposing infested samples of the tested species to 70oC for 10 min killed 100% of adults and caused complete cessation of egg laying. Furthermore, 65°C or 70°C caused full progeny reduction. The lowest level of stored product weight loss (1.15 and 1.35%, respectively) occurred at 70°C, where sufficient exposure temperatures to kill 50% of the coleopteran adults (LTD50%) were 60.95°C and 61.63°C, respectively. Synthetic silica nanoparticles (SSiNPs) were more toxic against the tested populations than bio-silica nanoparticles (BSiNPs) after 48–72 h. A concentration of 1.00 g kg–1 of tested silica nanoparticles caused significant reduction in adult populations, saved wheat grain vitality and gave least lost weights of flour (3.35–6.85%).
Go to article

Authors and Affiliations

Khalil A. Draz
1
Magdy I. Mohamed
2
Reda M. Tabikha
1
Adnan A. Darwish
1
Mohamed A. Abo-Bakr
1

  1. Plant Protection Department, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
  2. Stored Product Pests Department, Plant Protection Research Institute, Agricultural Research Center, Alexandria, Egypt
Download PDF Download RIS Download Bibtex

Abstract

The study of herbicide dynamics in the soil and their interaction with the components of the environment makes it possible to ensure the selectivity of crops and the agronomical efficiency. The aim of this research was to evaluate the influence of soil physicochemical properties on the emergence and growth of soybean, with pre-emergence application of various saflufenacil rates. An experiment was carried out in a greenhouse with a completely randomized design, testing different soil types containing “Erechim”, “Santa Maria” and “Eldorado do Sul”, at different saflufenacil rates: 0, 12.5, 25, 50, 100, 200, 400 g a.i. · ha–1. The application was performed 1 day after soybean sowing, and analyzed variables were: the phytotoxicity emergence of seedlings, dry mass and height of the soybean. The saflufenacil effective dose of 50% response in soybean (ED50) and the characteristics of the soils showed that the soil contained clay and sand which were the components most related to the saflufenacil availability to the plants. A lower ED50 by phytotoxicity to the soybean was found in soil with lower and greater content of clay and sand, respectively. The physicochemical properties of soil influenced the saflufenacil activity, having greater potential of injury to soybean in the soil from Eldorado do Sul, due to its clay and sand content.
Go to article

Authors and Affiliations

Geovana Facco Barbieri
1
Cassiano Salin Pigatto
1
Glauco Pacheco Leães
2
Nelson Diehl Kruse
2
Dirceu Agostinetto
1
André da Rosa Ulguim
2

  1. Plant Protection Department, Federal University of Pelotas, Av. Eliseu Maciel, 96160-000, Capão do Leão, Rio Grande do Sul, Brazil
  2. Plant Protection Department, Federal University of Santa Maria, Av. Roraima, 1000, 97105-900, Santa Maria, Rio Grande do Sul, Brazil
Download PDF Download RIS Download Bibtex

Abstract

The tea plant [ Camellia sinensis (L.) O. Kuntze] is one of the most significant commercial crops in Iran. Symptomatic leaves including chlorina on the edge of the leaf, and multiple necrotic ring blotches on mature leaves from different tea gardens were observed in northern Iran. RT-PCR analysis and transmission electron microscopy observations were applied to characterize the causal agent of tea leaf discoloration. Sequence analyses of the fragments revealed that all the samples were infected with tea plant necrotic ring blotch virus (TPNRBV). To our knowledge this is the first report of TPNRBV in Iran and the second in the world.
Go to article

Authors and Affiliations

Eisa Nazerian
1
ORCID: ORCID
Hossein Bayat
2

  1. Department of Technology and Production Management, Tea Research Center, Horticultural Sciences Research Institute, Lahijan, Iran
  2. Department of Technology and Production Management Ornamental Plant Research Center, Horticultural Sciences Research Institute, Mahallat, Iran
Download PDF Download RIS Download Bibtex

Abstract

The olive psyllid Euphyllura straminea Loginova (Hemiptera: Aphalaridae) is one of the most important pests of olive trees in Iran. To determine this pest’s economic injury level (EIL) and to evaluate the relationship between density of nymphs (DON) and yield loss, different densities of olive psyllid nymphs were maintained on olive trees by different insecticide concentrations. Counting nymphs on olive terminal shoots was done to determine nymph abundance at the end of nymphal stage. Different densities of olive psyllid nymphs resulted in significantly different yield losses of olive trees. Regression analysis was used to determine the relationship between nymph density and yield loss. Considering pest management costs, the market value of olive, and insecticide efficiency, economic injury levels were evaluated from 4.08 to 7.14 nymphal days. The olive psyllid EIL values could be used to plan a pest control program in Zanjan and Guilan provinces.
Go to article

Authors and Affiliations

Aref Marouf
1
Mohammadreza Abbasi Mojdehi
2
Shamsollah Najafi
1

  1. Plant Protection Department, Agricultural and Natural Resources Research Center of Zanjan Province (AREEO), Iran
  2. Plant Protection Department, Agricultural and Natural Resources Research Center of Guilan Province, Rasht, Iran
Download PDF Download RIS Download Bibtex

Abstract

The high sensitivity of beans to herbicides is one of the limiting factors regarding the management of dicot weeds in bean crops. Protoporphyrinogen oxidase (PPO) inhibition is an important mechanism of action that has unregistered molecules with potential use in bean crops. The objectives of this study were to investigate the tolerance of Brazilian bean cultivars to distinct PPO inhibitors and to determine the existence of cross-tolerance in cultivars to the different PPO inhibitor chemical groups. In the first and second experiments, the BRSMG Talismã, Jalo Precoce, BRS Esplendor, and IPR 81 cultivars were subjected to saflufenacil doses pre- (0, 9.6, 14.1, 20.5, 30.0, and 43.8 g a.i. ‧ ha–1) and post-emergence (0, 0.7, 1.0, 1.5, 2.1, and 3.1 g a.i. ‧ ha–1). In the third experiment, the tolerance of 28 bean genotypes to saflufenacil (20.5 g a.i. ‧ ha–1) in pre-emergence was determined. In the fourth, fifth, sixth and seventh experiments, we investigated the cross-tolerance of bean to the fomesafen, flumioxazin, sulfentrazone, and saflufenacil herbicides, respectively. Even very low saflufenacil doses in post-emergence caused plants of all cultivars to die rapidly; therefore, the tolerance was much lower at this application time than in pre-emergence. There was high tolerance variability to saflufenacil among the 28 cultivars. The bean tolerance to fomesafen, flumioxazin, sulfentrazone, and saflufenacil applied pre-emergence depended on the cultivar and dose. Fomesafen was highlighted owing to its higher selectivity in relation to the different cultivars. No cross-tolerance pattern to the PPO inhibitor chemical groups applied in pre-emergence was observed among the evaluated bean cultivars. The results of this study could be of significance to farmers and technical assistance personnel, as well as for future research on cultivar breeding and the elucidation of biochemical and genetic mechanisms involved in herbicide tolerance.
Go to article

Authors and Affiliations

Antonio Pedro Brusamarello
1
Michelangelo Muzell Trezzi
1
Fortunato de Bortoli Pagnoncelli Júnior
1
Paulo Henrique de Oliveira
1
Taciane Finatto
1
Marcos Vinícius Jaeger Barancelli
1
Bruno Alcides Hammes Schmalz
1
Patrícia Bortolanza Pereira
1

  1. Department of Agronomy, Federal Technological University of Paraná (UTFPR), Brazil
Download PDF Download RIS Download Bibtex

Abstract

The miner fly Liriomyza sativae (Blanchard) (Diptera: Agromyzidae) is an insect of economic importance for tomato culture. The conventional control with insecticides is complex due to the mining eating habit that provides protection to the larvae inside the leaves. Therefore, farmers can opt for biological control agents, or substances that provide protection to the plant. Thus, the objective of our research was to evaluate the use of silicon to induce resistance in tomato plants against L. sativae. The results showed that in tomato plants treated with SiO2/F and K2SiO3/F there was a reduction in the net reproduction rate (Ro), in the intrinsic rate of increase in number (rm), in the finite rate of increase (λ), in the average interval between generations (IMG), in the doubling time (TD), in the number of eggs/ female/day and the accumulated egg laying of F1 females of L. sativae. The products SiO2/F and K2SiO3/F gave the tomato a protective effect against injuries caused by L. sativae.
Go to article

Authors and Affiliations

Adamastor Pereira Barros
1
ORCID: ORCID
Hugo Bolsoni Zago
2
ORCID: ORCID
Dirceu Pratissoli
2
ORCID: ORCID
Paulo Cezar Cavatte
3
ORCID: ORCID
Julielson Oliveira Ataide
2
ORCID: ORCID

  1. Entomology Department, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brazil
  2. Entomology Department, Universidade Federal do Espírito Santo, Campus Alegre, Alegre, Brazil
  3. Biology Department, Universidade Federal do Espírito Santo, Campus Alegre, Alegre, Brazil
Download PDF Download RIS Download Bibtex

Abstract

Several national rice centers in Indonesia have used acetolactate synthase herbicide inhibitors for years, especially in several regions of Lampung and West Java provinces. This practice has led to the failure of the application of bensulfuron-methyl herbicide to control Monochoria vaginalis (Burm. f.) C. Presl. The purposes of this study were to confirm that the failure of herbicide application in several areas of the provinces of Lampung and West Java was caused by weed resistance, and to determine the level of resistance. A resistance test of M. vaginalis was performed using the whole plant pot test method and split plot design with three replications. Monochoria vaginalis which indicated resistance was sampled from several regions, namely Sapto Mulyo, Ramadewa, Sarijaya, and Kalentambo. The susceptible samples of M. vaginalis as a control were taken from Cibodas and Sumberagung. The six levels of doses of herbicide bensulfuron-methyl used were: 0, 80, 160, 320, 640 and 1,280 g ha–1. The experimental results show that M. vaginalis from Sapto Mulyo, Ramadewa, Kalentambo and Sarijaya was confirmed to have developed into weeds resistant to bensulfuron-methyl herbicide. Monochoria vaginalis from Saptomulyo, Kalentambo and Sarijaya were included in the high resistance category with a resistance ratio of more than 12, while M. vaginalis from Ramadewa was included in the moderate resistance category with a resistance ratio of 9.39.
Go to article

Authors and Affiliations

Denny Kurniadie
1
ORCID: ORCID
Ryan Widianto
2
Dedi Widayat
1
Uum Umiyati
1
Ceppy Nasahi
3

  1. Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Bandung, Indonesia
  2. Graduate student, Faculty of Agriculture, Universitas Padjadjaran, Bandung, Indonesia
  3. Department of Pest and Diseases, Faculty of Agriculture, Universitas Padjadjaran, Bandung, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

In 2016, bacterial canker symptoms, often with dried ooze, were observed on Salix alba plants in municipal lands and parks in Kerman and Fars provinces, Iran. To determine the causative agent, samples were collected from symptomatic trees, and macerates of the affected bark tissues were plated on sucrose nutrient agar (SNA). Ten isolates were identified by phenotypic characterization, pathogenicity tests, and two of them further confirmed identity using sequence analysis of the partial of 16S rRNA and gyrB genes, and phylogenetic analysis. The isolates showed the highest identity (99–100%) with Brenneria salicis. To our knowledge, this is the first report of watermark disease on S. alba caused by B. salicis in Iran.
Go to article

Authors and Affiliations

Esmaeil Basavand
1
ORCID: ORCID
Pejman Khodaygan
1
Mojtaba Dehghan-Niri
2
Saman Firouzianbandpey
1

  1. Department of Plant Pathology, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
  2. Department of Plant Pathology, Ferdowsi University of Mashhad, Mashhad, Iran
Download PDF Download RIS Download Bibtex

Abstract

Introduction: There is increasing evidence that several autoimmune diseases, as well as their activity, are associated with vitamin D (VD) deficiency. Our study aimed to evaluate the prevalence of VD insufficiency in patients with Addison’s disease (AD), as well as to evaluate associations between VD concentrations and various clinical and laboratory parameters of the disease.
Materials and Methods: We retrospectively analyzed medical records of 31 adult patients diag-nosed with autoimmune Addison’s disease, in whom serum VD was measured. We assessed correlations between serum VD and various clinical and laboratory parameters.
Results: 90.3% of AD patients had inadequate VD concentrations (<30 ng/mL), and 19.3% of them were found to be severely VD deficient (<10 ng/mL). Among assessed laboratory variables, only serum calcium concentrations significantly correlated with VD status (r = 0.53, p = 0.006). The mean serum VD con-centration was significantly lower in patients with severe fatigue (15.17 ± 8.41 vs 26.83 ± 12.29 ng/mL, p = 0.011) and limited exercise capacity (12.38 ± 6.9 vs 21.63 ± 10.87 ng/mL, p = 0.016).
Conclusions: This study demonstrates a high prevalence of VD deficiency in AD patients, as well as the association between low VD concentrations with symptoms such as severe fatigue or limited exercise capacity. Further studies are needed to clarify if impaired VD status is a risk factor in the pathogenesis of AD and to assess if VD supplementation improves the quality of life of AD patients.
Go to article

Bibliography

1. Adorini L., Penna G.: Control of autoimmune diseases by the vitamin D endocrine system. Nat Clin Pract Rheumatol. 2008; 4: 404–412.
2. Pilz S., Tomaschitz A., Obermayer-Pietsch B., Dobnig H., Pieber T.R.: Epidemiology of vitamin D insufficiency and cancer mortality. Anticancer Res. 2009; 29: 3699–4704.
3. Pilz S., März W., Wellnitz B., et al.: Association of Vitamin D Deficiency with Heart Failure and Sudden Cardiac Death in a Large Cross-Sectional Study of Patients Referred for Coronary Angiography. J Clin Endocrinol Metab. 2008; 93: 3927–3935.
4. Shapira Y., Agmon-Levin N., Shoenfeld Y.: Mycobacterium tuberculosis, autoimmunity, and vitamin D. Clin Rev Allergy Immunol. 2010; 38: 169–177.
5. Maruotti N., Cantatore F.P.: Vitamin D and the Immune System. J Rheumatol. 2010; 37: 491–495.
6. Kamen D.L., Aranow C.: The Link Between Vitamin D Deficiency and Systemic Lupus Erythema-tosus. Curr Rheumatol Rep. 2008; 10: 273–280.
7. Cutolo M.: Vitamin D and autoimmune rheumatic diseases. Rheumatology. 2009; 48: 210–212.
8. Hyppönen E.: Vitamin D and increasing incidence of type 1 diabetes — evidence for an association? Diabetes Obes Metab. 2010; 12: 737–743.
9. Ruiz-Irastorza G., Gordo S., Olivares N., Egurbide MV., Aguirre C.: Changes in vitamin D levels in patients with systemic lupus erythematosus: Effects on fatigue, disease activity, and damage. Arthritis Care and Res. 2010; 62: 1160–1165.
10. Munger K.L., Zhang S.M., O’Reilly E., et al.: Vitamin D intake and incidence of multiple sclerosis. Neurology. 2004; 62: 60–65.
11. Vaidya B., Chakera A.J., Dick C.: Addison’s disease. BMJ (Clinical research ed). 2009; 339:b2385.
12. Barthel A., Benker G., Berens K., et al.: An Update on Addison’s Disease. Exp Clin Endocrinol Diabetes. 2019; 127: 165–170.
13. Jeffery L.E., Burke F., Mura M., et al.: 1,25-Dihydroxyvitamin D 3 and IL-2 Combine to Inhibit T Cell Production of Inflammatory Cytokines and Promote Development of Regulatory T Cells Expressing CTLA-4 and FoxP3. J Immunol. 2009; 183: 5458–5467.
14. Prietl B., Treiber G., Pieber T.R., Amrein K.: Vitamin D and immune function. Nutrients. 2013; 5: 2502–2521.
15. Holick M.F., Binkley N.C., Bischoff-Ferrari H.A., et al.: Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2011; 96: 1911–1930.
16. Chaudhary S., Dutta D., Kumar M., et al.: Vitamin D supplementation reduces thyroid peroxidase antibody levels in patients with autoimmune thyroid disease: An open-labeled randomized controlled trial. Indian J Endocrinol Metab. 2016; 20: 391–398.
17. Hyppönen E., Läärä E., Reunanen A., Järvelin M.R., Virtanen S.M.: Intake of vitamin D and risk of type 1 diabetes: A birth-cohort study. Lancet. 2001; 358: 1500–1503.
18. Munger K.L., Levin L.I., Hollis B.W., Howard N.S., Ascherio A.: Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA. 2006; 296: 2832–2838.
19. Lee Y.H., Bae S.C.: Vitamin D level in rheumatoid arthritis and its correlation with the disease activity: A meta-analysis. Clin Exp Rheumatol. 2016; 34: 827–833.
20. Zella J.B., McCary L.C., DeLuca H.F.: Oral administration of 1,25-dihydroxyvitamin D3 completely protects NOD mice from insulin-dependent diabetes mellitus. Arch Biochem Biophys. 2003; 417: 77–80.
21. Chen W., Lin H., Wang M.: Immune intervention effects on the induction of experimental autoimmune thyroiditis. J Huazhong Univ Sci Technolog Med Sci. 2002; 22: 343–345, 354.
22. Erichsen M.M., Løvås K., Skinningsrud B., et al.: Immune intervention effects on the induction of experimental autoimmune thyroiditis. Clinical, immunological, and genetic features of autoimmune primary adrenal insufficiency: observations from a Norwegian registry. J Clin Endocrinol Metab. 2009; 94: 4882–4890.
23. Betterle C., Dal Pra C., Mantero F., Zanchetta R.: Autoimmune adrenal insufficiency and autoimmune polyendocrine syndromes: Autoantibodies, autoantigens, and their applicability in diagnosis and disease prediction. Endocr Rev. 2002; 23: 327–364.
24. Yu L., Brewer K.W., Gates S., et al.: DRB1*04 and DQ alleles: expression of 21-hydroxylase autoantibodies and risk of progression to Addison’s disease. J Clin Endocrinol Metab. 1999; 84: 328–335.
25. Baker P.R., Baschal E.E., Fain P.R., et al.: Haplotype analysis discriminates genetic risk for DR3-associated endocrine autoimmunity and helps define extreme risk for Addison’s disease. J Clin Endocrinol Metab. 2010; 95: E263–70.
26. Mitchell A.L., Pearce S.H.S.: Autoimmune Addison disease: pathophysiology and genetic complexity. Nat Rev Endocrinol. 2012; 8: 306–316. 27. Aranow C.: Vitamin D and the immune system. J Investig Med. 2011; 59: 881–886.
28. Penna-Martinez M., Filmann N., Bogdanou D., et al.: High-dose vitamin D in Addison’s disease regulates T-cells and monocytes: A pilot trial. Nutrition (Burbank, Los Angeles County, Calif). 2018; 49: 66–73.
29. Pani M.A., Seissler J., Badenhoop K.: Vitamin D receptor genotype is associated with Addison’s disease. Eur J Endocrinol. 2002; 147: 635–640.
30. Demir K., Kattan W.E., Zou M., et al.: Novel CYP27B1 gene mutations in patients with vitamin D-dependent rickets type 1A. PLoS ONE. 2015; 10: e0131376.
31. Fichna M., Żurawek M., Januszkiewicz-Lewandowska D., et al.: Association of the CYP27B1 C(- 1260) A polymorphism with autoimmune Addison’s disease. Exp Clin Endocrinol Diabetes. 2010; 118: 544–549.
32. Jennings C.E., Owen C.J., Wilson V., Pearce S.H.S.: A haplotype of the CYP27B1 promoter is associated with autoimmune Addison’s disease but not with Graves’ disease in a UK population. J Mol Endocrinol. 2005; 34: 859–863.
33. Bellastella G., Maiorino M.I., Petrizzo M., et al.: Vitamin D and autoimmunity: what happens in autoimmune polyendocrine syndromes? J Endocrinol Invest. 2015; 38: 629–633.
34. Harms L.R., Burne T.H.J., Eyles D.W., McGrath J.J.: Vitamin D and the brain. Best Pract Res Clin Endocrinol Metab. 2011; 25: 657–669.
35. Cui X., Pelekanos M., Liu P.Y., Burne T.H.J., McGrath J.J., Eyles D.W.: The vitamin D receptor in dopamine neurons; its presence in human substantia nigra and its ontogenesis in rat midbrain. Neuroscience. 2013; 236: 77–87.
36. Meeusen R., Watson P., Hasegawa H., Roelands B., Piacentini M.F.: Central fatigue: The serotonin hypothesis and beyond. Sports Med. 2006; 36: 881–909.
37. Kaneko I., Sabir M.S., Dussik C.M., et al.: 1,25-DihydroxyVitamin D regulates expression of the tryptophan hydroxylase 2 and leptin genes: Implication for behavioral influences of Vitamin D. FASEB J. 2015; 29: 4023–4035.
38. Sinha A., Hollingsworth K.G., Ball S., Cheetham T.: Improving the vitamin D status of vitamin D deficient adults is associated with improved mitochondrial oxidative function in skeletal muscle. J Clin Endocrinol Metab. 2013; 98: E509–E513.
39. Ryan Z.C., Craig T.A., Folmes C.D., et al.: 1α,25-dihydroxyvitamin D3 regulates mitochondrial oxygen consumption and dynamics in human skeletal muscle cells. J Biol Chem. 2016; 291: 1514–1528.
40. Tomlinson P.B., Joseph C., Angioi M.: Effects of vitamin D supplementation on upper and lower body muscle strength levels in healthy individuals. A systematic review with meta-analysis. J Sci Med Sport. 2015; 18: 575–580.
41. Kamen D.L., Oates J.: A pilot randomized, controlled trial of vitamin D repletion to determine if endothelial function improves in patients with systemic lupus erythematosus. Am J Med Sci. 2015; 350: 302–307.
42. Lima G.L., Paupitz J., Aikawa N.E., Takayama L., Bonfa E., Pereira R.M.R.: Vitamin D Supplemen-tation in Adolescents and Young Adults with Juvenile Systemic Lupus Erythematosus for Improvement in Disease Activity and Fatigue Scores: A Randomized, Double-Blind, Placebo- Controlled Trial. Arthritis Care Res. 2016; 68: 91–98.
43. Beckmann Y., Türe S., Duman S.U.: Vitamin D deficiency and its association with fatigue and quality of life in multiple sclerosis patients. EPMA Journal. 2020; 11: 65–72.
44. Nowak A., Boesch L., Andres E., et al.: Effect of vitamin D3 on self-perceived fatigue A double-blind randomized placebo-controlled trial. Medicine. 2016; 95: 1–6.
45. van der Valk E.S., Smans L.C., Hofstetter H., et al.: Decreased physical activity, reduced QoL and presence of debilitating fatigue in patients with Addison’s disease. Clin Endocrinol (Oxf). 2016; 85: 354–360.
46. Bleicken B., Hahner S., Loeffler M., et al.: Influence of hydrocortisone dosage scheme on health-related quality of life in patients with adrenal insufficiency. Clin Endocrinol (Oxf). 2010; 72: 297–304.
47. Riedel M., Wiese A., Schürmeyer T.H., Brabant G.: Quality of life in patients with Addison’s disease: effects of different cortisol replacement modes. Exp Clin Endocrinol. 1993; 101: 106–111.
48. Bergthorsdottir R., Leonsson-Zachrisson M., Odén A., Johannsson G.: Premature Mortality in Patients with Addison’s Disease: A Population-Based Study. J Clin Endocrinol Metab. 2006; 91: 4849–4853.
49. Hahner S., Loeffler M., Fassnacht M., et al.: Impaired Subjective Health Status in 256 Patients with Adrenal Insufficiency on Standard Therapy Based on Cross-Sectional Analysis. J Clin Endocrinol Metab. 2007; 92: 3912–3922.
50. Laureti S., Vecchi L., Santeusanio F., Falorni A.: Is the prevalence of Addison’s disease under-estimated? J Clin Endocrinol Metab. 1999; 84: 1762.
51. Løvås K., Husebye E.S.: High prevalence and increasing incidence of Addison’s disease in western Norway. Clin Endocrinol (Oxf). 2002; 56: 787–791.
52. Jordan B., Uer O., Buchholz T., Spens A., Zierz S.: Physical fatigability and muscle pain in patients with Hashimoto thyroiditis. J Neurol. 2021 Jan 28. doi: 10.1007/s00415-020-10394-5.
Go to article

Authors and Affiliations

Karolina Zawadzka
1
Katarzyna Matwiej
1
Grzegorz Sokołowski
2
Małgorzata Trofimiuk-Müldner
2
Anna Skalniak
2
Alicja Hubalewska-Dydejczyk
2

  1. Students’ Scientific Group of Endocrinology at the Department of Endocrinology, Jagiellonian University Medical College, Kraków, Poland
  2. Chair and Department of Endocrinology, Jagiellonian University Medical College, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this study was to determine the course of the main septum (MS) in the sphenoid sinuses in the adult population.

Materials and Methods: 296 patients (147 females, 149 males), who did not present any pathology in the paranasal sinuses, were included in this retrospective analysis of the computed tomography (CT) scans. Spiral CT scanner (Siemens Somatom Sensation 16) was used in order to glean the images of the paranasal sinuses, using standard procedure, in the option Siemens CARE Dose 4D, without using any contrast medium. Secondary reconstructions of the sagittal and frontal planes were obtained using multi-plans reconstruction (MPR) tool after obtaining transverse planes in the first instance.

Results: The course of the MS changed the most often from the anterior to the posterior part of the sphenoid sinuses. Such situation took place in 83.78% of the patients, in 32.43% of whom a clear shift to the lateral side was noticed only in the posterior part of the MS: in 18.24% of the patients to the right side, and in 14.19% of the patients to the left side. In 17.57% of the patients the lateral shift was visible in both anterior and posterior parts of the septum, where in 9.46% of the patients it was from the left side to the right, whereas in 8.11% of the patients the shift took place from the right side to the left. The MS had the shape of the letter ‘C’ in 22.29% of the cases, and 11.82% had the typical shape of the letter ‘C,’ and in 10.47% of the patients it paralleled the inverted letter ‘C’ (upside down). Amongst the types of the MS shifting directions the rarest was the MS that resembled the letter ‘S’ — 11.48% of the patients. In 5.74% of the cases it looked like the typical letter ‘S,’ and in 5.74% of the cases it was similar to the inverted letter ‘S.’ Only 16.22% of the cases had the MS that did not change its course nor its shape and ran medially in the sagittal plane from the anterior to the posterior part of the sinuses.

Conclusions: In furtherance of reducing the risk of problems occurring during a surgery in the paranasal sinuses, it is prudent to have a CT scan done in all the patients beforehand, due to the high prevalence of the anatomical variations in the sinuses.

Go to article

Bibliography

1. Jaworek-Troć J., Zarzecki M., Bonczar A., Kaythampillai L.N., Rutowicz B., Mazur M., Urbaniak J., Przybycień W., Piątek-Koziej K., Kuniewicz M., Lipski M., Kowalski W., Skrzat J., Loukas M., Walocha J.: Sphenoid bone and its sinus — anatomo-clinical review of the literature including application to FESS. Folia Med Crac. 2019; 59 (2): 45–59.
2. Jaworek-Troć J., Zarzecki M., Mróz I., Troć P., Chrzan R., Zawiliński J., Walocha J., Urbanik A.: The total number of septa and antra in the sphenoid sinuses — evaluation before the FESS. Folia Med Crac. 2018; 58 (3): 67–81.
3. Jaworek-Troć J., Iwanaga J., Chrzan R., Zarzecki J.J., Żmuda P., Pękala A., Tomaszewska I.M., Tubbs R.S., Zarzecki M.P.: Anatomical variations of the main septum of the sphenoidal sinus and its importance during transsphenoidal approaches to the sella turcica. Transl Res Anat. 2020; 21: 100079.
4. Jaworek-Troć J., Walocha J.A., Chrzan R., Żmuda P., Zarzecki J.J., Pękala A., Depukat P., Kucharska E., Lipski M., Curlej-Wądrzyk A., Zarzecki M.P.: Protrusion of the carotid canal into the sphenoid sinuses: evaluation before endonasal endoscopic sinus surgery. Folia Morph. 2020 (Ahead of print). doi: 10.5603/FM.a2020.0086.
5. Jaworek-Troć J., Walocha J.A., Loukas M., Tubbs R.S., Iwanaga J., Zawiliński J., Brzegowy K., Zarzecki J.J., Curlej-Wądrzyk A., Kucharska E., Burdan F., Janda P., Zarzecki M.P.: Extensive pneumatisation of the sphenoid bone — anatomical investigation of the recesses of the sphenoid sinuses and their clinical importance. Folia Morph. 2020 (Ahead of print). doi: 10.5603/FM.a2020.0120.
6. Jaworek-Troć J., Zarzecki M., Zamojska I., Chrzan R., Curlej-Wądrzyk A., Iwanaga J., Walocha J., Urbanik A.: The height and type of the main septum in the sphenoid sinuses — evaluation before the fess. Folia Med Crac. 2020; 60 (3): 65–74.
7. Jaworek-Troć J., Zarzecki M., Lusina D., Gładysz T., Depukat P., Mazurek A., Twardokęs W., Curlej- Wądrzyk A., Iwanaga J., Walocha E., Chrzan R., Urbanik A.: Incorporation of the sphenoid sinuses’ septum / septa in the carotid canal — evaluation before the fess. Folia Med Crac. 2020; 60 (4): 65–78.
8. Jaworek-Troć J., Zarzecki M., Zamojska I., Iwanaga J., Przybycień W., Mazur M., Chrzan R., Walocha J.A.: The dimensions of the sphenoid sinuses — evaluation before the functional endoscopic sinus surgery. Folia Morph. 2021; 80 (2): 275–282.
9. Jaworek-Troć J., Walocha J.A., Skrzat J., Iwanaga J., Tubbs R.S., Mazur M., Lipski M., Curlej-Wądrzyk A., Gładysz T., Chrzan R., Urbanik A., Zarzecki M.P.: A computed tomography comprehensive evaluation of the ostium of the sphenoid sinus and its clinical significance. Folia Morph. 2021 (Ahead of print). doi: 10.5603/FM.a2021.0063.
10. Tesfaye S., Hamba N., Gerbi A., Negeri Z.: Radio-anatomic variability in the sphenoid sinus pneumatization with its relationship to adjacent anatomical structures and their impact upon reduction of complications following endonasal transsphenoidal surgeries. Transl Res Anat. 2021; 24: 100126.
11. Carvey M., Baek W.K., Hage R.: Bridging the divide: The widening gap between basic science and clinical research. Transl Res Anat. 2021; 24: 100117.
12. Abdullah B.J., Arasaratnam A., Kumar G., Gopala K.: The sphenoid sinuses: computed tomographic assessment of septation, relationship to the internal carotid arteries and sidewall thickness in the Malaysian population. J HK Coll Radiol. 2001; 4: 185–188.
13. Eryilmaz A., Ozeri C., Bayiz U., Samim E., Gocmen H., Akmansu H., Safak M.A., Dursun E.: Functional endoscopic sinus surgery (FESS). Turk J Med Res. 1993; 11 (5): 221–223.
14. Haetinger R.G., Navarro J.A.C., Liberti E.A.: Basilar expansion of the human sphenoidal sinus: an integrated anatomical and computerized tomography study. Eur Radiol. 2006; 16: 2092–2099.
15. Kantarci M., Karasen R.M., Alper F., Onbas O., Okur A., Karaman A.: Remarkable anatomic variantions in paranasal sinus region and their clinical importance. Eur J Radiol. 2004; 50: 296–302.
16. Kazkayasi M., Karadeniz Y., Arikan O.K.: Anatomic variations of the sphenoid sinus on computed tomography. Rhinology. 2005; 43: 109–114.
17. Keast A., Yelavich S., Dawes P., Lyons B.: Anatomical variations of the paranasal sinuses in Polynesian and New Zealand European computerized tomography scans. Otolaryngol Head Neck Surg. 2008; 139: 216–221.
18. Mafee M.F., Chow J.M., Meyers R.: Functional endoscopic sinus surgery: anatomy, CT screening, indications and complications. AJR. 1993; 160: 735–744.
19. Mutlu C., Unlu H.H., Goktan C., Tarhan S., Egrilmez M.: Radiologic anatomy of the sphenoid sinus for intranasal surgery. Rhinology. 2001; 39: 128–132.
20. Perez-Pinas I., Sabate J., Carmona A., Catalina-Herrera C.J., Jimenez-Castellanos J.: Anatomical variations in the human paransal sinus region studied by CT. J Anat. 2000; 197: 221–227.
21. Terra E.R., Guedes F.R., Manzi F.R., Boscolo F.N.: Pneumatization oft he sphenoid sinus. Dentomaxillofacial Radiology. 2006; 35: 47–49.
22. Stecco A., Boccafoschi F., Falaschi Z., Mazzucca G., Carisio A., Bor S., Valente I., Cavalieri S., Carriero A.: Virtual dissection table in diagnosis and classification of Le Fort fractures: A retrospective study of feasibility. Transl Res Anat. 2020; 18: 100060.
23. Sinha S., Shetty A., Nayak K.: The morphology of Sella Turcica in individuals with different skeletal malocclusions — a cephalometric study. Transl Res Anat. 2020; 18: 100054.
24. Becker D.G.: The minimally invasive, endoscopic approach to sinus surgery. Journal of Long-Term Effects of Medical Implants. 2003; 13 (3): 207–221.
25. Bogusławska R.: Badanie zatok przynosowych metoda tomografii komputerowej dla celów chirurgii endoskopowej. Warszawa 1995.
26. Anusha B., Baharudin A., Philip R., Harvinder S., Mohd Shaffie B., Ramiza R.R.: Anatomical variants of surgically important landmarks in the sphenoid sinus: a radiologic study in Southeast Asian patients. Surg Radiol Anat. 2015; 37: 1182–1190.
27. Tan H.K.K., Ong Y.K.: Sphenoid sinus: an anatomic and endoscopic study in Asian cadavers. Clinical Anatomy. 2007; 20: 745–750.
28. Battal B., Akay S., Karaman B., Hamcan S., Akgun V., Sari S., Bozlar U., Tasar M.: The relationship between the variations of sphenoid sinus and nasal septum. Gulhane Tip Derg. 2014; 56: 232–237.
29. Hammer G., Radberg C.: The sphenoidal sinus. Acta Radiologica. 1961; 56 (6): 401–422.
30. Elwany S., Yacout Y.M., Talaat M., El-Nahass M., Gunied A., Talaat M.: Surgical anatomy of the sphenoid sinus. The Journal of Laryngology and Otology. 1983; 97: 227–241.
31. Kinnman J.: Surgical aspects of the anatomy of the sphenoidal sinuses and the sella turcica. J Anat. 1977; 124 (3): 541–553.
32. Lupascu M., Comsa Gh., Zainea V.: Anatomical variations of the sphenoid sinus — a study of 200 cases. ARS Medica Tomitana. 2014; 2 (77): 57–62.
33. Lee J.-Ch., Chuo P.-I., Hsiung M.-W.: Ischemic optic neuropathy after endoscopic sinus surgery: a case report. Eur Arch Otorhinolaryngol. 2003; 260: 429–431.
34. Dundar R., Kulduk E., Soy F.K., Aslan M., Kilavuz A.E., Sakarya E.U., Yazici H., Eren A.: Radiological evaluation of septal bone variations in the sphenoid sinus. J Med Updates. 2014; 4 (1): 6–10.
35. Kayalioglu G., Erturk M., Varol T.: Variations in sphenoid sinus anatomy with special emphasis on pneumatization and endoscopic anatomic distances. Neurosciences. 2005; 10 (1): 79–84.
36. Sareen D., Agarwail A.K., Kaul J.M., Sethi A.: Study of sphenoid sinus anatomy in relation to endoscopic surgery. Int J Morphol. 2005; 23 (3): 261–266.
37. Tan H.M., Chong V.F.H.: CT of the paranasal sinuses: normal anatomy, variations and pathology. CME Radiology. 2001; 2 (3): 120–125.
38. Cope V.Z.: The internal structure of the sphenoidal sinus. J Anat. 1917; 51 (2): 127–136. 39. Yune H.Y., Holden R.W., Smith J.A.: Normal variations and lesions of the sphenoid sinus. AM J Roentgenol Radium Ther Nucl Med. 1975; 124 (1): 129–138.
40. Hayashi Y., Kita D., Iwato M., Fukui I., Sasagawa Y., Oishi M., Tachibana O., Nakada M.: Midline dural filum of the sellar floors: its relationship to the septum attachment to the sellar floor and the ossification in the sphenoid sinus. Clin Neurol Neurosurg. 2016; 147: 53–58.
Go to article

Authors and Affiliations

Joanna Jaworek-Troć
1 2
Michał Zarzecki
1
Wojciech Przybycień
1
Marcin Lipski
1
Anna Curlej-Wądrzy
3
Joe Iwanaga
4
Jerzy Walocha
1
Agata Mazurek
1
Robert Chrzan
2
Andrzej Urbanik
2

  1. Department of Anatomy, Jagiellonian University Medical College, Kraków, Poland
  2. Department of Radiology, Jagiellonian University Medical College, Kraków, Poland
  3. Department of Integrated Dentistry, Institute of Dentistry, Jagiellonian University Medical College, Kraków, Poland
  4. Department of Neurosurgery, Tulane University, New Orleans, USA
Download PDF Download RIS Download Bibtex

Abstract

The combination of the functional disorders of urination and defecation constitutes the Dys-functional Elimination Syndrome (DES). DES refers to an abnormal pattern of elimination of unknown etiology characterized by bowel and bladder incontinence and withholding, with no underlying anatomic or neurologic abnormalities. Essential precondition for a child to be subsumed under this entity is the exclusion of either anatomical or neurological causative factors. In the present review study the individual entities of dysfunctional filling, such as the unstable or lazy bladder, or dysfunctional urination, such as the detrusor sphincter dyssynergia and the functional constipation are being described comprehensively. Subsequently, the analysis of the pathophysiological effects of the dysfunctional elimination syndrome such as incontinence, urinary tract infections and the conservation or the deterioration of vesicoureteric reflux, is being accentuated. With the documentation of DES, the therapeutic strategy should aim at treating both the functional disorder of the vesicourethral unit and the functional constipation. The first part does not specify depending on the type of this disorder. Rarely, surgical treatment of functional urinary disorders may be required.
Go to article

Bibliography

1. Shaikh N., Hoberman A., Wise B., et al.: Dysfunctional elimination syndrome: is it related to urinary tract infection or vesicoureteral reflux diagnosed early in life? Pediatrics. 2003 Nov; 112 (5): 1134–1137.
2. Halachmi S., Farhat W.A.: Interactions of constipation, dysfunctional elimination syndrome, and vesicoureteral reflux. Adv Urol. 2008; 2008: 828275.
3. Aydoğdu O., Burgu B., Teber S., et al.: A challenging review of childhood incontinence: rare complications of dysfunctional elimination syndrome in an epileptic boy. Turk J Pediatr. 2011 Jan– Feb; 53 (1): 100–103.
4. Von Gontard A., Hollmann E.: Comorbidity of functional urinary incontinence and encopresis: somatic and behavioral associations. J Urol. 2004 Jun; 171 (6 Pt 2): 2644–2647.
5. Curran M.J., Kaefer M., Peters C., Logigian E., Bauer S.B.: The overactive bladder in childhood: long- term results with conservative management. J Urol. 2000 Feb; 163 (2): 574–577.
6. Hadjizadeh N., Motamed F., Abdollahzade S., Rafiei S.: Association of voiding dysfunction with functional constipation. Indian Pediatr. 2009 Dec; 46 (12): 1093–1095. Epub 2009 Apr 1.
7. Klijn A.J., Asselman M., Vijverberg M.A., et al.: The diameter of the rectum on ultrasonography as a diagnostic tool for constipation in children with dysfunctional voiding. J Urol. 2004 Nov; 172 (5 Pt 1): 1986–1988.
8. Wein A.J., Kavoussi L.R., Campbell M.F.: Urology Cambell-Walsh, 10th ed. Saunders Elsevier: 2012; 3418–3420.
9. O’Regan S., Yazbeck S.: Constipation: a cause of enuresis, urinary tract infection and vesico-ureteral reflux in children. Med Hypotheses. 1985 Aug; 17 (4): 409–413.
10. O’Regan S., Yazbeck S., Schick E.: Constipation, bladder instability, urinary tract infection syndrome. Clin Nephrol. 1985 Mar; 23 (3): 152–154.
11. Ab E., Schoemaker M., Van Empelen R.: Paradoxical movement of the pelvic floor in dysfunctional voiding and the results of biofeedback training. Br J Urol Int. 2002; 89: 48.
12. Patoulias I.: Voiding disturbance in childhood. 1st ed. Parisianos, Athens: 2011; 58– 59. ISBN 978- 960-394-723-3.
13. Loening-Baucke V.: Urinary incontinence and urinary tract infection and their resolution with treatment of chronic constipation of childhood. Pediatrics. 1997 Aug; 100 (2 Pt 1): 228–232.
14. Chase J., Austin P., Hoebeke P., McKenna P.: International Children's Continence Society. The management of dysfunctional voiding in children: a report from the Standardisation Committee of the International Children’s Continence Society. J Urol. 2010 Apr; 183 (4): 1296–1302.
15. Hoebeke P., Van Laecke E., Van Camp C., Raes A., Van De Walle J.: One thousand video-urodynamic studies in children with non-neurogenic bladder sphincter dysfunction. BJU Int. 2001 Apr; 87 (6): 575–580.
16. Herndon C.D., Decambre M., McKenna P.H.: Interactive computer games for treatment of pelvic floor dysfunction. J Urol. 2001 Nov; 166 (5): 1893–1898.
17. Hansson S., Hjalmas K., Jodal U., Sixt R.: Lower urinary tract dysfunction in girls with untreated asymptomatic or cover bacteriuria. J Urol. 1990; 143: 333–336.
18. Issenman R.M., Filmer R.B., Gorski P.A.: A review of bowel and bladder control development in children: how gastrointestinal and urologic conditions relate to problems in toilet training. Pediatrics 1999; 103: 1346–1352.
19. Regan S.O., Schick E., Hamburger B., Yazbeck S.: Constipation associated with vesicoureteral reflux. Urol. 1986; 28: 394–396.
20. Chen J.J., Mao W., Homayoon K., Steinhardt G.F.: A multivariate analysis of dysfunction elimination syndrome, and its relationships with gender, urinary tract infection and vesicoureteral reflux in children. J Urol. 2004; 171: 1907–1910.
21. Naseer S.R., Steinhardt G.F.: New renal scars in children with urinary tract infections, vesicoureteral reflux and voiding dysfunction: a prospective evaluation. J Urol. 1997 Aug; 158 (2): 566–568.
22. Mulders M.M., Cobussen-Boekhorst H., de Gier R.P., Feitz W.F., Kortmann B.B.: Urotherapy in children: quantitative measurements of daytime urinary incontinence before and after treatment according to the new definitions of the International Children’s Continence Society. J Pediatr Urol. 2011 Apr; 7 (2): 213–218.
23. Nevéus T., Von Gontard A., Hoebeke P., et al.: The standardization of terminology of lower urinary tract function in children and adolescents: report from the Standardisation Committee of the International Children’s Continence Society. J Urol. 2006 Jul; 176 (1): 314–324.
24. Farhat W., Bägli D.J., Capolicchio G., et al.: The dysfunctional voiding scoring system: quantitative standardization of dysfunctional voiding symptoms in children. J Urol. 2000 Sep; 164 (3 Pt 2): 1011–1015.
25. Bower W.F., Yip S.K., Yeung C.K.: Dysfunctional elimination symptoms in childhood and adulthood. J Urol. 2005 Oct; 174 (4 Pt 2): 1623–1627; discussion 1627–1628.
26. Vereecken R.L., Proesmans W.: Urethral instability as an important element of dysfunctional voiding. J Urol. 2000; 163: 585–588.
27. Dede O., Sakellaris G.: Daytime urinary incontinence. Essentials in Pediatr Urol. 2012; 57–68.
28. Desantis D.J., Leonard M.P., Preston M.A., Barrowman N.J., Guerra L.A.: Effectiveness of biofeedback for dysfunctional elimination syndrome in pediatrics: a systematic review. J Pediatr Urol. 2011 Jun; 7 (3): 342–348.
29. Dyer L.L., Franco I.: Botulinum Toxin-A Therapy in pediatric Urology: Indications for the Neurogenic and Non-Neurogenic Neurogenic Bladder. Scientific World J. 2009; 9: 1300–1305.
30. Kroll P., Jankowski A., Soltysiak J., et al.: Botulinum toxin-A injections in children with neurogenic bladder. Nephroourol. 2011; 3: 125–128.
31. Carr L.K.: Botulinum toxin A should not be first-line therapy for overactive bladder. Can Urol Assoc J. 2011 Jun; 5 (3): 204–205.
32. Steele S.S.: Botulinum toxin A: First-line therapy for idiopathic detrusor over activity. Can Urol Assoc J. 2011; 5: 207–209.
33. Barroso U. Jr, Tourinho R., Lordêlo P., Hoebeke P., Chase J.: Electrical stimulation for lower urinary tract dysfunction in children: a systematic review of the literature. Neurourol Urodyn. 2011 Nov; 30 (8): 1429–1436.
34. Lordêlo P., Soares P.V., Maciel I., Macedo A. Jr, Barroso U. Jr.: Prospective study of transcutaneous parasacral electrical stimulation for overactive bladder in children: long-term results. J Urol. 2009 Dec; 182 (6): 2900–2904.
Go to article

Authors and Affiliations

Ioanna Gkalonaki
1
ORCID: ORCID
Ioannis Patoulias
1

  1. First Department of Pediatric Surgery, Aristotle University of Thessaloniki Greece, General Hospital “G.Gennimatas”, Thessaloniki, Greece
Download PDF Download RIS Download Bibtex

Abstract

Introduction: Mortality from myocardial infarction (MI) is determined by patients’ ability to prevent it and, in case of its occurrence, to recognise its symptoms and call an ambulance immediately. There is scarce data on rural populations’ knowledge of MI, even though they are disadvantaged in access to medical emergency services.
Objective: The aim of the study was to investigate the rural patients’ awareness of MI risk factors, symptoms, necessity of calling an ambulance in response to MI symptoms, and its determinants.
Materials and Methods: An anonymous and voluntary survey was conducted among 194 patients and their caregivers with median age 68 years at a rural non-public healthcare facility in Poland.
Results: 60.3% perceive their knowledge of MI as insufficient. Only 26.3% were able to recognise all suggested MI risk factors. 44.8% did not know whether they are at risk of MI. Furthermore, 78% of respondents who had at least three MI risk factors were unaware of being at risk. 45.4% recognised at least three out of four suggested MI symptoms. 76.2% would call an ambulance in response to chest pain suggesting they have MI. Merely 80% were able to provide the emergency phone number. Moreover, among respondents who declared they would not call an ambulance, 38.7% were afraid of in-hospital COVID-19 infection or healthcare system collapse.
Conclusions: Rural patients’ knowledge of MI risk factors, symptoms, and proper response to them is insufficient. The problem is exacerbated by the COVID-19 pandemic. To improve survival in MI an education campaign is needed.
Go to article

Bibliography

1. Centrala NFZ DA i I. NFZ o Zdrowiu, Choroba Niedokrwienna Serca.; 2020. https://www.nfz.gov.pl/aktualnosci/aktualnosci-centrali/nowy-raport-nfz-depresja,7593.html.
2. Bandosz P., O’Flaherty M., Drygas W., et al.: Decline in mortality from coronary heart disease in Poland after socioeconomic transformation: Modelling study. BMJ. 2012; 344 (7842). doi: 10.1136/bmj.d8136.
3. Brodie B.R., Kissling G.: Relationship between delay in performing direct coronary angioplasty and early clinical outcome in patients with acute myocardial infarction. Circulation. 2000; 102 (4): E29– 30. doi: 10.1161/01.cir.102.4.e29.
4. Swanoski M.T., Lutfiyya M.N., Amaro M.L., Akers M.F., Huot K.L.: Knowledge of heart attack and stroke symptomology: A cross-sectional comparison of rural and non-rural US adults. BMC Public Health. 2012; 12 (1). doi: 10.1186/1471-2458-12-283.
5. Piepoli M.F., Hoes A.W., Agewall S., et al.: 2016 European Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2016; 37 (29): 2315–2381. doi: 10.1093/eurheartj/ehw106.
6. Waśniowska A., Kopeć G., Szafraniec K., et al.: Assessment of knowledge on cardiovascular disease risk factors by postal survey in residents of Małopolska Voivodeship. Małopolska CArdiovascular PReventive Intervention Study (M-CAPRI). Ann Agric Environ Med. 2017; 24 (2): 201–206. doi: 10.5604/12321966.1228400.
7. Homko C.J., Santamore W.P., Zamora L., et al.: Cardiovascular disease knowledge and risk perception among underserved individuals at increased risk of cardiovascular disease. J Cardiovasc Nurs. 2008; 23 (4): 332–337. doi: 10.1097/01.JCN.0000317432.44586.aa.
8. Kopec G., Sobien B., Podolec M., et al.: Knowledge of a patient-dependant phase of acute myocardial infarction in Polish adults: The role of physician’s advice. Eur J Public Health. 2011; 21 (5): 603–608. doi: 10.1093/eurpub/ckq110.
9. Birnbach B., Höpner J., Mikolajczyk R.: Cardiac symptom attribution and knowledge of the symptoms of acute myocardial infarction: a systematic review. BMC Cardiovasc Disord. 2020; 20 (1). doi: 10.1186/s12872-020-01714-8.
10. Lozzi L., Carstensen S., Rasmussen H., Nelson G.: Why do acute myocardial infarction patients not call an ambulance? An interview with patients presenting to hospital with acute myocardial infarction symptoms. Intern Med J. 2005; 35 (11): 668–671. doi: 10.1111/j.1445-5994.2005.00957.x.
11. Legutko J., Niewiara L., Bartus S., et al.: Decline in the number of coronary angiography and percutaneous coronary intervention procedures in patients with acute myocardial infarction in Poland during the coronavirus disease 2019 pandemic. Kardiol Pol. 2020; 78 (6): 574–576. doi: 10.33963/KP.15393.
12. Rattka M., Dreyhaupt J., Winsauer C., et al.: Effect of the COVID-19 pandemic on mortality of patients with STEMI: A systematic review and meta-analysis. Heart. 2021; 107 (6): 482–487. doi: 10.1136/heartjnl-2020-318360.
13. Siudak Z., Grygier M., Wojakowski W., et al.: Clinical and procedural characteristics of COVID-19 patients treated with percutaneous coronary interventions. Catheter Cardiovasc Interv. 2020; 96 (6): E568–E575. doi: 10.1002/ccd.29134.
14. Azul Freitas A., Baptista R., Gonçalves V., et al.: Impact of SARS-CoV-2 pandemic on ST-elevation myocardial infarction admissions and outcomes in a Portuguese primary percutaneous coronary intervention center: Preliminary Data. Rev Port Cardiol. 2021. doi: 10.1016/j.repc.2020.10.012.
15. Perrin N., Iglesias Juan F., Florian R., et al.: Impact of the COVID-19 pandemic on acute coronary syndromes. Swiss Med Wkly. 2020; 150 (51). doi: 10.4414/smw.2020.20448.
16. Aldujeli A., Hamadeh A., Briedis K., et al.: Delays in Presentation in Patients With Acute Myocardial Infarction During the COVID-19 Pandemic. Cardiol Res. 2020; 11 (6): 386–391. doi: 10.14740/cr1175.
17. Grech N., Xuereb R., England K., Xuereb R.G., Caruana M.: When the patients stayed home: the impact of the COVID-19 pandemic on acute cardiac admissions and cardiac mortality in Malta. J Public Heal. 2021. doi: 10.1007/s10389-021-01520-2.
Go to article

Authors and Affiliations

Michał Korman
1
Dominik Felkle
1
Tomasz Korman
2

  1. Students’ Scientific Group at the Second Department of Cardiology, Jagiellonian University Medical College, Kraków, Poland
  2. Family Medicine Practice, 32-740 Łapanów, Poland
Download PDF Download RIS Download Bibtex

Abstract

Temporomandibular disorders includes abnormalities of the masticatory muscles, temporo-mandibular joints and the surrounding structures. The aim of the study was to carry out a retrospective assessment of the frequency of the pain form of TMD based on the analysis of medical records of patients treated at the Prosthodontics Department at Jagiellonian University in Kraków.
Material and Methods: The study included the results of a medical history and a clinical examina-tion of patients, who came for consultation at the Prosthodontics Department at Jagiellonian University in Kraków, due to pain of the masticatory muscles or/and TMJ and painless symptom of TMD like limitation of the jaw movements and joints’ sounds. Out of all the analyzed results of the examination of treated patients, a group of patients with a painless and painful TMD was selected.
Results: The study involved the results of a detailed specialized functional examination of 334 patients (210 women and 124 men), ranging from 41 to 68 years. Analysis of the results of clinical examinations conducted in all patients revealed that 161 had the painless form — SG (99 women and 62 men) and 173 patients had the pain form of the TMD — CG (111 women and 62 men). In the CG 104 patients reported mostly pain in the masticatory muscles, while the remaining (69 patients) had a history of pain in one or simultaneously two TMJs.
Conclusion: The analysis of the patients forms allows to conclude that more than half of patients seeking help are patients with the painful form of the TMD and these abnormalities occur more frequently in women than in men.
Go to article

Bibliography

1. Okeson J.: Management of temporomandibular disorders and occlusion. Elsevier, 2019.
2. Branco L., Santis T., Alfaya T., Goday C., Fraqoso Y., Bussadori S.: Association between headache and temporomandibular joint disorders in children and adolescents. J Oral Scien. 2013; 55 (1): 39–43.
3. Bonjardim L., Gavido M., Pereira L., Castelo P., Garcia R.: Signs and symptoms of temporoman-dibular disorders in adolescents. Braz Oral Res. 2005; 19 (2): 93–98.
4. Echeverii H.: Evaluation of etiological factor in relation to myofascial pain dysfunction syndrome. Clinical study of 100 students of the University of Antioquia Dental School. Revista de la Facultad de Odontologia Universidad de Antioquia. 1991; 2 (2): 75–87.
5. Fillingim R.B., Ohrbach R., Greenspan J.D., Knott C., Diatchenko L., Dubner R., Bair E., Baraian C., Mack N., Slade G.D., Maixner W.: Psychological factors associated with development of TMD: The OPPERA perspective cohort study. J Pain. 2013; 14: 75–90.
6. Kleinrok M.: Temporomandibular joint dysfunctions. Czelej Editor 2012; 5–23.
7. Auerbach S., Laskin D., Frantsve L., Orr T.: Depression, pain, exposure to stressful life events, and long-term outcomes in temporomandibular disorder patients. J Oral Maxillofac Surg. 2001; 59: 628–633.
8. De Leeuw R., Bertoli E., Schmidt J., Carson C.: Prevalence of traumatic stressors in patient with temporomandibular disorder. J Oral Maxillofac Surg. 2005; 63 (1): 42–50.
9. Martins R., Garbin C., Garcia A.R., Garbin A., Miguel N.: Stress levels and quality of sleep in subjects with temporomandibular joint dysfunction. Rev Odonto Scien. 2010; 25: 32–36.
10. Grey R., Davies S., Quayle A.: The clinical guide to temporomandibular disorders. The clinical guide series. British Dental Journal. 2003: 23–30, 55–60.
11. Osiewicz M., et al.: Research diagnostic criteria for temporomandibular disorders (RDC/TMD) — the polish version af a dual-axis system for diagnosis of TMD RDC/TMD form. J Stoma. 2013; 66 (5): 576–649.
12. Ferreira C., Da Silva M., de Fellicio C.: Orofacial myofunctional disorder in subjects with temporo- mandibular disorder. Cranio: the journal of craniomandibular practice. 2009; 27 (4): 268–274.
13. Hirai K., Ikawa T., Shigeta Y., Shigemoto S., Ogawa T.: Evaluation of sleep bruxism with a novel designed occlusal splint. J Prosthodont Res. 2017; 61 (3): 333–343.
14. Liu F., Steinkeler A.: Epidemiology, diagnosis, and treatment of temporomandibular disorders. Dental Clinics of North America. 2013; 57 (3): 465–479.
15. Glaros A., Williams K., Lauste L.: The role of parafunctions, emotions and stress in predicting facial pain. J Am Dent Assoc. 2005; 136: 451–458.
16. Bertolli E., de Leeuw R., Schmidt J.E., Okeson J.P., Carlson C.R.: Prevalence and impact of post- traumatic stress disorder symptoms in patients with masticatory muscle or temporomandibular joint pain: differences and similarities. J Orofac Pain. 2007; 21: 107–119.
17. Fredricson A., Khodabandehlou F., Weiner C., Naimi-Akbar A., Adami J., Resen A.: Are there early signs that predict development of temporomandibular joint disease? J Oral Sci. 2018; 60 (2): 194–200.
18. Glaros A.G., Hanson A.H., Ryen C.: Headache and oral parafunctional behaviors. Appl Psychophysiol Biofeedback. 2014; 39 (1): 59–66.
19. Pełka P., Williams S., Lipski M., Loster B.W.: Quantitation of condylar position in temporomandibular joint — A methodological study. Folia Med Cracov. 2016; 56 (4): 43–50.
20. Piech J., Pihut M., Kulesa-Mrowiecka M.: Physiotherapy in hypomobility of temporomandibular joints. Folia Med Cracov. 2020; 60 (2): 123–134.
Go to article

Authors and Affiliations

Małgorzata Pihut
1
Agnieszka Pac
2
Andrzej Gala
1

  1. Department of Prosthodontics, Jagiellonian University Medical College, Kraków, Poland
  2. Department of Epidemiology, Jagiellonian University Medical College, Kraków Poland
Download PDF Download RIS Download Bibtex

Abstract

Background: Problem-based learning is a method of acquiring knowledge and competences on the basis of work on the problem. Medical universities use the PBL method more widely in the course of teaching future physicians, in the CMUJ classes using the PBL method were introduced in the third year of studies, as a part of the Introduction to Clinical Sciences.

Methods: At the end of course, the students voluntarily filled in a questionnaire (17 questions con-cerning various aspects of the course). A total of 105 questionnaires were analyzed. Statistica 12.0 program was used for this analysis.

Results: 95.5% of respondents positively perceived the way of conducting classes in the form of PBL and considered them to be in line with their expectations (81%). 80% of respondents confirmed the usefulness of classes in acquiring knowledge and integrity with pre-clinical subjects. Divided opinions were expressed by the respondents as to the benefits and satisfaction from independent presentation and teaching of other students, 34.3% rather emphasized the benefits, while 28.6% expressed a negative opinion.

Conclusions: The study confirmed usefulness of classes conducted using the PBL method, both in terms of deepening the knowledge and repetition of already gained knowledge, as well as beneficial reception of classes by students. The course may be modified in the future by increasing the number of cases.
Go to article

Bibliography

1. Donner R.S., Bickley H.: Problem-based learning in American medical education: an overview. Bull Med Libr Assoc. 1993 Jul; 81 (3): 294–298.
2. Schafer M., Georg W., Muhlinghaus I., Frohmel A., Rolle D., Pruskil S., Heinz A., Burger W.: Experience with new teaching methods and testing in psychiatric training. Nervenarzt. 2007 Mar; 78 (3): 283–293.
3. Neville A.J.: Problem-based learning and medical education forty years on. Med Princ Pract. 2009; 18 (1): 1–9.
4. Cendan J.C., Silver M., Ben-David K.: Changing the student clerkship from traditional lectures to small group casebased. J Surg Educ. 2011; 68 (2): 117–120.
5. Skrzypek A., Stalmach-Przygoda A., Dębicka-Dąbrowska D., Kocurek A., Szopa M., Górski S., Szeliga M., Małecki Ł., Grodecka A., Cebula G., Nowakowski M.: Wybrane metody dydaktyczne stosowane w edukacji studentów medycyny w Zakładzie Dydaktyki Medycznej Uniwersytetu Jagiellońskiego Collegium Medicum. Co nowego w dydaktyce medycznej? General and Professional Education. 2018; 1: 26–32.
6. Skrzypek A., Szeliga M., Jagielski P., Perera I., Dębicka-Dąbrowska D., Wilczyńska-Golonka M.: The modified Peyton approach in the teaching of cardiac auscultation. Folia Med Crac. 2019; 59 (4): 21–32.
7. Oliveira L.B., Díaz L.J., Carbogim F. da C., Rodrigues A.R., Püschel V.A.: Effectiveness of teaching strategies on the development of critical thinking in undergraduate nursing students: a meta-analysis. Rev Esc Enferm USP. 2016 Apr; 50 (2): 355–364.
8. Kong L.N., Qin B., Zhou Y.Q., Mou S.Y., Gao H.M.: The effectiveness of problem-based learning on development of nursing students’ critical thinking: a systematic review and meta-analysis. Int J Nurs Stud. 2014 Mar; 51 (3): 458–469.
9. Yuan H., Williams B.A., Fan L.: A systematic review of selected evidence on developing nursing students’ critical thinking through problem-based learning. Nurse Educ Today. 2008 Aug; 28 (6): 657–663. doi: 10.1016/j.nedt.2007.12.006. Epub 2008 Feb 11. Review.
10. Zahid M.A., Varghese R., Mohammed A.M., Ayed A.K.: Comparison of the problem based learning- driven with the traditional didactic-lecture-based curricula. Int J Med Educ. 2016 Jun 12; 7: 181–187. doi: 10.5116/ijme.5749.80f5.
11. Ibrahim N.K., Banjar S., Al-Ghamdi A., Al-Darmasi M., Khoja A., Turkistani J., Arif R., Al-Sebyani A., Musawa A.A., Basfar W.: Medical students preference of problem-based learning or traditional lectures in King Abdulaziz University, Jeddah, Saudi Arabia. Ann Saudi Med. 2014 Mar–Apr; 34 (2): 128–133.
12. Surif J., Ibrahim H., Mokhtar M.: Implementation of Problem Based Learning in Higher Education Institutions and Its Impact on Students’ Learning 4th. Int Symp Probl Learn 2013. 2013; 66–71.
13. Arneson H., Ekberg K.: Evaluation of empowerment processes in a workplace health promotion intervention based on learning in Sweden. Health Promot Int. 2005 Dec; 20 (4): 351–359. Epub 2005 Sep 16.
14. Susskind J.E.: Powerpoint’s Power in the Classroom: Enhancing Students’ Self-Efficacy and Attitudes. Computers and Education. 2005 Sep; v45 n2: 203–215.
15. DeBord K.A., Aruguete M.S., Muhlig J.: Are Computer-Assisted Teaching Methods Effective? Teaching of Psychology. 2004; 31 (1): 65–68.
16. Nouri H., Shahid A.: The effect of Powerpoint presentations on student learning and attitudes. Glob Perspect Account Educ. 2005; 2: 53–73.
17. Atta I.S., Alghamdi A.H.: The efficacy of self-directed learning versus problem-based learning for teaching and learning ophthalmology: a comparative study. Adv Med Educ Pract. 2018 Sep 4; 9: 623–630.
18. Chang B.J.: Problem-based learning in medical school: A student’s perspective. Ann Med Surg (Lond). 2016 Nov; 22; 12: 88–89.
19. Skrzypek A., Cegielny T., Szeliga M., Jabłoński K., Nowakowski M.: Different perceptions of Problem Based Learning among Polish and Scandinavian students. Is PBL the same for everyone? Preliminary study. General and Professional Education. 2017; 3: 58–64. ISSN 2084-1469.
20. Ibrahim M.E., Al-Shahrani A.M., Abdalla M.E., Abubaker I.M., Mohamed M.E.: The Effectiveness of Problem-based Learning in Acquisition of Knowledge, Soft Skills During Basic and Preclinical Sciences: Medical Students’ Points of View. Acta Inform Med. 2018 Jun; 26 (2): 119–124.
21. Skrzypek A., Perera I., Szeliga M., Jagielski P., Dębicka-Dąbrowska D., Wilczyńska-Golonka M., Górecki T., Cebula G.: The modified Peyton’s approach and students’ learning style. Folia Med Crac. 2020; 60 (2): 67–80.
Go to article

Authors and Affiliations

Dorota Dębicka-Dąbrowska
1
Agnieszka Skrzypek
1
Marta Szeliga
1
Grzegorz Cebula
1

  1. Department of Medical Education, Faculty of Medicine, Jagiellonian University Medical College Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The term peritonitis is relatively new in medical language, however some of its symptoms were observed and noted even in antiquity. The proper recognition of peritonitis as a distinct pathological entity was made possible when progress in the clinical and experimental sciences give birth to the methodology needed for the investigation of the etiology and mechanism of peritoneal inflammation. Research con-cerning this clinical topic began to yield significant results in the second half of 19th century. This paper aims to give some insight into this pioneering period of scientific investigation focused on the etiology and pathology of peritonitis. From the work of von Recklinghausen in the 1860s, through the later research of Wegner and Gravitz, the next major step in this field was made by the Polish experimental pathologist and pathophysiologist Karol Klecki.
Go to article

Bibliography

1. Hau T.: The History of Peritonitis. Acta Chirurgica Austriaca. 2000; 32: 157–161.
2. Hau T.: Biology and treatment of peritonitis: the historic development of current concepts. J Am Coll Surg 1998; 186: 475–484.
3. Recklinghausen F.v.: Zur Fettresorption. Archiv f pathol Anat. 1863; 26: 172–208. https://doi.org/10.1007/BF01930770.
4. Wegner G.: Chirurgische Bermekungen über die Peritonealhöle, mit besonderer Berucksichtigung der Ovariotomie. Arch Klin Chir. 1877; 20: 51–145.
5. Curtis B.F.: I. The Pathology of Peritonitis. Ann Surg. 1887; 5 (2): 120–124. doi: 10.1097/00000658-188701000-00026.
6. Dubar L., Remy Ch.: Sur l’absorption par le péritoine. Journal de l’anatomie et de la physiologie normales et pathologiques de l’homme et des animaux. 1882; 18: 60–106, 342–372.
7. Grawitz P.: Statistischer und experimentell-pathologischer Beitrag zur Kenntnis der Peritonitis. Charité-Annalen. 1886; 11: 770–823.
8. Grawitz P.: Beitrag zur Theorie der Eiterung. Virchows Archiv. 1889; 116: 116–153.
9. Guzek J.W.: Karol Klecki (1866–1931). Acta Phisiologica Polonia. 1987; 38: 272–278.
10. Klecki C.: Recherches sur la pathogénie de la péritonite d’origine intestinale; étudo de la virulence du coli bacille. Annales de l’Institut Pasteur. Paris. 1895; 9: 710–735.
11. Laruelle L.: Etude bacteriologique sur les peritonitis par perforation. Le Cellule. 1889; 5: 61–122.
12. Pawlowsky A.D.: Zur Lehre von der Aetiologie, der Entstehungsweise und den Formen der acuten Peritonitis. Virchows Archiv. 1889; 117: 469–530.
13. Barbacci O.: Sulla etiologia e patogenesi delle peritonite da perforatione. Studio anatomico e sperimentale. La Sperimentale. 1893: 4, 15.
14. Malvoz E.: Le bacterium coli commune comme agent habituel des peritonitis d’origine intestinale. Archive de medicine Experimentale et d’anatomie Pathologique. 1891; 3: 593–614.
15. Ziegler P.: Studien ueber die intestiale Form der Peritonitis. Munich 1893. 16. Treves F.: An Address On Some Rudiments Of Intestinal Surgery. BMJ 1898; 2 (1975): 1385–1390. https://www.jstor.org/stable/20256576.
17. Neisser M.: Ueber die Durchgängigkeit der Darmwand für Bakterien. Zeitschr f Hygiene. 1896; 22: 12–32. https://doi.org/10.1007/BF02288370.
18. Weil S.: Die akute freie Peritonitis [in:] E. Payr et al. (eds.) Ergebnisse der Chirurgie und Orthopädie. 1911; 2: 278–357.
19. Lartigau A.J.: The Bacillus Coli Communis in Human Infections. Journal AMA. 1902; 38 (15): 930– 937.
20. Dudgeon L., Sargant P.: The Bacteriology of Peritonitis. London 1905.
21. Hertzler A.: The Peritoneum. St Louis: Mosby. 1912; 2: 36.
22. Meleney F.L., Harvey H.D., Jern H.Z.: Peritonitis: I. The Correlation of The Bacteriology of The Peritoneal Exudate and The Clinical Course of The Disease in One Hundred and Six Cases of Peritonitis. Arch Surg. 1931; 22 (1): 1–66.
23. Haas W.: Über den Bakteriengehalt des Pfortaderblutes und die Entstehung von Leberabszessen. Deutsche Zeitschrift f Chirurgie. 1922; 173: 239–293.
24. Dieulafoy G.: A Text-book of medicine. New York. 1912; 1: 780.
Go to article

Authors and Affiliations

Ryszard W. Gryglewski
1

  1. Department of the History of Medicine, Jagiellonian University Medical College
Download PDF Download RIS Download Bibtex

Abstract

Background: The histology of the lung includes a variety of cell types. Fibrosis is a universal process, occurring in the skin, intestine, heart, muscles, kidney, blood vessels, liver, and also the lungs. Telocytes are a type of cells with a wide range of properties, which were previously described in healthy and disease-affected organs of human and animal organisms.

Aim: This study aimed to identify telocytes in the lungs of rats and discuss their possible role in the development of pulmonary fibrosis.

Methods: Tissue samples were taken from a group of ten male Wistar rats. Further histological and immunohistochemical analysis was performed. Double immunolabeling for c-kit, vimentin, CD34, and PDGFRα has revealed telocytes in the lungs.

Results: In all tissue samples, telocytes have been identified (in the area of interalveolar septa, close to blood vessels, and between the airway epithelium).

Conclusion: Telocytes might be directly and indirectly (through contact with stem cells, secretomes, and reduction in number) involved in the development of pulmonary fibrosis. The heterogeneity of the telocyte population in different pathologies and their subtypes, as well as their tendency to be common stress their important role in pathological physiology.
Go to article

Bibliography

1. Schraufnagel D.E.: Electron microscopy of the lung. New York: Marcel Dekker, CRC Press; 1990.
2. Hogan B., Tata P.R.: Cellular organization and biology of the respiratory system. Nat Cell Biol. 2019. https://doi.org/10.1038/s41556-019-0357-7.
3. Evren E., Ringqvist E., Willinger T.: Origin and ontogeny of lung macrophages: from mice to humans. Immunology. 2020; 160 (2): 126–138.
4. Awad M., Gaber W., Ibrahim D.: Onset of Appearance and Potential Significance of Telocytes in the Developing Fetal Lung. Microsc Microanal. 2019; 25 (5): 1246–1256.
5. Popescu L.M., Gherghiceanu M., Suciu L.C., Manole C.G., Hinescu M.E.: Telocytes and putative stem cells in the lungs: electron microscopy, electron tomography and laser scanning microscopy. Cell Tissue Res. 2011; 345 (3): 391–403.
6. Aleksandrovych V., Pasternak A., Basta P., Sajewicz M., Walocha J.A., Gil K.: Telocytes: facts, speculations and myths (Review article). Folia Med Cracov. 2017; 57 (1): 5–22.
7. Zheng Y., Li H., Manole C.G., Sun A., Ge J., Wang X.: Telocytes in trachea and lungs. J Cell Mol Med. 2011; 15: 2262–2268.
8. Aleksandrovych V., Walocha J.A., Gil K.: Telocytes in female reproductive system (human and animal). J Cell Mol Med. 2016; 20 (6): 994–1000.
9. Díaz-Flores L., Gutiérrez R., Díaz-Flores L.J.R., Goméz M.G., Sáez F.J., Madrid J.F.: Behaviour of telocytes during physiopathological activation. Semin Cell Dev Biol. 2016; 55: 50–61.
10. Hussein M.M., Mokhtar D.M.: The roles of telocytes in lung development and angiogenesis: An immunohistochemical, ultrastructural, scanning electron microscopy and morphometrical study. Dev Biol. 2018; 443 (2): 137–152.
11. Popescu L.M., Faussone-Pellegrini M.S.: TELOCYTES — a case of serendipity: the winding way from interstitial cells of Cajal (ICC), via interstitial Cajal-like cells (ICLC) to TELOCYTES. J Cell Mol Med. 2010; 14: 729–740.
12. Ibba-Manneschi L., Rosa I., Manetti M.: Telocyte implications in human pathology: An overview. Biol. 2016; 55: 62–69.
13. Liao Z., Chen Y., Duan C., Zhu K., Huang R., Zhao H., et al.: Cardiac telocytes inhibit cardiac microvascular endothelial cell apoptosis through exosomal miRNA-21-5p-targeted cdip1 silencing to improve angiogenesis following myocardial infarction. Theranostics. 2021; 11 (1): 268–291.
14. Zhaofu L., Dongqing C.: Cardiac Telocytes in Regeneration of Myocardium After Myocardial Infarction. Adv Exp Med Biol. 2016; 913: 229–239.
15. Milia A.F., Ruffo M., Manetti M., Rosa I., Conte D., Fazi M., et al.: Telocytes in Crohn’s disease. Cell Mol Med. 2013; 17 (12): 1525–1536.
16. Ibba-Manneschi L., Rosa I., Manetti M.: Telocytes in Chronic Inflammatory and Fibrotic Diseases. Adv Exp Med Biol. 2016; 913: 51–76.
17. Wolnicki M., Aleksandrovych V., Gil A., Pasternak A., Gil K.: Relation between ureteral telocytes and the hydronephrosis development in children. Folia Med Cracov. 2019; 59 (3): 31–44.
18. Aleksandrovych V., Pasternak A., Gil K.: Telocytes in the architecture of uterine fibroids. Folia Med Cracov. 2019; 59 (4): 33–44.
19. Aleksandrovych V., Białas M., Pasternak A., Bereza T., Sajewicz M., Walocha J., et al.: Identification of uterine telocytes and their architecture in leiomyoma. Folia Med Cracov. 2018; 58 (3): 89–102.
20. Manole C.G., Gherghiceanu M., Simionescu O.J.: Telocyte dynamics in psoriasis. Cell Mol Med. 2015; 19 (7): 1504–1519.
21. Jin L., Wang Z., Qi X.: Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia: Case series and a review of the literature. Medicine (Baltimore). 2018; 97 (52): e13806.
22. Leuenberger P.: [Clinical importance of non-respiratory functions of the lung]. Schweiz Med Wochenschr. 1983; 113 (29): 1006–1010.
23. Wittmann J.: [Respiratory and non-respiratory functions of the lung]. Tierarztl Prax Suppl. 1987; 2: 33–36.
24. Aleksandrovych V., Kurnik-Łucka M., Bereza T., Białas M., Pasternak A., Cretoiu D., Walocha J.A., Gil K.: The Autonomic Innervation and Uterine Telocyte Interplay in Leiomyoma Formation. Cell Transplant. 2019; 28: 619–629.
25. Song D., Cretoiu D., Cretoiu S.M., Wang X.: Telocytes and lung disease. Histol Histopathol. 2016; 31 (12): 1303–1314.
26. Shi L., Dong N., Chen C., Wang X.: Potential roles of telocytes in lung diseases. Semin Cell Dev Biol. 2016; 55: 31–39.
27. Ciechanowicz A.: Stem Cells in Lungs. Adv Exp Med Biol. 2019; 1201: 261–274.
28. Rokicki W., Rokicki M., Wojtacha J., Dżeljijli A.: The role and importance of club cells (Clara cells) in the pathogenesis of some respiratory diseases. Kardiochir Torakochirurgia Pol. 2016; 13 (1): 26–30.
29. Ibba-Manneschi L., Rosa I., Manetti M.: Telocytes in Chronic Inflammatory and Fibrotic Diseases. Adv Exp Med Biol. 2016; 913: 51–76.
Go to article

Authors and Affiliations

Anna Gil
1
Veronika Aleksandrovych
1

  1. Department of Pathophysiology, Jagiellonian University Medical College, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The potato cyst nematode (PCN), Globodera pallida, originates from South America and is considered one of the most severe agricultural pests of potato crops and other Solanaceae plants globally. Based on their virulence and ability to reproduce on various potato cultivars, the populations of G. pallida are divided into three pathotypes, Pa1– Pa3. In this study, comparative sequence analyses of the fragment of mitochondrial cytochrome c oxidase subunit II ( mtCOII) gene for eight populations of G. pallida, representing three pathotypes, Pa1, Pa2 and Pa3, indicated genetic diversity between them. However, we did not identify significant mutations distinguishing Pa2 from Pa3. Interestingly, two single nucleotide substitutions, T441C and A468G, were characteristic only for populations assigned to Pa1. On this basis, we developed high resolution melting (HRM) PCR protocol. As a result, the melting curves obtained for samples of Pa1 populations varied from those obtained for populations designed as Pa2 and Pa3, allowing their differentiation. Thus, the HRM protocol developed here enables a rapid, very sensitive and low-cost screening assay for SNPs identification in mtCOII of G. pallida pathotypes. In effect, it might also be a helpful molecular tool in pathotype differentiation. However, further verification of the correlation of the occurrence of single nucleotide mutations in mtCOII in particular pathotypes should be carried out on a much larger number of samples of G. pallida, to determine if these mutations are characteristic only for this pathotype.
Go to article

Bibliography


Bakker J., Bouwman-Smits L., Gommers F.J. 1992. Genetic relationships betacceween Globodera pallida pathotypes in Europe assessed by using two dimensional gel electrophoresis of proteins. Fundamental and Applied Nematology 15: 481–490.
Bates J.A., Taylor E.J.A., Gans P.T., Thomas J.E. 2002. Determination of relative proportions of Globodera species in mixed populations of potato cyst nematodes using PCR product melting peak analysis. Molecular Plant Pathology 3 (3): 153–161. DOI: https://doi.org/10.1046/j.1364-3703.2002.00107.x
Bulman S.R., Marshall J.W. 1997. Differentiation of Australa- sian potato cyst nematode (PCN) populations using the polymerase chain reaction (PCR). New Zealand Journal of Crop and Horticultural Science 25 (2): 123–129.
Burrows P.R., Boffey S.A. 1986. A technique for the extraction and restriction endonuclease digestion of total DNA from Globodera rostochiensis and Globodera pallida second stage juveniles. Revue de Nematologie 9 (2): 199–200.
EPPO. 2017. 7/40 (4) Globodera rostochiensis and Globodera pallida. EPPO Bulletin 47: 174–197.
Folkertsma R.T., der Voort J., van Gent-Pelzer M.P.E., De Groot K.E., van Den Bos W.J., Schots A., Bakker J., Gommers F.J. 1994. Inter-and intraspecific variation between populations of Globodera rostochiensis and G. pallida revealed by random amplified polymorphic DNA. Phytopathology 84 (8): 807–811.
Fox P.C., Atkinson H.J. 1984. Isoelectric focusing of general protein and specific enzymes from pathotypes of Globodera rostochiensis and G. pallida. Parasitology 88 (1): 131–139. DOI: https://doi.org/10.1017/S0031182000054408
Hinch J.M., Alberdi F., Smith S.C., Woodward J.R., Evans K. et al. 1998. Discrimination of European and Australian Globodera rostochiensis and G. pallida pathotypes by high performance capillary electrophoresis. Fundamental and Applied Nematology 21 (2): 123–128.
Hoolahan A.H., Blok V.C., Gibson T., Dowton M. 2012. A comparison of three molecular markers for the identification of populations of Globodera pallida. Journal of Nematology 44 (1): 7.
Kort J., Ross H., Rumpenhorst H.J., Stone A.R. 1977. An international scheme for identifying and classifying pathotypes of potato cyst-nematodes Globodera rostochiensis and G. pallida. Nematologica 23 (3): 333–339.
Madani M., Subbotin S.A., Moens M. 2005. Quantitative detection of the potato cyst nematode, Globodera pallida, and the beet cyst nematode, Heterodera schachtii, using real-time PCR with SYBR green I dye. Molecular and Cellular Probes 19 (2): 81–86.
Nakhla M.K., Owens K.J., Li W., Wei G., Skantar A.M., Levy L. 2010. Multiplex real-time PCR assays for the identification of the potato cyst and tobacco cyst nematodes. Plant Disease 94 (8): 959–965.
Nowaczyk K., Dobosz R., Budziszewska M., Kamasa J., Obrępalska-Stęplowska A. 2011. Analysis of diversity of golden potato cyst nematode (Globodera rostochiensis) populations from Poland using molecular approaches. Journal of Phytopathology 159 (11–12): 759–766.
Nowaczyk K., Dobosz R., Kornobis S., Obrepalska-Steplowska A. 2008. TaqMan REAL-Time PCR-based approach for differentiation between Globodera rostochiensis (golden nematode) and Globodera artemisiae species. Parasitology Research 103 (3): 577–581.
Phillips M.S., Trudgill D.L. 1983. Variations in the ability of Globodera pallida to produce females on potato clones bred from Solanum vernei or S. tuberosum ssp. andigena CPC 2802. Nematologica 29 (2): 217–226.
Phillips M.S., Trudgill D.L. 1998. Variation of virulence, in terms of quantitative reproduction of Globodera pallida populations, from Europe and South America, in relation to resistance from Solanum vernei and S. tuberosum ssp. andigena CPC 2802. Nematologica 44 (4): 409–423.
Saenz M.C., De Scurrah M.M. 1977. Races of the potato cyst nematode in the Andean region and a new system of classification. Nematologica 23 (3): 340–349.
Schnick D., Rumpenhorst H.J., Burgermeister W. 1990. Differentiation of closely related Globodera pallida (Stone) populations by means of DNA restriction fragment length polymorphisms (RFLPs). Journal of Phytopathology 130 (2): 127–136.
Sedlak P., Melounova M., Skupinova S., Vejl P., Domkarova J. 2004. Study of European and Czech populations of potato cyst nematodes (Globodera rostochiensis and G. pallida) by RAPD method. Plant Soil and Environment 50 (2): 70–74.
Subbotin S.A., Franco J., Knoetze R., Roubtsova T.V., Bostock R.M., Del Prado Vera I.C. 2020. DNA barcoding, phylogeny and phylogeography of the cyst nematode species from the genus Globodera (Tylenchida: Heteroderidae). Nematology 22 (3): 269–297.
Thiery M., Fouville D., Mugniery D. 1997. Intra-and interspecific variability in Globodera, parasites of Solanaceous plants, revealed by Random Amplified Polymorphic DNA (RAPD) and correlation with biological features. Fundamental and Applied Nematology 20 (5): 495–504.
Vejl P., Skupinova S., Sedlak P., Domkarova J. 2002. Identification of PCN species (Globodera rostochiensis, G. pallida) by using of ITS-1 region’s polymorphism. Rostlinna Vyroba 48 (11): 486–489.
Zouhar M., Ryšanek P., Kočova M. 2000. Detection and differentiation of the potato cyst nematodes Globodera rostochiensis and Globodera pallida by PCR. Plant Protection Science 36 (3): 81–84.
Go to article

Authors and Affiliations

Marta Budziszewska
1
ORCID: ORCID

  1. Department of Molecular Biology and Biotechnology, Institute of Plant Protection – National Research Institute, Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

Meloidogyne arenaria belongs to root-knot nematodes (RKNs) which constitute a group of highly polyphagous nematodes causing serious damages to many crop varieties. Maize ( Zea mays) is one of its main hosts. During plant response to RKN infection, many mechanisms are involved. Pathogenesis-related proteins (PRs), which present many functions and enzymatic activities, such as ribonucleases (RNases), antioxidative enzymes, or proteases are involved in these processes. The aim of this study was to describe changes in peroxidase and RNase activities induced in Z. mays during its response to M. arenaria infection. Moreover, proteins potentially responsible for peroxidase activity were indicated. RNase and peroxidase activities were tested on proteins extracted from roots of healthy plants, M. arenaria infected plants, and healthy plants mixed with M. arenaria juveniles, in native polyacrylamide (PAA) gels. Samples were collected from two varieties of maize at four time points. A selected fraction showing peroxidase activity was excised from the gel and analyzed using mass spectrometry (MS) to determine protein factors responsible for enzymatic activity. As a result, the analyzed varieties showed slight differences in their RNase and peroxidase activities. Higher activity was observed in the Tasty Sweet variety than in the Waza variety. There were no significant differences between healthy and infected plants in RNase activities at all time points. This was in contrast to peroxidase activity, which was the highest in M. arenaria-infected plants 15 days after inoculation. On the basis of protein identification in excised gel fractions using MS it can be assumed that mainly peroxidase 12 is responsible for the observed peroxidase activity. Moreover, peroxidase activity may be presented by glutathione-S-transferase as well.
Go to article

Bibliography


Bajaj K., Singh P., Mahajan R. 1985. Changes induced by Meloidogyne incognita in superoxide dismutase, peroxidase and polyphenol oxidase activity in tomato roots. Biochemie und Physiologie der Pflanzen 180: 543−546. DOI: https://doi.org/10.1016/S0015-3796(85)80102-5
Bariola P.A., Green P.J. 1997. Plant ribonucleases. p. 163−190. In: "Ribonucleases: Structures and Functions” (G. D’Alessio, J.F. Riordan, eds). Academic Press, USA. DOI: https://doi. org/10.1016/B978-012588945-2/50006-6
Bartling D., Radzio R., Steiner U., Weiler E.W. 1993. A glutathione S-transferase with glutathione-peroxidase activity from Arabidopsis thaliana: Molecular cloning and functional characterization. European Journal of Biochemistry 216: 579−586. DOI: https://doi.org/10.1111/j.1432-1033.1993.tb18177.x
Blank A., Sugiyama R., Dekker C.A. 1982. Activity staining of nucleolytic enzymes after sodium dodecyl sulfate-polyacrylamide gel electrophoresis: use of aqueous isopropanol to remove detergent from gels. Analytical Biochemistry 120: 267−275. DOI: https://doi.org/10.1016/0003-2697-(82)90347-5
Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248−254. DOI: https://doi.org/10.1016/0003-2697-(76)90527-3
Christensen J.H., Bauw G., Welinder K.G., Van Montagu M., Boerjan W. 1998. Purification and characterization of peroxidases correlated with lignification in poplar xylem. Plant Physiology 118: 125−135. DOI: https://doi.org/10.1104/ pp.118.1.125
Edreva A. 2005. Pathogenesis-related proteins: research progress in the last 15 years. General and Applied Plant Physiology 31: 105−124.
Eisenback J.D., Triantaphyllou H.H. 1991. Root-knot nematodes: Meloidogyne species and races. p. 191−274. In: "Manual of Agricultural Nematology" (W.R. Nickle, ed.). CRC Press, USA. DOI: https://doi.org/10.1201/9781003066576
Elling A.A. 2013. Major emerging problems with minor Meloidogyne species. Phytopathology 103: 1092−1102. DOI: https://doi.org/10.1094/PHYTO-01-13-0019-RVW
Filipenko E., Kochetov A., Kanayama Y., Malinovsky V., Shumny V. 2013. PR-proteins with ribonuclease activity and plant resistance against pathogenic fungi. Russian Journal of Genetics: Applied Research 3: 474−480. DOI: https://doi.org/10.1134/S2079059713060026
Gheysen G., Fenoll C. 2002. Gene expression in nematode feeding sites. Annual Review of Phytopathology 40: 191−219. DOI: https://doi.org/10.1146/annurev.phyto.40.121201.093719
Hiraga S., Sasaki K., Ito H., Ohashi Y., Matsui H. 2001. A large family of class III plant peroxidases. Plant and Cell Physiology 42: 462−468. DOI: https://doi.org/10.1093/pcp/ pce061
Holbein J., Grundler F.M., Siddique S. 2016. Plant basal resistance to nematodes: an update. Journal of Experimental Botany 67: 2049−2061. DOI: https://doi.org/10.1093/jxb/ erw005
Hussey R. 1973. A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Disease Reporter 57: 1025−1028.
Jain D., Khurana J.P. 2018. Role of pathogenesis-related (PR) proteins in plant defense mechanism. p. 265−281. In: "Molecular Aspects of Plant-Pathogen Interaction." (A. Singh, I.K. Singh, eds.). Springer, Singapore. DOI: https://doi.org/10.1007/978-981-10-7371-7
Kyndt T., Nahar K., Haegeman A., De Vleesschauwer D., Höfte M., Gheysen G. 2012. Comparing systemic defencerelated gene expression changes upon migratory and sedentary nematode attack in rice. Plant Biology 14: 73−82. DOI: https://doi.org/10.1111/j.1438-8677.2011.00524.x
Mahantheshwara B., Nayak D., Patra M.K. 2019. Protein estimation through biochemical analysis in resistant and susceptible cultivars of cowpea against infection by root-knot nematode, Meloidogyne incognita. Journal of Entomology and Zoology Studies 7 (4): 1191−1193.
MlÝčkovß K., Luhovß L., Lebeda A., Mieslerovß B., Peč P. 2004. Reactive oxygen species generation and peroxidase activity during Oidium neolycopersici infection on Lycopersicon species. Plant Physiology and Biochemistry 42: 753−761. DOI: https://doi.org/10.1016/j.plaphy.2004.07.007
Mohanty K., Ganguly A., Dasgupta D. 1986. Development of peroxidase (EC 1.11. 1.7) activities in susceptible and resistant cultivars of cowpea inoculated with the root-knot nematode, Meloidogyne incognita. Indian Journal of Nematology 16: 252−256.
Mohsenzadeh S., Esmaeili M., Moosavi F., Shahrtash M., Saffari B., Mohabatkar H. 2011. Plant glutathione S-transferase classification, structure and evolution. African Journal of Biotechnology 10: 8160−8165. DOI: https://doi.org/10.5897/AJB11.1024
Przybylska A., Kornobis F., Obrępalska-Stęplowska A. 2018. Analysis of defense gene expression changes in susceptible and tolerant cultivars of maize (Zea mays) upon Meloidogyne arenaria infection. Physiological and Molecular Plant Pathology 103: 78−83. DOI: https://doi.org/10.1016/j.pmpp.2018.05.005
Przybylska A., Obrępalska-Stęplowska A. 2020. Plant defense responses in monocotyledonous and dicotyledonous host plants during root-knot nematode infection. Plant and Soil 451: 239–260. DOI: https://doi.org/10.1007/s11104-020-04533-0
Siddiqui Z., Husain S. 1992. Response of twenty chickpea cultivars to Meloidogyne incognita race 3. Nematologia Mediterranea 20: 33−36.
Singh N.K., Paz E., Kutsher Y., Reuveni M., Lers A. 2020. Tomato T2 ribonuclease LE is involved in the response to pathogens. Molecular Plant Pathology 21: 895−906. DOI: https:// doi.org/10.1111/mpp.12928
Veronico P., Paciolla C., Pomar F., De Leonardis S., García- -Ulloa A., Melillo M.T. 2018. Changes in lignin biosynthesis and monomer composition in response to benzothiadiazole and root-knot nematode Meloidogyne incognita infection in tomato. Journal of Plant Physiology 230: 40−50. DOI: https://doi.org/10.1016/j.jplph.2018.07.013
Go to article

Authors and Affiliations

Arnika Przybylska
1
ORCID: ORCID

  1. Department of Molecular Biology and Biotechnology, Institute of Plant Protection − National Research Institute, Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

Pepper yellow leaf curl Thailand virus (PepYLCTHV) causes leaf curl disease in chili production regions of the tropics and subtropics. Information on PepYLCTHV disease severity and resistance in chili pepper is still limited in Thailand. This study reports PepYLCTHV disease severity through graft inoculation and selection of single resistant plants for use in a chili breeding program. Twenty-one chili genotypes consisting of the local cultivar (5) collected from Thailand, breeding lines (9) developed at Khon Kaen University (KKU), Thailand and improved lines (7) obtained from the World Vegetable Center, Taiwan were used in this study. Forty-five-day-old seedlings of all the genotypes were graft inoculated with PepYLCTHV in a randomized complete block design (RCBD) with three replications and 10 plants per replication and kept in a plastic net house. Disease symptoms were scored at 20, 27, 34, 41 48, and 55 days after graft/inoculation (DAI). Disease severity was visually recorded using 0−5 scores. Results showed that the disease severity of 21 chili genotypes significantly differed at 48 days after grafting. High resistance and stability were shown by 9853-123 genotypes. Two genotypes, PSP11-7 and PSP11-10-1, showed resistant reaction with disease severity scores of 1.9 and 1.8, respectively. However, among 21 chili genotypes or 630 grafted plants, 302 plants were successfully grafted inoculated plants. Therefore, from the results of this work, highly resistant plants (69 single plants) can be selected, selfed and advanced for breeding.
Go to article

Bibliography


Anaya-López J.L., Torres-Pacheco I., González-Chavira M., Garzon-Tiznado J.A., Pons-Hernandez J.L. 2003. Resistance to geminivirus mixed infections in mexican wild peppers. Journal American Society Horticultural Science 38 (2): 251–255. DOI: https://doi.org/10.21273/HORTSCI.38.2.251
Barchenger D.W., Jeeatid N., Lin S.W., Wang Y.W., Lin T.H., Chan Y.L., Kenyon L. 2019. A novel source of resistance to Pepper yellow leaf curl Thailand virus (PepYLCThV) (Begomovirus) in chile pepper. Journal American Society Horticultural Science 54 (12): 2146−2149. DOI: https://doi.org/10.21273/HORTSCI14484-19
Chiemsombat P., Srikamphung B., Yule S., Srinivasan R. 2018. Begomoviruses associated to pepper yellow Leaf curl disease in Thialand. Journal of Agricultural Research 3 (7): 000183. Food and Agriculture Organization. 2017. Agricultural Production: Primary crops. Available on: http://apps.fao.org. [Accessed: 25 January 2020]
Kumar R., Rai N., Kakpale N. 1999. Field reaction of some chilli genotypes for leaf curl virus in Chhattisgarh region of India. The Orissa Journal of Horticulture 27: 100−102. DOI: https://doi.org/10.18782/2320-7051.5471
Kumar S., Kumar S., Singh M., Singh A.K., Rai M. 2006. Identification of host plant resistant to pepper leaf curl virus in chilli (Capsicum species). Scientia Horticulturae 110: 359−361. DOI: https://doi.org/10.1016/j.scienta.2006.07.030
Kumar S., Kumar R., Kumar S., Singh A.K., Singh M., Rai A.B., Rai A.B. 2011. Incidence of leaf curl disease on capsicum germplasm under field conditions. Indian Journal of Agricultural Sciences 81: 187−189.
Mishra M.D., Raychaudhuri S.P., Jha A. 1963. Virus causing leaf curl of chilli (Capsicum annuum L.). International Journal of Microbiology 3: 73–76.
Rai V.P.R., Kumar S., Singh P., Kumar S., Singh M., Rai M. 2014. Monogenic recessive resistant to pepper by leaf curl virus in an interspecific cross of Capsicum. Scientia Horticulturae 172: 34−38. DOI: https://doi.org/10.1016/j.scienta.2014.03.039
Sakata J.J., Shibuya Y., Sharma P., Ikegami M. 2008. Strains of a new bipartite begomovirus, Pepper yellow leaf curl Indonesia virus, in leaf-curl-diseased tomato and yellow-veindiseased ageratum in Indonesia. Archives of Virology 153 (12): 2307−2313. DOI: https://doi.org/10.1007/s00705-008-0254-z
Sangsotkaew Y., Jeeartid N., Siri N., Thummabenjapone P., Chatchawankanphanich O., Phuangrat B., Techawongstien S. 2018. Phenotypic responses of putative resistance chili cultivars infected by PepLCV with viruliferous whitefly transmission. Acta Horticulturae 67. DOI: https://doi.org/10.18690/978-961-286-045-5.54.
Shih S.L., Tsai W. S., Lee L.M., Wang J.T., Green S.K., Kenyon L. 2010. First report of tomato yellow leaf curl Thailand virus associated with pepper leaf curl disease in Taiwan. Plant Disease 94 (5): 637. DOI: https://doi.org/10.1094/PDIS-94-5-0637B
Srivastava A., Mangal M., Saritha R.K., Kalia P. 2017. Screening of chilli pepper (Capsicum spp.) lines for resistance to the Begomovirus causing chili leaf curl disease in India. Journal of Crop Protection 100: 177–185. DOI: https://doi.org/10.1016/j.cropro.2017.06.015
Tsai W., Shih S., Green S., Rauf A., Hidayat S., Jan F.J. 2006. Molecular characterization of Pepper yellow leaf curl Indonesia virus in leaf curl and yellowing diseased tomato and pepper in Indonesia. Plant Disease 90 (2): 247−247. DOI: https://doi.org/10.1094/PD-90-0247B
Tsai W.S., Shih S.L., Kenyon L., Green S.K., Jan F.J. 2011. Temporal distribution and pathogenicity of the predominant tomato-infecting begomoviruses in Taiwan. Plant Pathology 60: 787−799. DOI: https://doi.org/10.1111/j.1365-3059.2011.02424.x
Verlaan M.G., Hutton S.F., Ibrahem R.M., Kormelink R., Visser R.G.F., Scott J.W., Edwards J.D., Bai Y. 2013. The tomato yellow leaf curl virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-Class RNA–Dependent RNA polymerases. PLoS Genetics 9 (3): e1003399. DOI: https://doi.org/10.1371/journal.pgen.1003399
Zehra S.B., Ahmad A., Sharma A., Sofi S., Lateef A., Bashir Z., Husain M., Rathore J.P. 2017. Chilli leaf curl virus an emerging threat to chilli in India. Indian Journal of Pure and Applied Biosciences 5 (5): 404−414.
Go to article

Authors and Affiliations

Patcharaporn Suwor
1
ORCID: ORCID
Tawatchai Masirayanan
1
Hathairat Khingkumpungk
1
Wen Shi Tsai
2
Kanjana Saetiew
1
Suchila Techawongstien
3
Sanjeet Kumar
4
Somsak Kramchote
1

  1. Plant Production of Technology, School of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
  2. Department of Plant Medicine, College of Agriculture, National Chiayi University, Chiayi, Taiwan
  3. Department of Plant Science and Agricultural Resources, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
  4. Pepper Breeding Section, Plant Geneticist and Breeder (Independent), India
Download PDF Download RIS Download Bibtex

Abstract

Fusarium wilt is one of the most severe diseases of chickpea in the major growing areas of chickpea production in western Iran. To identify Fusarium spp. associated with chickpea plants showing symptoms of yellowing and wilting, 58 chickpea fields were sampled and 106 Fusarium spp. isolates were obtained from six different regions of Kermanshah Province in western Iran during 2018 and 2019 crop seasons. Thirty-six isolates obtained from stem or lower stem tissues were selected for pathogenicity, morphological and molecular identification using polymease chain reaction species-specific primers. Eleven isolates of Fusarium spp. were selected for sequence analyzing the translation elongation factor 1-α (EF-1α), and β-tubulin gene regions. Phylogenetic analysis of concatenated DNA sequences of both gene regions of these isolates plus other taxa revealed that 11 Fusarium spp. isolates were clustered into five distinct groups. Based on the results of morphological and molecular identification five Fusarium species were identified. Pathogenicity tests showed that F. oxysporum f. sp. ciceris and F. redolens isolates had the highest disease incidence on JG–62 and Bivenij cvs. and F. hostae, F. equiseti and F. acuminatum isolates had the lowest disease incidence. No sign of vascular discoloration was observed in longitudinal or transverse sections of chickpea plants affected by F. redolens isolates. Instead, brown to black necrosis was observed on the surface of tap-roots and crowns. No correlation was found between geographical distribution and pathogenicity of isolates. This is the first report of morphological, molecular and pathogenicity characteristics of F. redolens and F. hostae isolated from chickpea stems or lower stems in Iran.
Go to article

Bibliography

polymorphic DNA (RAPD). European Journal of Plant Pathology 107: 237–248. DOI: https://doi.org/10.1023/A:1011294204630
Jendoubi W., Bouhadida M., Boukteb A., Beji M., Kharrat M. 2017. Fusarium wilt affecting chickpea crop. Agriculture 7 (23): 1–16. DOI: https://doi.org/10.3390/agriculture7030023
Leslie J.F., Zeller K.A., Summerell B.A. 2001. Icebergs and species in populations of Fusarium. Physiological and Molecular Plant Pathology 59: 107–117. DOI: 10.1006/pmpp.2001.035
Leslie J.F., Summerell B.A. 2006. The Fusarium laboratory manual. Ames, Iowa: Blackwell Publishing, USA, 388 pp.
Manuchehri A., Mesri A. 1966. Fusarium wilt of chickpea. Iranian Journal of Plant Pathology 3 (3): 1–11.
Mishra P.K., Fox R.T.V., Culham A. 2003. Development of a PCR based assay for rapid and reliable identification of pathogenic Fusaria. FEMS Microbiology Letters 218 (2): 329–332. DOI: https://doi.org/10.1111/j.1574-6968.2003.tb11537.x
Mohammadi H., Banihashemi Z. 2005. Distribution, pathogenicity and survival of Fusarium spp. the causal agents of chickpea wilt and root rot in the Fars province of Iran. Iranian Journal of Plant Pathology 41 (4): 687–708.
Navas-Cortes J.A., Alcala-Jimenez A.R., Hau B., Jimenez- -Diaz R.M. 2000. Influence of inoculum density of race 0 and 5 of Fusarium oxysporum f. sp. ciceris on development of Fusarium wilt in chickpea cultivars. European Journal of Plant Pathology 106: 135–146. DOI: https://doi.org/10.1023/A:1008727815927
Nene Y.L., Haware M.P. 1980. Screening chickpea for resistance to wilt. Plant Disease 64: 379–380.
Nelson P.E., Toussoun T.A., Marasas W.F.O. 1983. Fusarium Species: An Illustrated Manual for Identification. Pennyslvania State University Press, University Park, USA, 193 pp.
Nourollahi K.H., Aliaran A., Younesi H. 2017. Genetic diversity of Fusarium oxysporum f. sp. ciceris isolates causal agent of chickpea wilt in Kermanshah province using microsatellite markers. Novel Genetic 11 (4): 605–615.
O’Donnell K., Cigelnik E. 1997. Two divergent intragenomic rDNA ITS2 types within a monophyletic. Molecular Phylogenetics and Evolution 7 (1): 103–116. DOI: https://doi.org/10.1006/mpev.1996.0376
O’Donnell K., Cigelnik E., Nirenberg H.I. 1998. Molecular systematic and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90 (3): 465–493. DOI: https://doi.org/10.1080/00275514.1998.12026933
Saeedi Sh., Jamali S. 2021. Molecular characterization and distribution of Fusarium isolates from uncultivated soils and chickpea plants in Iran with special reference to Fusarium redolens. Journal of Plant Pathology 103 (4): 167–183. DOI: https://doi.org/10.1007/s42161-020-00698-w
Sharma K.D., Muehlbauer F.J. 2007. Fusarium wilt of chickpea: physiological specialization, genetics of resistance and resistance gene tagging. Euphytica 157 (1–2): 1–14. DOI: https://doi.org/10.1007/s10681-007-9401-y
Shokri J., Javan-Nikkhah M., Rezaei S., Zamanizadeh H.R., Nourollahi Kh. 2020. Molecular identification of the races of Fusarium oxysporum f. sp. ciceris, causal agent of chickpea wilt in western and north western provinces of Iran. Applied Entomology and Phytopathology 88 (1): 11–12. DOI: https://doi.org/10.22092/jaep.2020.126209.1281
Taylor J.W., Jacobson D.J., Kroken S., Kasuga T., Geiser D.M., Hibbett D.S., Fisher M.C. 2001. Phylogenetic species recognition and species concepts in fungi. Fungal Genetics and Biology 31 (1): 21–32. DOI: https://doi.org/10.1006/fgbi.2000.1228
Trapero-Casas A., Jimenez-Diaz R.M. 1985. Fungal wilt and root rot diseases of chickpea in southern Spain. Phytopathology 75 (10): 1146–1151. DOI: https://doi.org/10.1094/ Phyto-75-1146
Wang J., Zheng C. 2012. Characterization of a newly discovered Beauveria bassiana isolate to Franklimiella occidentalis Perganda, a non-native invasive species in China. Microbiology Research 167 (2): 116–120. DOI: https://doi.org/10.1016/j.micres.2011.05.002
Younesi H. 2004. Identification of the physiologic races of Fusarium oxysporum f. sp. ciceris in some west provinces of Iran. In: Proceedings of the 16th Iranian Plant Protection Congress, Tabriz, Iran (in Persian with English summary)
Younesi H., Chehri Kh., Sheikholeslami M., Safaee D., Naseri B. 2019. Effects of sowing date and depth on Fusarium wilt development in chickpea cultivars. Journal of Plant Pathology 102 (2): 343–350. DOI: https//doi/10.1007/s42161-019-00423-2
Zokaee S., Falahati Rastegar M., Jafar Poor B., Bagheri A., Jahanbakhsh Mashhadi V. 2012. Genetic diversity determination of Fusarium oxysporum f. sp. ciceris the causal agent of wilting and chlorosis in chickpea by using RAPD and PCR- -RFLP techniques in Razavi and northern Khorasan provinces. Iranian Journal of Pulses Research 3 (2): 7–16. DOI: https://doi.org/10.22067/ijpr.v1391i2.24531
Go to article

Authors and Affiliations

Hassan Younesi
1
ORCID: ORCID
Mostafa Darvishnia
1
ORCID: ORCID
Eidi Bazgir
1
ORCID: ORCID
Khosrow Chehri
2
ORCID: ORCID

  1. Department of Plant Protection, College of Agriculture and Natural Resources, Lorestan University, Khorramabad, Iran
  2. Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran

This page uses 'cookies'. Learn more