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Abstract  
 

Conducting reliable and credible evaluation and statistical interpretation of empirical results related to the operation of production systems 
in foundries is for most managers complicated and labour-intensive. Additionally, in many cases, statistical evaluation is either ignored 
and considered a necessary evil, or is completely useless because of improper selection of methods and subsequent misinterpretation of the 
results. In this article, after discussing the key elements necessary for the proper selection of statistical methods, a wide spectrum of these 
methods has been presented, including regression analysis, uni- and multivariate correlation, one-way analysis of variance for factorial 
designs, and selected forecasting methods. Each statistical method has been illustrated with numerous examples related to the foundry 
practice. 
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1. Introduction  
 

As demonstrated by practical experience, a reliable estimate, 
optimization and statistical interpretation of the obtained 
empirical results linked to the evaluation of functional production 
systems in foundries is for the majority of foundry staff managing 
these systems the process complicated and labour-intensive. At 
the same time, basing on the long experience of the authors, it can 
be concluded that in many cases statistical evaluation is ignored 
or completely useless as a result of improper selection of methods 
and subsequent misinterpretation of the results. This article 
presents a wide spectrum of modern statistical methods, starting 
with the selection and analysis of the level of measurement, 
discussing next the choice of appropriate statistical tests and use 
of relevant characteristics of descriptive statistics, and ending in 
the description with guidelines for the application of regression 
analysis, uni- and multivariate correlation, one-way analysis of 
variance for factorial designs, and several forecasting methods. 
The selected statistical methods have been illustrated with specific 

examples of casting practice and were presented during the 15th 
Scientific Conference held last year. 

  
 

2. Elements of proper selection of the 
statistical methods 
 

Conducting statistical analysis it is necessary to determine 
first the number of tests and/or the series of measurements, and 
choose the type of measurement scales, in which the analyzed 
data will be expressed. It is also necessary to determine the 
relationship between the measurement scales and the type of 
random variable, which may be discontinuous (discrete) or 
continuous [1-2]. The outcome of performed studies is one or 
several measurement series, where each of the values obtained is 
the realization of a random variable. Practical experience shows 
us that the diagnosis of the type of the analyzed random variable 
may create serious difficulties. Variables of the continuous type 
occur in the measurements of time, density, length, area, volume, 
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pressure, concentration, etc., that is, the quantities which may take 
any value from a given range. Since measurements are made 
using a variety of devices, instruments or apparatus, there is a 
problem of accuracy with which it is possible to determine the 
value of the examined feature, i.e. a random variable. Of some 
significance is the order of magnitude related with the 
measurement. An example here is the measurement of distance 
expressed in kilometres or microns. When the cost is determined 
as a resultant feature, it is expressed in the units of a two-tier 
monetary system used in our country, and so there is one zloty and 
its equivalent equal to one hundred groshes. It is impossible, 
therefore, to determine the monetary value with an accuracy more 
precise than one grosh, and so the conclusion is that this 
measurable feature can not be classified as a continuous variable. 

There are many variables which without any doubt belong to 
the family of continuous variables, but the available accuracy of 
measurements is of the order such that the obtained values 
resemble rather the variables of a discontinuous type. The 
examples of such variables are quite numerous, to mention only  
the measurement of the intensity of a signal, which assumes the 
values comprised in a given range, but its recording by 
conventional apparatus is done with a certain accuracy only. This 
has some consequences when it comes to the estimation of the 
characteristics of descriptive statistics (e.g. average or variance), 
since the discontinuous nature of the measurements determines 
the discontinuous nature of the estimators, and this has a 
significant impact on the quality of inference using parametric 
tests [1-3].  

The discontinuous (discrete) variable adopts strictly 
determined values with probabilities that result from its 
probability distribution. Here it is easy to notice that the set of all 
the values of the discrete variable does not always belong to the 
group of finite (countable) sets. Among the examples of the 
discrete variables one can mention the popular Poisson 
distribution, which from a theoretical point of view is used to 
describe a discontinuous variable having an infinite number of 
values, and as such is frequently used to describe the number of 
occurrences of a specific event in a certain period of time [2]. As 
an example of the discrete variable one can mention the numbers 
drawn in a lottery, the number of pieces in a batch of castings 
which needs to be checked, the number of structural constituents 
which appear in the field of view during image analysis, etc. 

When the number of the observable values of the discrete 
random variable is relatively large, it is assumed that its 
distribution has certain characteristics typical of the distribution of 
a continuous random variable [2]. As an example can be given a 
universal in practical applications way to replace the binomial 
distribution (discontinuous variable) with normal distribution 
(continuous variable), provided that appropriate relationships are 
met [1-3]. 

A similar phenomenon of replacing with the normal 
distribution other distributions of discrete random variables 
occurs in the case of distributions of the sum of ranks, to mention 
as an example non-parametric Mann-Whitney and Wilcoxon tests 
[1]. In some cases, also distributions based on the sum of the 
squares of rank statistics in non-parametric Kruskal-Wallis and 
Friedman tests may be replaced by c2 distribution [2-3]. 

The basic condition for the applicability of parametric tests is 
compliance of distribution of the examined resultant feature with 

the normal distribution, and hence its continuity [2]. These 
limitations significantly reduce the possibility of verification of 
statistical hypotheses based on the results of parametric tests. 
However, as practical experience shows us, while the requirement 
for compliance of the distribution of the examined resultant 
feature with the normal distribution is obvious, the requirement 
for continuity of the examined random variable is often an 
excessive request. So, in the case of a sufficiently large resolution 
of the discontinuous random variable with distribution similar to a 
normal distribution, confirmed by relevant tests of compliance, 
the use of parametric tests should not raise major doubts. Thus, as 
recommended by some of the scientists dealing with statistical 
methods, a principle has been adopted that in taking a decision on 
the application of the chosen method, less attention will be 
devoted to studies of the continuity or discontinuity of resulting 
features, focusing attention rather on the type of measurement 
scales in which these features will be expressed. The basic 
condition for conducting proper statistical analysis is therefore the 
distinguishability and a good knowledge of the measurement 
scales: qualitative (nominal), ordinal, interval (differential) and 
the most powerful of all scales – the ratio scale [2-3]. 

Parametric tests are applicable when the values of the 
examined resultant feature are expressed in a differential or ratio 
scale with positive verification of the null hypothesis assuming  
normality of the distribution, that is, in the absence of any 
grounds to reject it. Otherwise, it is necessary to use appropriate 
non-parametric test, which should be a substitute for the 
parametric one. In the case when the values of resulting features 
are expressed in nominal or ordinal scale, only non-parametric 
tests are recommended for use. 

Accurate diagnosis of the number of series and measurement 
scales in which the data is expressed is a second, next to the 
content of the problem solved, essential element deciding about 
the right choice of statistical method. When the case of one 
measurement series is considered, and we can be sure that there is 
only one test to deal with, the choice of a statistical method is 
determined, on the one hand, by the type of measurement scales 
in which the analyzed data is expressed, and on the other hand, by 
the content of the problem (task), which should indicate the type 
of hypotheses to be taken into consideration. Two series of 
measurements can represent equally well two tests or one test. 
Two series represent two tests only when their values refer to the 
same resultant feature, which means that they are expressed in the 
same measurement scale. Then, these are the two independent 
tests. Some indication may be in this case the unequal number of 
measurements in both runs (tests). If two series are composed of 
an equal number of measurements of the same resultant feature, 
the diagnosis if independent tests are dealt with must be based on 
a sound analysis of the content of the task. In the situation when 
there are two series of measurements and it is known that only 
one test has been made, it is clear that both series consist of an 
equal number of measurements. In this case, the choice of an 
appropriate statistical method will depend on the result of an 
investigation, if the series express the values of the same resultant 
feature or of two different features. In the former case it will 
probably be necessary to show the differences between these 
series, in the latter case - to establish some relationships or 
correlations. The most important factor that supports both the 
diagnosis and the correct choice of statistical method is analysis 
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of the content of the problem, while details in this respect depend 
primarily on the measurement scales expressing the values of both 
data series. 

Practical experience teaches us that analysis of more than two 
series of measurements requires substantially the same reasoning 
as the reasoning used in the case of two series. The first step is to 
investigate whether the examined series represent independent 
tests (with the same resultant feature), or one test. In the latter 
case, the test components can be described with several series of 
measurements of the same resultant feature or with several series 
of measurements of different resultant features. Proper diagnosis 
will depend on the content of the problem (task), and helpful in 
this respect can be equal or unequal number of all the 
measurement series. It is obvious that the statistical tools chosen 
for the two series of measurements will differ from the tools that 
are used  for more than two series. 

 
 

3. Statistical methods selected for the 
   optimization of foundry production  
 

The following chapters discuss the selection and use of 
different statistical tools to manage the production of castings. 

 
 

3.1. Studies of the effect of W and Mo content on  
       the properties of silumin 226   

 
In [4], the authors describe the effect of the addition of W and 

Mo on the properties of silumin 226 (Table 1). 
 

Table 1. 
Studies of mechanical properties of the tested silumin including 
auxiliary variables [4] 

LP W_Mo W_Mo_N Rm Rp02 A HB S_Rm S_Rp02 S_A S_HB S_SUMA
1 0,0 0 246,2 127,1 3,5 117,0 -0,01 0,99 -0,27 1,85 2,56
2 0,0 0 255,9 112,4 3,9 115,0 0,40 -0,71 0,19 1,18 1,05
3 0,0 0 251,1 119,7 3,7 116,0 0,19 0,14 -0,04 1,51 1,80
4 0,1 1 228,5 123,1 2,6 112,0 -0,76 0,53 -1,47 0,17 -1,52
5 0,1 1 267,3 121,9 3,9 111,0 0,88 0,39 0,17 -0,17 1,28
6 0,1 1 274,2 134,7 4,1 111,5 1,17 1,88 0,50 0,00 3,55
7 0,2 2 264,0 125,3 4,2 108,0 0,74 0,79 0,60 -1,18 0,95
8 0,2 2 287,1 130,4 5,4 107,0 1,72 1,38 2,05 -1,51 3,64
9 0,2 2 251,5 110,1 4,4 107,5 0,21 -0,98 0,78 -1,34 -1,33
10 0,3 3 223,9 109,4 3,4 112,0 -0,96 -1,06 -0,46 0,17 -2,31
11 0,3 3 207,7 115,5 2,5 113,0 -1,64 -0,35 -1,52 0,50 -3,00
12 0,3 3 219,1 112,1 3,0 112,5 -1,16 -0,74 -0,87 0,34 -2,43
13 0,4 4 211,1 105,3 2,7 109,0 -1,49 -1,53 -1,24 -0,84 -5,11
14 0,4 4 260,1 120,2 4,7 111,0 0,58 0,19 1,13 -0,17 1,73
15 0,4 4 249,2 110,6 4,1 110,0 0,12 -0,92 0,45 -0,50 -0,86

Mean 246,4 118,5 3,7 111,5
SD 23,62 8,63 0,80 2,98  

 
The statistical analysis was based on the independent variable:  

total content of Mo and W in silumin [%] (variable W_Mo), 
which had five levels, namely 0.0; 0.1; 0.2; 0.3 and 0.4%,  coded 
as 0, 1, 2, 3 and 4, respectively (variable W_Mo_N). The 
dependent variables were: Rm [MPa], Rp0.2 [MPa], A [%] and HB. 
The database was supplemented with standardized values of the 
dependent variables (variables: S_Rm, S_Rp0,2, S_A and S_HB) 
and with their sum (variable S_SUMA). The standardization 
procedure allows for the transformation of dimensional variable 
into the dimensionless one. As a result, the averages obtained 
from various sources and in different units can be compared with 
each other. The standardized value was calculated dividing the 

difference between the empirical value and average value by the 
value of standard deviation [1-3].  

In the first stage, a univariate analysis of regression and linear 
correlation (according to Pearson) was carried out, capturing the 
effect of the independent variable W_Mo on each of the examined 
dependent features, i.e. Rm, Rp0.2, A and HB, separately. Only 
between W and Mo and HB there was a statistically significant 
negative linear correlation (Fig. 1). 

 

 
Fig. 1. The results of univariate analysis of regression and linear 

correlation capturing the effect of W and Mo content in the 
examined silumin on HB 

 
To let the estimators of the linear regression function obtained 

by the method of least squares possess the required properties 
such as the efficiency and unbiasedness, a number of conditions 
(assumptions) should be met, the most important among them 
demanding that the random component (the residuals) had a 
normal distribution. The fulfilment of this assumption can be 
evaluated from the plot of normal residuals. 

In the second stage, to evaluate the effect of the total content 
of W and Mo on Rm, Rp0.2, A and HB, the method of one-way 
analysis of variance (ANOVA) [3] was used. ANOVA is a 
technique that allows us to examine the results (experiments, 
observations), which depend on one factor (in this case it is the 
total content of W and Mo in silumin), coded with the respective 
numbers from 0 to 4, which denote the following five levels 
(variants): 0,0% = 0; 0.1% = 1; 0.2% = 2; 0.3% = 3 and 0.4% = 
4. This is the, so called, grouping or classification factor. 

To check the basic assumption about the uniformity 
(homogeneity) of variance in all groups (levels of the factor 
W_MO_N) Bartlett's test was used [1]. Should this assumption has 
not been met (or should each group comprise too few data - in the 
case under discussion only 3 measurements available each time), 
in the next step, to validate the hypothesis about the significance 
of the effect of the analyzed factor on the resultant feature, a non-
parametric Kruskal-Wallis rank-sum test, which is an equivalent 
of the parametric one-way ANOVA, is applicable. The next 
validation covers the hypotheses assuming the same average 
values for the multiple comparisons in the examined five groups 
of the levels of factor W_MO_N using post-hoc Tukey test [3]. 
Sample results of analysis of the impact of factor W_MO_N in the 
examined silumin on HB are shown in Table 2. 

The results of one-way ANOVA indicate that for the factor 
W_MO_N the average values of HB in all groups (and at all 
levels) differ significantly (p <0.0001). A similar result was 
obtained using Kruskal-Wallis rank-sum test (p = 0.0101). The 
results of intergroup comparisons (Tukey test) between  the 
hardness values obtained in silumins containing W and Mo at a 
level of 0.1% and 0.3%, respectively (p = 0.5010) and W and Mo 
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at a level of 0.1% and 0.4%, respectively (p=0.1722) have proved 
that there was no statistically significant difference in the average 
level of this property. 

 
Table 2. 
The results of statistical evaluation of the effect of W and Mo 
content in the examined silumin on HB 

One-way analysis of variance
Data: HB Sum of Squares Degree of freedom MeanSquare F p
W_Mo_N 118,50 4 29,63 53,86 0,0000

Error 5,50 10 0,55

Bartlett's test: c2 = 1,949; p = 0,7450
Post-hoc Tukey test

Factor: W_Mo_N {0} 251,05 {1} 256,65 {2} 267,50 {3} 216,90 {4} 240,13
{0}: W and Mo = 0,0% p = 0,0003 0,0002 0,0014 0,0002
{1}: W and Mo = 0,1% 0,0003 p = 0,0006 0,5010 0,1722
{2}: W and Mo = 0,2% 0,0002 0,0006 p = 0,0002 0,0138
{3}: W and Mo = 0,3% 0,0014 0,5010 0,0002 p = 0,0138
{4}: W and Mo = 0,4% 0,0002 0,1722 0,0138 0,0138 p =

Kruskal-Wallis test: H ( 4, N= 15) = 13,26; p = 0,0101  
 

In studies of the effect of one independent factorial feature 
(W_Mo_N = 0; 1; 2; 3; 4) on several (more than one) dependent 
features (Rm, Rp0.2, A, HB), modern statistical tests, such as a 
multivariate analysis of variance (MANOVA), seem to be a good 
choice [3]. 

In the last stage of the optimization process of the combined 
effect of the explanatory variable, which is the addition of W and 
Mo, on the tested properties of silumin, a univariate analysis of 
regression and correlation was used [1-3]. Since the aim was to 
simultaneously achieve maximum values of all the investigated 
dependent variables, as an explained (dependent) variable, the 
sum of the standardized values of all the analyzed dependent 
variables S_SUMA (Table 3) has been adopted. 

 
Table 3.  
The results of linear regression capturing the effect of W and Mo 
content on S_SUMA  

R= 0,5731; Coefficient of determination R2= 0,3284 
F(1,13)=6,359 p<0,0255; Residual standard deviation 2,1973

Parameter BETA Std. error 
BETA Coefficient Std. error B t(13) p

Intercept 2,0233 0,9827 2,0590 0,0601
W_Mo -0,5731 0,2273 -10,1166 4,0117 -2,5218 0,0255  
 

Finally, a statistically significant linear correlation (p=0.0255) 
between the total content of W and Mo and the sum of the 
standardized variables (the examined properties) was obtained 
(Fig. 3). 

 

 
Fig. 2. Plotted linear correlation capturing the effect of W and Mo 

content in the examined silumin on S_SUMA 
 

3.2. Evaluation of the effect of heat treatment  
       conditions on the ADI impact resistance  

 

Table 4 shows the results of impact resistance tests carried out 
on the unnotched specimens of ADI (Table 1).  

 
Table 4. 
Fragment of a database with the results of impact resistance tests 
carried out on cast iron [5] 

Lp Podchla Podchla_N Tpi Tpi_N tau_pi tau_pi_N Kc
1 850 2 300 1 7,5 1 63,5
2 850 2 300 1 7,5 1 70,2
3 850 2 300 1 7,5 1 56,6
4 850 2 300 1 15 2 62,4
5 850 2 300 1 15 2 69,3
6 850 2 300 1 15 2 58,4
7 850 2 300 1 30 3 53,3
8 850 2 300 1 30 3 69,8
9 850 2 300 1 30 3 59,0

10 850 2 300 1 60 4 51,6
11 850 2 300 1 60 4 45,7
12 850 2 300 1 60 4 49,6
13 850 2 300 1 120 5 43,8
14 850 2 300 1 120 5 40,9
15 850 2 300 1 120 5 43,8
16 850 2 300 1 240 6 41,0
17 850 2 300 1 240 6 42,8
18 850 2 300 1 240 6 42,8
19 800 1 300 1 7,5 1 61,7
20 800 1 300 1 7,5 1 58,6
21 800 1 300 1 7,5 1 60,4
22 800 1 300 1 15 2 60 3  

 

The statistical evaluation of the heat treatment effect on the 
impact resistance of cast iron (the measurable dependent variable 
Kc [J/cm2]) included the following independent variables: 
o cooling to intermediate temperature during austenitizing of 

cast iron expressed as a measurable variable with two levels 
of 800 and 850 [°C] (variable Podchla) and as a qualitative 
variable with levels 1 and 2, corresponding to the respective 
levels of temperature (Podchla_N variable); 

o the temperature of austempering expressed as a measurable 
variable with two levels of 300 and 400 [° C] (Tpi) and as a 
qualitative variable with levels 1 and 2, corresponding to the 
respective levels of temperature (variable Tpi_N); 

o the time of isothermal transformation expressed as a 
measurable variable with six levels of 7.5; 15; 30; 60; 120 
and 240 [min] (variable tau_pi) and as a qualitative variable 
with levels from 1 to 6, corresponding to the respective 
levels of transformation time (variable tau_pi_N); 

The adopted plan of experiment assumed the execution of full 
experiment, i.e. the execution of 24 (2·2·6 = 24) tests (called 
groups or subclasses). Each test consisted of three measurements 
of the impact resistance Kc. So, in total, 72 measurements of the 
impact resistance were made [5]. The effect of three independent 
variables treated as factor variables,i.e. Podchla_N, Tpi_N and 
tau_pi_N, on one measurable dependent variable Kc can be 
evaluated using the analysis of variance for factorial designs. The 
condition for use of this statistical tool is the homogeneity of 
variance of the examined feature in different subclasses, which 
can be checked with  Levene's or Bartlett’s test (Table 5). Based 
on the results of these two tests, it was found that there were no 
grounds to reject the hypothesis about the homogeneity (equality) 
of variance. The results of the analysis of variance for factorial 
designs (Table 5) have shown that the statistically significant 
effect on the impact resistance of the tested cast iron could be 
expected from all the single variables (factors), i.e. Podchla_N, 
Tpi_N and tau_pi_N, and also from some of their interactions, 
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such as the interaction between Podchla_N and Tpi_N, and 
interaction between Tpi_N and tau_pi_N. 

 
Table 5. 
The results of the analysis of variance for factorial designs 

Bartlett's test: χ2 = 27,6; p = 0,2304
Levene's test: F = 1,627; p = 0,0773

Effeχt Sum of Squares Degree of 
freedom

Mean 
Square F p

Interχept 350240,6 1 350240,6 10047,04 0,0000
Podχhla_N 3040,4 1 3040,4 87,22 0,0000

Tpi_N 29010,3 1 29010,3 832,19 0,0000
tau_pi_N 6915,2 5 1383,0 39,67 0,0000

Podχhla_N*Tpi_N 849,2 1 849,2 24,36 0,0000
Podχhla_N*tau_pi_N 53,2 5 10,6 0,30 0,9076

Tpi_N*tau_pi_N 826,6 5 165,3 4,74 0,0013
Podχhla_N*Tpi_N*tau_pi_N 152,3 5 30,5 0,87 0,5056

Error 1673,3 48 34,9  
 

It was also found that the strongest effect on changes in the 
cast iron impact resistance Kc had the factor (variable) Tpi_N, 
followed by Podchla_N (the effect nearly ten times weaker than 
that of Tpi_N) and tau_pi_N (the effect nearly twenty times 
weaker than that of Tpi_N). The information about the effect of 
individual factors (independent variables) on the impact resistance 
of cast iron can be derived from the values of descriptive statistics 
given in Table 6 and graphs based on these values, plotted in 
Figures 3-5. 

 
Table 6.  
Characteristics of descriptive statistics for individual subclasses 
(fragment) 

Factors Level 
Podchla_N Level Tpi Level 

tau_pi N Kc 
Mean

Kc Std. 
dev.

Kc Std. 
error

Kc: CI: 
95,00%

Kc CI: 
+95,00%

Podchla_N*Tpi_N*tau_pi_N 1 1 1 3 60,23 1,56 0,90 56,37 64,10
Podchla_N*Tpi_N*tau_pi_N 1 1 2 3 56,13 4,86 2,80 44,07 68,20
Podchla_N*Tpi_N*tau_pi_N 1 1 3 3 48,10 2,25 1,30 42,50 53,70
Podchla_N*Tpi_N*tau_pi_N 1 1 4 3 39,50 1,47 0,85 35,84 43,16
Podchla_N*Tpi_N*tau_pi_N 1 1 5 3 42,03 3,65 2,11 32,97 51,09
Podchla_N*Tpi_N*tau_pi_N 1 1 6 2 36,55 2,19 1,55 16,86 56,24
Podchla_N*Tpi_N*tau_pi_N 1 2 1 3 80,87 4,32 2,49 70,15 91,59
Podchla_N*Tpi_N*tau_pi_N 1 2 2 3 104,20 5,41 3,12 90,77 117,63
Podchla_N*Tpi_N*tau_pi_N 1 2 3 3 86,17 5,06 2,92 73,61 98,73
Podchla_N*Tpi_N*tau_pi_N 1 2 4 3 76,03 2,47 1,43 69,90 82,17
Podchla_N*Tpi_N*tau_pi_N 1 2 5 3 68,27 0,71 0,41 66,50 70,03
Podchla_N*Tpi_N*tau_pi_N 1 2 6 2 68,75 4,74 3,35 26,18 111,32
Podchla_N*Tpi_N*tau_pi_N 2 1 1 3 63,43 6,80 3,93 46,54 80,33
Podchla_N*Tpi_N*tau_pi_N 2 1 2 3 63,37 5,51 3,18 49,67 77,06
Podchla_N*Tpi_N*tau_pi_N 2 1 3 3 60,70 8,38 4,84 39,88 81,52
Podchla_N*Tpi_N*tau_pi_N 2 1 4 3 48,97 3,00 1,73 41,51 56,42
Podchla_N*Tpi_N*tau_pi_N 2 1 5 3 42,83 1,67 0,97 38,67 46,99
Podchla_N*Tpi_N*tau_pi_N 2 1 6 4 40,40 3,70 1,85 34,51 46,29
Podchla_N*Tpi_N*tau_pi_N 2 2 1 3 105,83 7,22 4,17 87,89 123,77
Podchla_N*Tpi_N*tau_pi_N 2 2 2 3 122,17 8,86 5,12 100,15 144,19
Podchla_N*Tpi_N*tau_pi_N 2 2 3 3 102,83 9,57 5,52 79,07 126,60
Podchla_N*Tpi_N*tau_pi_N 2 2 4 3 97,03 7,44 4,30 78,54 115,53
Podchla_N*Tpi_N*tau_pi_N 2 2 5 3 87,77 8,50 4,91 66,65 108,88
Podchla_N*Tpi_N*tau_pi_N 2 2 6 4 89,08 10,56 5,28 72,27 105,88  

 

 
Fig. 3. The effect of the examined factors on the cast iron impact 

resistance Kc 
 

From these graphs (Figs. 3-5) it can be concluded that  
increasing Tpi (from 300 to 400°C) increases the impact 
resistance (regardless of the value of Podchla_N and tau_min_N). 
Increasing Podchla (from 800 to 850°C) also increases the impact 
resistance (regardless of the value of Tpi and tau_min_N), while 
increasing tau_min (above 15 minutes) reduces the impact 
resistance (regardless of the value of Tpi_N and Podchla_N). 

 

 
Fig. 4. The effect of the examined factors on the cast iron impact 

resistance Kc 
 

 
Fig. 5. The effect of the examined factors on the cast iron impact 

resistance Kc 
 

The next step may involve interclass comparisons made with 
post-hoc Tukey test (Table 7). 
 
Table 7. 
The results of interclass comparisons made with post-hoc Tukey 
test (fragment) 

Number of Factors Number of the subclass
the subclass Podchla_N Tpi_N tau_pi_N 1 2 3 4 5 6 7 8 9 10 11 12

1 800°C 300°C 8 p = 1,0000 0,6590 0,0146 0,0615 0,0111 0,0154 0,0002 0,0006 0,1966 0,9893 0,9944
2 800°C 300°C 15 1,0000 p = 0,9893 0,1349 0,3801 0,0877 0,0012 0,0002 0,0002 0,0238 0,6590 0,7736
3 800°C 300°C 30 0,6590 0,9893 p = 0,9771 0,9998 0,8773 0,0002 0,0002 0,0002 0,0003 0,0204 0,0532
4 800°C 300°C 60 0,0146 0,1349 0,9771 p = 1,0000 1,0000 0,0002 0,0002 0,0002 0,0002 0,0002 0,0006
5 800°C 300°C 120 0,0615 0,3801 0,9998 1,0000 p = 1,0000 0,0002 0,0002 0,0002 0,0002 0,0005 0,0021
6 800°C 300°C 240 0,0111 0,0877 0,8773 1,0000 1,0000 p = 0,0002 0,0002 0,0002 0,0002 0,0003 0,0005
7 800°C 400°C 8 0,0154 0,0012 0,0002 0,0002 0,0002 0,0002 p = 0,0029 1,0000 1,0000 0,5914 0,8263
8 800°C 400°C 15 0,0002 0,0002 0,0002 0,0002 0,0002 0,0002 0,0029 p = 0,0671 0,0003 0,0002 0,0002
9 800°C 400°C 30 0,0006 0,0002 0,0002 0,0002 0,0002 0,0002 1,0000 0,0671 p = 0,8945 0,0720 0,2161

 
 

 

 
 
In the next stage, to evaluate the effect of three independent 

variables treated as numerical variables, i.e. Podchla, Tpi and 
tau_pi, on one measurable dependent variable Kc, the method of 
multiple (multivariate, multi-dimensional) regression can be used. 

 
Table 8. 
The results of multivariate (linear) regression showing the effect 
of Podchla, Tpi and tau-pi on the cast iron impact resistance Kc 

R= 0,9298; R2= 0,8646; F(3,68)=144,75 p<0,0001 Standard error: 9,3046

Independent variables BETA Std. error 
BETA B Std. error  

B t(68) p

Constant -290,0007 37,0232 -7,8330 0,0000
Podchla 0,2768 0,0446 0,2721 0,0439 6,2025 0,0000

Tpi 0,8346 0,0446 0,4102 0,0219 18,7037 0,0000
tau_pi -0,3025 0,0446 -0,0915 0,0135 -6,7797 0,0000  

 
Analyzing the linear factors only (no interaction), it can be 

concluded that statistically significant effect on the impact 
resistance improvement has an increase in Tpi and Podchla (the 
effect of the latter one being almost three times weaker than the 
effect of Tpi) and decrease in tau_pi. As in other ANOVA tests, 
the condition for the correct statistical evaluation by this method 
is the distribution of residuals close to normal, which can be 
assessed from the normal probability plot of residuals. A very 
good fit of the function: 

Kc = Podchla*0,2721+Tpi*0,4102 – tau_pi*0,0915 – 290,0 
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is confirmed by the value of the coefficient of determination close 
to unity R2 = 0.8646 and a scatterplot comparing the values 
predicted and observed (Fig. 6) 
 

 
Fig. 6. Scatterplot comparing the values predicted and observed 

 
 

3.3. The forecast share of ductile iron in the 
total production of castings in Poland 

 
To better highlight the possibilities offered by modern 

methods of forecasting in relation to the time series associated 
directly with the production of castings, data on the share of 
ductile iron in the total production of castings in the years 1989 – 
2013 has been used [6] (Fig. 7). 
 

 
Fig. 7. The share of ductile iron in the total production of 

castings in Poland in the years 1989-2013 
 
In this series it is easy to notice large random fluctuations with 

upward trend in the starting period and a clear downward trend in 
recent years. With this course of changes it is difficult to build a 
forecast of high accuracy and reliability. After a detailed analysis, 
for the construction of forecast, the following methods were 
selected [7]: 
o Multinomial econometric model of second degree; 
o Autoregressive model AR1; 
o Model of naive forecasting for a series focusing on the 

development trend; 
o Model of simple moving average for a series focusing on the 

development trend (k = 2 and k = 3); 
o Simple model of exponential smoothing; 
o Exponential-autoregressive model; 
o Model of weighted moving average for a series focusing on 

the development trend (k = 3); 
o Model of single exponential smoothing; 
o Holt’s linear model with additive trend (two types of start-

up); 
o Holt’s linear model with multiplicative trend (two types of 

start-up); 

o Holt’s linear model allowing for the trend suppression effect 
(additive - two types of start-up); 

o Holt’s linear model allowing for the trend suppression effect 
(multiplicative - two types of start-up); 

o Holt’s square model (two types of start-up). 
For all of the above presented forecasting methods, the point 

forecast (ex-ante) for the year 2014, the average approximation 
forecast error (ex-post), and the root mean square error (ex-post) 
were estimated. 

Figure 7 shows an example of Holt’s multiplicative linear 
forecast model allowing for the trend suppression effect. 

 
 

4. Summary and conclusions 
 

It is quite obvious that the statistical methods described in this 
article do not exhaust the very vast subject. What the authors 
wanted to achieve was only an easy-to-understand presentation of 
the possibilities offered by modern statistical tools, based on the 
selected research problems related to foundry practice with 
correct interpretation of the obtained results. An advantage of the 
presented methods and tools, promoting their practical 
application, is easy implementation, customization and processing 
of results in the popular Excel spreadsheet. 
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